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Abstract

This document provides technical proofs for all theorems in the main paper.

1. Proofs

Lemma 1 Let x̂k,p, x̂k,C be binary minimizers of the energy functions Ēk
p , Ēk

C . Define fk
pq ≡ fpq(y

k), X̂k
q ≡ x̂k,C

qq +
∑

p x̂k,p
qq , ∀q∈C. Update (30) then reduces to
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where δk
w =
∑

p,q xk
pqf

k
pq−

∑

p6=q x̂k,p
pq fk

pq −
∑

q
X̂k

q fk
qq

|Sk|+1
.

Note: If J(w) is non-differentiable (e.g., if J(w) = ||w||1) then∇J(w) should refer to a subgradient of J(·) at w.

Proof. Update (30) requires computing a subgradient of the objective function (28) with respect to w, λ
k (for a fixed xk).

To this end, we need to compute the corresponding subgradient for each of the terms L̄Ēk
p
(xk;w, λk) and L̄Ēk

C
(xk;w, λk)

that are included in function (28). By definition (21) it holds that1

L̄Ēk
p
(xk;w, λk) = Ēk

p (xk;w, λk)−min
x

Ēk
p (x;w, λk) (37)

= Ēk
p (xk;w, λk) + max

x

(

−Ēk
p (x;w, λk)

)

(38)

A subgradient for a pointwise maximum function g(w, λk) = maxx gx(w, λk), where each gx(·, ·) is convex and differen-

tiable, is given by ∇gx̂(w, λk) for any x̂ that satisfies g(w, λk) = gx̂(w, λk), i.e., maxx gx(w, λk) = gx̂(w, λk). Since

function−Ēk
p (x;w, λk) is linear (and hence both convex and differentiable) with respect to w, λ

k, a subgradient of function

L̄Ēk
p
(xk;w, λk) (with respect to w, λ

k) will thus equal

∇Ēk
p (xk;w, λk)−∇Ēk

p (x̂k,p;w, λk) , (39)

where x̂k,p denotes a binary minimizer of function Ēk
p (·;w, λk). Therefore, based on (39) and the fact that dk

pq = wT fk
pq , a

1Note that both here and in the main paper all vectors of CRF variables x are always assumed to be integral. Therefore, in order to reduce notational

clutter we often omit stating this integrality constraint when using such vectors (e.g., we simply write minx instead of min{x:x has integral components}).
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subgradient of L̄Ēk
p

will have components δwk,p, {δλk,p
q }q (corresponding to variables w, {λk

pq}q respectively) given by
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∑
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

 (40)

δλk,p
q = xk

qq − x̂k,p
qq . (41)

Similarly, we can prove that a subgradient of function L̄Ēk
C
(xk;w, λk) will have components δwk,C , {δλk,C

q }q∈C (corre-

sponding to variables w, {λk
Cq}q∈C respectively) given by

δwk,C =
∑
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qqf

k
qq

|Sk|+ 1
−
∑

q∈C

x̂k,C
qq fk
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|Sk|+ 1
(42)

δλk,C
q = xk

qq − x̂k,C
qq , ∀q ∈ C (43)

where x̂k,C denotes a binary minimizer of function Ēk
C(·;w, λk).

Therefore, a total subgradient of the objective function (28) will have components δw, δλk,p
q , δλk,C

q (corresponding to

variables w, λk
pq, λ

k
Cq respectively), where

δw = τ∇J(w) +
∑

k
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(40),(42)
= τ∇J(w) +

∑

k

δk
w

. (44)

Furthermore, projection onto the set Λk =
{

λ
k :
∑

p∈Sk λk
pq + λk

Cq = 0 , ∀C ∈ Ck, q ∈ C
}

simply requires to first

subtract the average

∑

p∈Sk δλk,p
q +δλk,C

q

|Sk|+1

(41),(43)
= xk

qq −
Xk

q

|Sk|+1 from each of the elements {δλk,p
q }p, δλk,C

q before applying the

updates w −= stδw, λk
pq −= stδλ

k,p
q , λk

Cq −= stδλ
k,C
q (where st is the multiplier used during the t-th iteration). This is

easily seen to lead to updates (36), which concludes the proof of the lemma.

Lemma 2 Let [a]+ ≡ max(a, 0), [a]− ≡ min(a, 0).

