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Abstract. This paper presents a new MRF optimization algorithm,
which is derived from Linear Programming and manages to go beyond
current state-of-the-art techniques (such as those based on graph-cuts
or belief propagation). It does so by relying on a much tighter class of
LP-relaxations, called cycle-relaxations. With the help of this class of re-
laxations, our algorithm tries to deal with a difficulty lying at the heart
of MRF optimization: the existence of inconsistent cycles. To this end,
it uses an operation called cycle-repairing. The goal of that operation is
to fix any inconsistent cycles that may appear during optimization, in-
stead of simply ignoring them as usually done up to now. The more the
repaired cycles, the tighter the underlying LP relaxation becomes. As
a result of this procedure, our algorithm is capable of providing almost
optimal solutions even for very general MRFs with arbitrary potentials.
Experimental results verify its effectiveness on difficult MRF problems,
as well as its better performance compared to the state of the art.

1 Introduction

Optimization algorithms for discrete MRFs are known to be of fundamental
importance for numerous problems from the fields of vision, graphics and pattern
recognition. It is also known that many of the most successful of these algorithms
are tightly related to Linear Programming (LP) [1][2][3][4][5][6][7]. In particular,
they are connected to the following LP relaxation P(ḡ, f̄):

P(ḡ, f̄) = min
x

∑

p∈V
ḡp · xp +

∑

pp′∈E
f̄pp′ · xpp′ , (1)

s.t.
∑

l∈L
xp(l) = 1, ∀ p ∈ V (2)

∑

l′∈L
xpp′(l, l′) = xp(l), ∀ pp′ ∈ E , l ∈ L (3)

xp(l) ≥ 0, xpp′(l, l′) ≥ 0. (4)

The connection between P(ḡ, f̄) and MRFs lies in that if one replaces (4) with the
constraints xp(·), xpp′ (·, ·) ∈ {0, 1}, then the resulting integer program optimizes
the energy of an MRF with unary potentials ḡp = {ḡp(·)} and pairwise potentials
f̄pp′ = {f̄pp′(·, ·)}. This MRF will be denoted by MRF(ḡ, f̄) hereafter and L, V ,
E (in (2), (3)) represent respectively its labels, graph vertices and graph edges.

Despite their success, LP-based methods are doomed to fail if relaxation
P(ḡ, f̄) does not approximate well the actual problem MRF(ḡ, f̄) (i.e, it is not
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tight), which is exactly what happens when one has to deal with very hard MRF
problems. We believe this is an issue that has to be addressed, if a further ad-
vance is to be made in MRF optimization. Motivated by this observation, the
present work makes important practical, as well as theoretical, contributions in
this regard. In particular, in this work we attempt to go beyond most existing
MRF techniques, by deriving algorithms that are based on much tighter LP re-
laxations. Towards this goal, we try to strengthen relaxation P(ḡ, f̄). However,
instead of doing that in the primal domain, which is inefficient, our strategy
consists of applying this procedure in the dual domain. As a result, we create
an hierarchy of tighter and tighter dual relaxations that starts from the dual
of P(ḡ, f̄) and goes all the way up to a dual relaxation that actually coincides
with the original problem MRF(ḡ, f̄) (§2). From this hierarchy, we choose to deal
with one particular class of relaxations, which we call cycle-relaxations. This is
achieved via a dual-based operation called cycle-repairing (§3), which helps us
to deal with a difficulty that, we believe, lies at the heart of MRF optimization:
the existence of inconsistent cycles (see definition later). As the name of that
operation reveals, its role is to eliminate any inconsistent cycles that may appear
during optimization. Furthermore, the more the repaired cycles, the tighter the
underlying relaxation becomes. One efficient way of how one can actually do
this cycle-repairing is described in §3.1, thus leading to a powerful algorithm
that further promotes the use of general MRFs in future vision applications.

