Introduction |

Markov Random Fields (MRFs) are of paramount importance to vision. They can capture a
broad range of NP-complete vision problems (e.g. stereo matching, image restoration, optical
tlow estimation etc.).

However, the hardness of optimizing an MRF (i.e. what type of optimum an algorithm can
compute) depends critically on the type of its potential:
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Up to now graph-cuts could cope well only with metric MRFs. We need new approximation

algorithms that go beyond that limitation.

Contributions |

A new framework for designing approximation algorithms is proposed which is based on
duality theory ot Linear Programming:

It can handle a very wide class of
(an important class of problems in vision)

Fs with both metric & non-metric energies

dEven for non-metric energies its algorithms have guaranteed optimality properties
(1.e. worst-case suboptimality bounds)

1t includes the state-of-the-art “min-cut a-expansion” method merely as a special case
(for metric energies)

dBesides the worst-case bounds, its algorithms also provide much smaller petr-instance
suboptimality bounds which prove to be very tight in practice (1.e. very close to 1)
= generated solutions are nearly optimal!

JOffers new insights into existing graph-cut techniques

A comparison of our framework to
existing optimization approaches

Method Metric energy | Semimetric energy
a-B-swap local optimum local optimum
a-expansion approximation X
our framework approximation approximation
beliet propagation not guaranteed to converge

In fact, our framework easily extends to apply not only to semimetric energies but also to a
much more general set of non-metric energies.

Metric Labeling (ML) problem

dGiven objects V (residing in graph G) and labels 1, find labeling f : V — L of minimum

total cost defined as follows:

cost(f) =D pev Cpfp) ¥ 2o
(p,q)€edges(QG)

Wpqd (p)f(q)

JTotal cost decomposes into “label cost” terms & “separation cost” terms:
Cp,a = label cost for assigning label a = f(p) to object p

Wpqedap = separation cost for assigning pair of labels a=f(p),b=f(q) to neighbors p,q

d The edge weights wy, measure the strength of p and q relationship while
the distance function dqp measures the dissimilarity between labels 4,4
(here we DO NOT assume that this distance 1s a metric)

JdThe ML problem generalizes pairwise Markov Random Fields (MRFs):
Label costs replace MRF single-node potentials
Distance function dgp replaces MRF pairwise potentials

Tt therefore suffices to design our approximation algorithms for this problem

The primal-dual schema

Primal-dual schema is a powerful tool for deriving approximation algorithms based on
duality theory:.

dGiven as input a particular pair of primal and dual Linear Programming (LLP) problems:
PRIMAL.: min ¢!z DUAL: max bly
s.t. Az =b,2 >0 s.t. ATy <e

we then seek an optimal integral solution x* to the primal (NP-complete problem)

JThe primal-dual schema tries to find an approximately optimal solution as follows:

PRIMAL DUAL SCHEMA: Keep generating pairs {(z", %)} _, of feasible
integral-primal and dual solutions until the primal & dual costs of the last pair are
“close enough”: cl'zt < fo., - b1yt

Then x is guranteed to be an f, -approximation to the true optimal solution x™.

T _t .
sequence of dual costsl C_T__p | sequence of primal costsI
bl yt — 7P .
.

b .t s — ot — o — e e — e —h —r o — s — 4 —

bTyl > bTy2 >bTyt T CTmt< CTCL‘2 < CTml

‘ true optimal I

d1n practice an easy way to check that the costs of a primal-dual pair x, y are “close enough” is
through the so-called complementary slackness conditions:

\va Z > 0= Zzl ;;iY; > Cj/fj with max fj — fapp

(It is very easy to show that these conditions do imply the inequality ¢!z < f,,, - o'y )
So our objective will be to find x,y satisfying one such set of slackness conditions.

dSimply by choosing different sets of slackness conditions (i.e. different f), then different
approximation algorithms can be derived!

Primal & dual of Metric Labeling

d1n order to apply the primal-dual schema, the ML problem has been expressed as a linear
program (see paper for derivation)

JThe primal variables {x, } ¢y represent the active labels (i.e. the labels assigned to objects).
In particular, x,, denotes the label assigned to object p.

For visualizing the dual variables we can think that each object holds a copy of all labels and
that these labels are located at certain heights.

Wpq
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However each time a label c at p goes up by y,,, . thenlabel c at neighbor g must go down by
Yap,c = —Ypq,c (For this reason variables Ypq ¢, Ygp,c are called conjugate to each other)
Initially the height of alabelis setequal toitslabel costi.e. hty , = ¢pq

The PD1 algorithm |

I. Complementary slackness conditions

° [ (] L] [ a da
PD1 uses a particular set of complementary slackness conditions in which f,,, = 2——zbab
pp Mming—pdab

In particular it tries to find a primal-dual pair (x,y) that satisties the following set ot slackness
conditions (see paper for derivation):

active label X, must be lower than all

(a) htY
labels at p

= min, ht} , ————»

yLp

balance wvariables are upper bounded (so
(b) Ypg,a < Wpglmin/2 , Va —————————— we are not allowed to raise labels as much
as we like)

the sum of raises of active labels x . x at
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() Ypa,e, t Yapwg = Wpalayz,/ fapp neighbors p,q should not be too small