1. For fixed p, let θk
q ≡

ūk
qq(1)

|Sk|+1
+λk

pq, ∀q and let us define θ̄k
q ≡ ūk

pq(1) + [θk
q ]+, ∀q 6= p and θ̄k

p = θk
p . A minimizer x̂ of

Ēk
p (x;w, λk) can be computed as follows:

∀q 6= p, x̂qq ← [θk
q < 0] (45)

∀q, x̂pq ← [q = q̄], where q̄ = arg min
q

θ̄k
q (46)

2. For fixed C ∈ Ck, let θk
q ≡

ūk
qq(1)

|Sk|+1 +λk
Cq, ∀q ∈ C. A minimizer x̂ of Ēk

C(x;w, λk) is given by

∀q ∈C, x̂qq =

{

[θk
q < α], if 2α+

∑

q′∈C [θk
q′−α]−<0

0, otherwise
(47)

Proof. 1. It holds that

Ēk
p (x;w, λk) =
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ūk
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q
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qq(xqq)
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+λk

pqxqq

)

+
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q

φ̄pq(xpq , xqq) + φ̄p(xp)− β (48)

=
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q:q 6=p

ūk
pq(1)xpq +

∑

q

θk
q xqq +

∑

q

φ̄pq(xpq , xqq) + φ̄p(xp)− β (49)

=
∑

q:q 6=p

ūk
pq(1)xpq +

∑

q

(

θk
q xqq + φ̄pq(xpq , xqq)

)

+ φ̄p(xp)− β , (50)



where φ̄pq(xpq, xqq) = δ(xpq ≤ xqq), φ̄p(xp) = δ
(

∑

q xpq = 1
)

and δ(·) equals 0 if the expression in parenthesis is

satisfied and∞ otherwise.

Due to the term θk
q xqq , it is easy to see that if we set xqq = 1 for any q 6= p then the value of the function Ēk

p (x;w, λk)

will decrease if and only if it holds θk
q < 0. Therefore, to minimize Ēk

p (x;w, λk) we must set

x̂qq = [θk
q < 0], ∀q 6= p . (51)

Furthermore, the fact that the components of an optimal solution x̂ must belong to {0, 1} in conjunction with the

form of the potential φ̄p(xp) = δ
(

∑

q xpq = 1
)

impose the constraint that we must set equal to 1 exactly one of the

variables in the set {x̂pq}q . If we set variable x̂pq (with q 6= p) equal to 1 then the cost we must pay is ūk
pq(1), due

to the term ūk
pq(1)x̂pq , plus [θk

q ]+, due to the term θk
q x̂qq + φ̄pq(x̂pq, x̂qq) that requires also setting x̂qq = 1 (note that

we are paying [θk
q ]+ and not θk

q because for q 6= p if θk
q < 0 then x̂qq is set to 1 anyway due to (51) and thus no

extra cost is paid in this case). On the other hand, if we set x̂pp = 1 then the cost we must pay is θk
p due to the term

θk
p x̂pp. Therefore, for any q, the cost we pay if we choose to set x̂pq = 1 is given by θ̄k

q . As a result, we should set

x̂pq = [q = q̄], where q̄ = argminq θ̄k
q .

2. Energy Ēk
C(x;w, λk) can be expressed as

Ēk
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qq(xqq)

|Sk|+ 1
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)
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=
∑

q∈C

θk
q xqq + φ̄C(xC) (53)
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θk
q xqq − α
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∣

∣

∣ . (54)

We will consider two cases:

(a) The minimizer of function Ēk
C(x;w, λk) is given by x̂ = 0 (i.e., none of the binary variables {x̂qq}q∈C is equal

to 1). In this case the minimum of function Ēk
C(x;w, λk) must equal

OPT1 = −α . (55)

(b) The minimizer of function Ēk
C(x;w, λk) is given by x̂ 6= 0. In this case at least one of the binary variables

{x̂qq}q∈C will equal 1 and so Ēk
C(x;w, λk) can be written as

Ēk
C(x;w, λk) =

∑

q∈C

θk
q xqq − α

∣
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=
∑

q∈C

θk
q xqq − α


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∑

q∈C

xqq − 1



 (57)

=
∑

q∈C

(

θk
q − α

)

xqq + α . (58)

Therefore, the minimizer x̂ will be given by

x̂qq = [θk
q < α] (59)

and so the optimum value of Ēk
C(x;w, λk) will equal

OPT2 =
∑

q∈C

[θk
q − α]− + α . (60)



To conclude the proof, it suffices to notice that the second case will hold true if and only if

OPT2 < OPT1 ⇔
∑

q∈C

[θk
q − α]− + α < −α⇔

∑

q∈C

[θk
q − α]− + 2α < 0 . (61)

Lemma 3: Minimizations (27) and (28) in the main paper are equivalent.

Proof. It holds that

min
{xk∈X (Ck)},w

τJ(w) +
∑

k
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)

(62)
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x
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= min
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τJ(w) +
∑
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∑
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k

∑
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which concludes the proof.