Let us note at this point that Sontag and Jaakkola [8] have very recently tried
as well to make use of a tighter LP relaxation for MRF optimization. However,
their method relies on a weaker relaxation than ours. Furthermore, they use a
primal-based cutting plane algorithm that requires solving a large primal LP (of
growing size) at each iteration (i.e., after each new violated inequality is found),
which makes their algorithm impractical for large MRFs. On the contrary, by
working in the dual domain, our method is able to improve the relaxation (cycle
repairing) by reusing work done in previous iterations. It is thus much more
efficient, while it is also adaptive as it makes the relaxation tighter only when
it needs to be. Moreover, being dual-based, it can provide lower bounds to the
optimum MRF energy, which can be useful for verifying a solution’s optimality.
Let us also note that two other dual-based methods of similar spirit to ours,
that have been proposed concurrently with our work, appear in [9][10]. Finally,
it is important to mention that, although one might be easily tempted to try to
strengthen other type of MRF relaxations (e.g, quadratic or SOCP), these have
been recently shown to be actually weaker than LP relaxation (1) [11].

2 Tighter LP-relaxations for MRFs

Before examining how cycle-repairing works, let us first describe the hierarchy
of dual relaxations that we will use. At one end of this hierarchy, of course, there
will lie the dual of relaxation P(ḡ, f̄). For the moment, we will simply refer to
it as D(ḡ, f̄). The dual cost of any feasible solution to that relaxation is a lower
bound to the optimum (i.e, minimum) energy of MRF(ḡ, f̄). However, it is often
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the case that even the maximum of these bounds will be much lower than the
optimum MRF energy, which is exactly what happens when D(ḡ, f̄) is not tight.

To counter that, i.e, to raise the maximum lower bound, one has no choice
but to introduce extra variables as well as extra constraints to D(ḡ, f̄), which is
exactly what relaxation D+(ḡ, f̄), lying at the other end of our hierarchy, does:

D+(ḡ, f̄) = max
f

D(ḡ, f) (5)

s.t. f �E f̄ . (6)

In (6), we have used an abstract comparison operation �E between pairwise
potential functions. In general, given any subset C ⊆ E of the MRF edges and
any pairwise potential functions f , f ′, the operation f �C f ′ implies that, for
each labeling l = {lp}, it should hold:

∑

pp′∈C

fpp′(lp, lp′)≤
∑

pp′∈C

f̄pp′(lp, lp′), ∀ l = {lp} (7)

(This means that, instead of comparing pairwise potentials on individual edges,
we compare sums of pairwise potentials over all edges in C).

The reason that we expressed D+(ḡ, f̄) in the above form is to illustrate its
relation to D(ḡ, f̄). As can be seen, one difference between D(ḡ, f̄) and D+(ḡ, f̄)
is that the latter contains an additional set of variables f = {fpp′(·, ·)}, which
can actually be thought of as a new set of pairwise potentials (also called vir-
tual potentials hereafter). In relaxation D(ḡ, f̄), these virtual potentials f do not
appear, as they are essentially kept fixed to the true potentials f̄ (i.e, it is as
if constraints (6) have been replaced with the trivial constraints f = f̄). On the
contrary, in D+(ḡ, f̄ ), we can vary these new potentials in order to achieve a
higher dual objective value (i.e, a higher lower bound to the optimum MRF en-
ergy). The restriction, of course, is that we must never allow f to become larger
than the actual potentials f̄ . However, the comparison of f to f̄ is done based
not on the standard operator ≤, but on the generalized operator �E .

As a result, relaxation D+(ḡ, f̄) is much tighter than D(ḡ, f̄). In fact, as the
next theorem certifies, it is so tight that it represents the MRF problem exactly:

Theorem 1 ([12]) D+(ḡ, f̄) is equivalent to MRF(ḡ, f̄).

This should, of course, come as no surprise, since D+(ḡ, f̄) already contains an
exponential number of constraints on f .