II. Updating the primal & dual variables

PD1 ensures that slackness conditions (b) and (c) always hold true (which 1s easy) and drives
(x,y) towards satistying (a) by alternating between updates of dual & primal variables:

DUAL VARIABLES UPDATE:| PRIMAL VARIABLES UPDATE:

Given the current active labels (l.e. the | Given the new heights (1.e. the new current
current primal), try to raise all non-active | dual), if the active label of p is not the lowest
labels at p above the active label at p (for | one at p then assign to p a new active label of
each objectp). lower height without violating (b) or (c).
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However, this may not be possible for all
p. E.g. in the above example we cannot
raise label ¢ at p any further than the red
arrow or else label c at q will go below the
active label x

Try to do that for as many p as possible. E.g.
in the above example the new active label
assigned to p is label ¢ because that label is
still below the previous active label of p i.e.

label 4

II1. Simulation via max-flow

JThe above update of the dual variables can be simulated by pushing flow through a graph as
follows (here y**! denotes the dual variable resulting after the update while y* =1 denotes
the dualvariable before the update):
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It at an object p label ¢ needs to go up (i.e. it is below the active
label x)) then we connect p to the source node s and flow f, ht%fjl — ht%i + £

through sp will represent the total raise of label catp.

If at an object q label ¢ may go down (i.e. it is above the active
label x ) then we connect q to the sink node tand flow /, through | ptv

gtwill represent the total decrease in the height of label catq.

k+1 __

Flows f,

g7

. k
 represent the increase/decrease of Ypq,c balance var ‘ YUng.c = Ypg.c T Jpqa — fap

JOptimal update occurs at the maximum flow. One can then update the primal variables (i.e.
check which labels did not manage to go above the active labels) using the following simple
rule:

REASSIGN RULE: Label ¢ will be the new label of node p (i.e. a:’;+1 =c) < Thereis an

unsaturated path between the source node s and p.

The PD2 & PD3 algorithms |

JPD1 made use of just one particular set of complementary slackness conditions.

dSimply by choosing a different set of slackness conditions and restricting distance dgp to be
a metric an algorithm equivalent to the a-expansion graph-cut method is derived! This
is the PD2 algorithm.

dMorteovert, thanks to the power of our framework, PD2 can be extended (in many ways) so
that it can handle non-metric distances d,; as well, leading to algorithms PD3, , PD3, and

PD3, which still have guaranteed optimality properties.

intuitively these algotithms obtain a nearly optimal solution by dynamically approximating
the non-metric distance d,; with a “metric” dgp - The “metric” dgp adapts itself at every
primal-dual update so that the complementary slackness conditions finally hold true.

dThanks to our framework many theorems can be proved about these algorithms, thus
offering new insights into graph-cut methods.

A New Framework for Approximate Labeling via Graph Cuts
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Experimental results |

I. Stereo Matching

Tsukuba left image Estimated disparity

Disparity

II. Stereo Matching with occlusions detection

SO o B For detecting occlusions a non-metric distance
s BRT RN SRR - : between labels (i.e. disparities) has been used which
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III. Image restoration & completion

The truncated quadratic semimetric has been used as distance between labels in this case.
Moreover, in the case of missing pixels the label costs ot those pixels have been set to zero.

Restored &
completed
image

Wl Noisy input
p image with
& S missing pixels

& image

Restored
image

intensity patterns & a higher penalty to large
intensity discontinuities has been applied.

M m - For this example, a semimetric distance that

Noisy input Metric Semimetric semimetric case: 8.2% pixels with errors
image restoration  restoration metric case: 41.4%0 pixels with errors

IV. Optical flow estimation
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Yosemite image optical tlow (x-3-swap result) optical tlow (our result)

ave, angular error: 14.73" ave, angular error: 6.97

A non-metric distance that penalizes abrupt changes in the direction of neighboring optical
flow vectors has been used. Both our algorithm & a-3-swap minimized exactly the same
objective function, yet a-3-swap solution had 19.2% higher energy.

V. Synthetic problems

x 10" | |
—— our algorithm
—— o~ B-swap
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Both our algorithm and a-3-swap have been applied to synthetic
problems with random label distances and random label costs
(180 labels were used and the objects were on a 30X 30 grid).

On average the o-3-swap energy was higher by 28% while also
a-3-swap needed more iterations to converge (as can be observed
15 Intheploton theleft).
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VI. Per-instance suboptimality bounds

JAn advantage of any primal-dual algorithm is that it always tells you (for free) how
well it performed!

This is thanks to its ability to also provide (for free) per-instance suboptimality bounds using

the primal-dual pairs {(x*, ")} _, thathas already generated duringits execution.

In particulat, any ratio r, = ¢! 2% /bLy* of primal and dual costs makes up such a bound.

dIn practice these bounds prove to be very tight (i.e. very close to 1) for our algorithms,
meaning that their solutions are almost optimal!
E.g. the ratios for the tsukuba stereo pair (and various 4, distances) are displayed below:
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