One may thus argue that relaxations D(ḡ, f̄), D+(ḡ, f̄) lie at opposite ends:
D(ḡ, f̄) imposes trivial constraints on f and is thus efficient but not tight, whereas
D+(ḡ, f̄) has an exponential number of constraints on f and is thus tight but
not easy to handle. However, one can adjust the amount of constraints on f
by concentrating only on the virtual potentials at a subset C ⊆ E of the MRF
edges. Indeed, assuming that initially f = f̄ , and that all fpp′(·, ·) with pp′ /∈ C
will be kept fixed during the current step, constraints (6) then reduce to the
easier upper-bounding constraints f �C f̄ , thus creating a relaxation in between
D(ḡ, f̄) and D+(ḡ, f̄). Contrary to f �E f̄ , constraints f �C f̄ focus only on a
subset of the virtual potentials fpp′(·, ·), i.e, only on those with pp′ in subset C,
while the rest are left untouched. Not only that, but, as optimization proceeds,
one can choose a different local subset Ci to focus on at each step. Indeed,
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assuming that f ′ are the virtual potentials from the previous step, one can then
simply focus on satisfying the constraints f �Ci

f ′, while keeping all fpp′(·, ·)
with pp′ /∈ Ci unchanged (i.e, equal to f ′

pp′(·, ·)) during the current step (note

that, together, these two things imply f �E f ′ and, since f ′ �E f̄ already holds
from the previous iteration, feasibility constraint (6) is thus maintained). In
this manner, different constraints are dynamically used at each step, implicitly
creating a dual relaxation that becomes tighter and tighter as time passes by.
This relaxation (denoted by D{Ci}(ḡ, f̄ ) hereafter) is actually part of an hierarchy
of dual relaxations that starts from D(ḡ, f̄) (e.g, if Ci contains only a single edge)
and goes all the way up to D+(ḡ, f̄) (e.g, if Ci contains all MRF edges). Here we
will deal with one particular type of relaxations from this hierarchy, where the
edges from each set Ci always form a simple cycle on the MRF graph. We will
call these “cycle-relaxations” hereafter. Note that these are completely different
from the more familiar cycle-inequalities relaxations, which impose constraints
not on the dual but on the primal variables.

Let us end this section by describing relaxation D(ḡ, f), which forms the
building block of our hierarchy. Some terminology must be introduced first. We
will hereafter refer to each MRF vertex p ∈ V as an object, to each object-label
combination (p, l) as a node and to each pair {(p, l), (p′, l′)} of nodes (from
adjacent objects in E) as a link . Relaxation D(ḡ, f) is then defined as follows:

D(ḡ, f) = max
h,r

∑

p∈V

(

minl∈L hp(l)
)

(8)

s.t. rpp′(l, l′) ≥ 0 ∀pp′∈E , l, l′∈L (9)

Here, the dual variables are all the components of vectors h, r. Each variable hp(l)
will be called the height of node (p, l), while variable rpp′(l, l′) will be called the
residual of link {(p, l), (p′, l′)}. Furthermore, if a node (p, l) has minimal height
at p (i.e, hp(l) = minl′ hp(l

′)) it will be called minimal, while a link {(p, l),
(p′, l′)} with zero residual (i.e, rpp′ (l, l′) = 0) will be called tight (see Fig. 1(a)).

As can be seen from (8), the goal of the above relaxation is to raise the heights
of minimal nodes (i.e, to increase the quantity minl∈L hp(l) for each object
p). But, due to (9), this must be done without any of the residuals becoming
negative. Note, however, that heights h = {hp(·)} and residuals r = {rpp′(·, ·)}
are tightly related to each other, since they are both defined in terms of a third
set of dual variables y = {ypp′(·)} as follows:

hp(l) = ḡp(l) +
∑

p′:pp′∈E
ypp′(l), (10)

rpp′ (l, l′) = fpp′(l, l′)−ypp′(l)−yp′p(l
′), (11)

Hence, if one adds ε to ypp′(l) in order to raise the height hp(l) of a minimal
node, thus increasing the dual objective (8), residual rpp′(l, l′) will then decrease
by ε due to (11) and, so, (9) may become violated.

An observation (that will prove to be crucial later on) is that, due to (11), in
a relaxation such as D{Ci}(ḡ, f̄) or D+(ḡ, f̄ ), one can alter a residual rpp′(·, ·) by
changing either variables y, or potentials f . The latter, however, is not possible
in weak relaxation D(ḡ, f̄), since f is assumed to be constant in this case, i.e,
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Fig. 1: We will hereafter visualize each object with a shaded parallelogram, each
minimal/non-minimal node with a filled/unfilled circle and each tight link with a line
segment (non-tight links are not drawn at all). (a) No line segment exists between
minimal node (p1, a) and (the only) minimal node (p2, b) of object p2 (this means
their link is non-tight, i.e, rp1p2

(a, b)>0). Current dual solution thus does not satisfy
Thm. 2. (b) One can, therefore, perturb this solution by adding ε to yp1p2

(a). Then
(due to (11)) residuals rp1p2

(a, ·) decrease by ε and thus the link between (p1, a),(p2, b)
becomes tight (see red segment). Hence, the new solution satisfies Thm. 2. Further-
more, it satisfies Thm. 3, since a cyclic path goes through the black (i.e, minimal)
nodes (p1, a), (p2, b), (p3, a). Note also that the dual objective has increased, due to
the increase by ε of the height of minimal node (p1, a). (c) Visualization of a cycle
p1p2 . . . ptp1 that is consistent to minimal node (p1, l1) (see also text).

f = f̄ . As we shall see later, this difference is exactly the reason why one is able
to repair cycles while using relaxation D{Ci}(ḡ, f̄).

3 Exploiting tighter LP-relaxations via cycle-repairing

In order to see how to make use of a tighter relaxation, let us first examine when
relaxation D(ḡ, f̄) itself is not tight, i.e, when even an optimal dual solution
of D(ḡ, f̄) has a lower cost than the minimum cost of MRF(ḡ, f̄ ). To do that,
however, we will first need to characterize the optimal dual solutions of D(ḡ, f̄ ).
Theorem 2 ([6]) An optimal dual solution of D(ḡ, f̄) must satisfy the following
conditions: if (p, l) is a minimal node of object p, then for any neighboring object
p′ there must exist a minimal node (p′, l′) such that the link {(p, l), (p′, l′)} is
tight, i.e, rpp′(l, l′) = 0.
According to our visualization convention, this means that each minimal node
must connect with a solid line to at least one minimal node from each neighboring
object. For instance, this property doesn’t hold for the dual solution in Fig. 1(a),
since (p1, a) does not have a tight link with any of the minimal nodes in p2, but it
does hold for the dual solutions in Figs. 1(b), 2(a). The above theorem essentially
provides necessary (but not sufficient) conditions for having dual solutions which
are optimal for D(ḡ, f̄), i.e, which have maximum dual cost. This means that if
these conditions do not hold, one knows how to increase the dual objective by
keep applying perturbations to the current dual solution (i.e, the current heights
and residuals) until these conditions are satisfied. The iterative routine used for
this purpose will be called dual ascent hereafter. Its name comes from the
fact that these perturbations can only improve (i.e, increase) the dual objective,
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Fig. 2: (a) Current dual solution satisfies Thm. 2, but not Thm. 3. The latter
due to that cycle C = p1p2p3 is inconsistent, e.g , to both nodes (p1, a), (p1, b).
(b) To allow (p1, a) to later raise its height and possibly become non-minimal,
cycle repair(p1, a) removes the blue tight link (i.e, makes it non-tight) by adding
ε to potential fp1p2

(a, a), thus making residual rp1p2
(a, a) = ε > 0. However, to also

maintain feasibility constraint f �C f ′ (where f ′ simply denotes the virtual potentials
f before adding ε), it then has to add −ε to potentials fp2p3

(a, a), fp1p3
(a, b), thus

creating 2 new tight links (red segments). (c) cycle repair(p1, b) does the same
for node (p1, b) so as to allow him to later raise its height. As a result, a tight link
(blue segment) is again removed and 2 new tight links (red segments) are created. (d)
Resulting dual solution after the 2 calls to cycle repair (same as (c), but reshown
for clarity). This solution no longer satisfies Thm. 2, since, due to the cycle-repairs,
both (p1, a), (p1, b) do not have tight links with any of the minimal nodes of p2. (e)
Therefore, dual ascent can raise by ε the heights of (p1, a), (p1, b) (via adding ε to
yp1p2

(a), yp1p2
(b), thus making all red links tight). Hence, the dual objective increases

by ε as well, and now actually coincides with the global MRF optimum.

but never decrease it. Just as an illustration, we show one such perturbation in
Fig. 1. In this case, the dual solution of Fig. 1(a) does not satisfy Thm 2, since
node (p1, a) does not have tight links with any of the minimal nodes in p2. We
can therefore raise that node’s height (by increasing variable yp1p2

(a) until one
of these links becomes tight), thus increasing the dual objective and getting the
dual solution of Fig. 1(b), which now, of course, satisfies Thm. 2 and is actually
optimal for D(ḡ, f̄).

Let us now return to the issue of tightness of relaxation D(ḡ, f̄) with re-
spect to problem MRF(ḡ, f̄) and, to this end, let’s assume that, by applying
dual ascent, we have managed to increase the cost of the current feasible dual
solution until Thm. 2 holds true. When is the resulting dual cost high enough so
as to have reached the minimum cost of MRF(ḡ, f̄) (thus proving that D(ḡ, f̄)
is tight)? The next theorem provides a sufficient condition for this.
Theorem 3 ([12]) If there is a labeling {lp} such that each node (p, lp) is min-
imal and each link {(p, lp), (p′, lp′)} is tight then D(ḡ, f̄) is tight. Hence, {lp}
optimizes MRF(ḡ, f̄), current feasible dual solution optimizes D(ḡ, f̄) and their
costs coincide.
For instance, labeling {lp1

= a, lp2
= b, lp3

= a} in Fig. 1(b) is optimal (w.r.t.
MRF(ḡ, f̄)), as it satisfies this theorem. Visually, this can be understood by
observing that there is a cyclic path in Fig. 1(b), passing only through the min-
imal nodes (p1, lp1

), (p2, lp2
), (p3, lp3

). No similar cyclic path exists, however, in
Fig. 2(a), despite the fact that the shown dual solution is actually optimal to
D(ḡ, f̄) and satisfies Thm. 2 (this is a case where relaxation D(ḡ, f̄) is not tight).
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f ← f̄ ;
repeat

apply dual ascent to relaxation D(ḡ, f);
get next cycle Ci = p1p2 . . . pn; fnext←{apply cycle repair to cycle Ci};
f ← fnext;

until all cycles in {Ci} are consistent

Fig. 3: Algorithm’s pseudocode

Indeed, if we start from any minimal node in Fig. 2(a), say, (p1, a) and keep
traversing tight links until we return to that node, we won’t be able to do that
without first passing from node (p1, b). We then say that cycle p1p2p3 is incon-
sistent to (p1, a). More generally, cycle p1p2 . . . ptpt+1 (with pt+1 = p1) is said to
be inconsistent to minimal node (p1, l1) if no labeling {li} exists such that each
node (pi, li) is minimal and each link {(pi, li), (pi+1, li+1)} is tight (see Fig. 1(c)).
This inconsistency is, in fact, one of the main reasons why relaxation D(ḡ, f̄) is
often not tight (i.e, why P(ḡ, f̄) may not have integral optimal solutions).

In our quest for better solutions, it is therefore crucial to figure out how to
eliminate these inconsistent cycles (without, of course, reducing the dual objec-
tive). Unfortunately, as demonstrated by the example in Fig. 2(a), this may not
be possible when using relaxation D(ḡ, f̄). It is possible, however, if the tighter
relaxation D{Ci}(ḡ, f̄) is used. As we shall see, the reason is that, in the latter
case, if one wishes to modify the residuals (e.g, for changing whether a link is
tight or not), he may modify for this purpose not only variables y = {ypp′(·)},
but also variables f = {fpp′(·)}, i.e, the virtual potentials. The process of re-
pairing inconsistent cycles by modifying the virtual potentials f will be named
cycle-repairing, and the associated routine will be called cycle repair.

Given such a routine, the following iterative strategy can then be followed
(see Fig. 3): Initially, we set f = f̄ . Then, at each iteration, we apply successively
routines dual ascent, cycle repair. The former drives the current dual solu-
tion towards satisfying Thm. 2 for the relaxation D(ḡ, f) at the current iteration,
but it may create inconsistent cycles. Therefore, the latter tries to repair these
inconsistent cycles (thus tightening our relaxation even further), but, for this, it
has to modify some residuals of the current dual solution by changing potentials
f into fnext. Due to this, a new relaxation D(ḡ, fnext) is formed, which, however,
violates Thm. 2 with respect to the current dual solution (dual ascent must
therefore be applied to it again at the next iteration). This process, of course,
repeats until convergence, i.e, until no more inconsistent cycles exist.

Note that both dual ascent and cycle repair never reduce the dual ob-
jective. We are therefore using a dual ascent procedure, applied, however, not
to weak relaxation D(ḡ, f̄), but to tighter relaxation D{Ci}(ḡ, f̄). Each time cy-

cle repair is applied, it helps dual ascent to escape from the fixed point it
has previously got stuck in and thus further increase the dual objective function
the next time it runs. Hence, this essentially results in having a series of weak
relaxations {D(ḡ, fk)} with f0 = f̄ and D(ḡ, fk) ≤ D(ḡ, fk+1). We now proceed
to describe one way of implementing the cycle repair routine.



8 Nikos Komodakis and Nikos Paragios

3.1 An algorithm for repairing cycles

To get an intuition of how cycle repair might work, let us consider the example
in Fig. 2(a). The current dual solution is a fixed point of dual ascent (i.e,
it satisfies Thm. 2), yet it has inconsistent cycles. E.g, cycle C = p1p2p3 is
inconsistent to node (p1, a). One way to repair for this is by trying to allow
(p1, a) to raise its height, thus becoming a non-minimal node. (if we can manage
that, (p1, a) would then no longer be a problem as one cares only about minimal
nodes when checking for inconsistent cycles). To this end, it suffices that we find
a neighboring object, say, p2 so that node (p1, a) has no tight links with any of
the minimal nodes in p2 (indeed, if (p1, a) has tight links neither with (p2, a)
nor with (p2, b), then dual ascent can later raise the height of (p1, a) simply
by increasing the value of yp1p2

(a) until one of these links becomes tight). Since
link {(p1, a), (p2, b)} is already non-tight in Fig. 2(a), we are thus left with the
task of making link {(p1, a), (p2, a)} non-tight as well (i.e, making rp1p2

(a, a)
positive). But how can we achieve that without decreasing the value of the dual
objective function3, i.e, without decreasing the height of any minimal node?

This is impossible if we can manipulate only variables y (i.e, if relaxation
D(ḡ, f̄) is used), but it is easy if we can manipulate variables f as well (i.e, if
we use a tighter relaxation). Indeed, in the latter case we can make rp1p2

(a, a)
equal to ε > 0 by simply adding ε to fp1p2

(a, a) (see blue segment in Fig. 2(b)).
Due to this update, however, we have violated the feasibility constrain f �C f ′

(where C = p1p2p3), since, for lp1
= lp2

= a and any lp3
, it then obviously holds

∑

ij fpipj
(lpi

, lpj
) =

∑

ij f ′
pipj

(lpi
, lpj

) + ε (here f ′ simply represents the virtual
potentials f before adding ε). To restore that constraint, it thus suffices that we
add −ε to both fp1p3

(a, b) and fp2p3
(a, a) (see red segments in Fig. 2(b)). In

summary, the following update must be applied: fp1p2
(a, a)+= ε, fp1p3

(a, b)−=
ε, fp2p3

(a, a)−= ε, which results into rp1p2
(a, a) = ε, rp1p3

(a, b) = rp2p3
(a, a) = 0.

Note that we chose to use the value ε because it was the maximum positive value
for which the lowered residuals would remain non-negative after the update (as
required by (9)), i.e, ε = min(rp1p3

(a, b), rp2p3
(a, a))

A similar procedure can be applied for also repairing cycle p1p2p3 with re-
spect to node (p1, b) (see Fig. 2(c)). The dual solution resulting after the above
2 cycle-repairs appears in Fig. 2(d). As can be seen, it violates the conditions of
Thm. 2 (e.g, node (p1, a) or (p1, b) has no tight links with any of the minimal
nodes in p2). We can therefore reapply dual ascent, thus getting the dual so-
lution in Fig. 2(e), which now has no inconsistent cycles and whose cost actually
coincides with the global MRF optimum. This means that, contrary to the initial
relaxation, the final relaxation after the 2 cycle repairs is tight. In general, each
time we repair a cycle, we effectively make use of additional constraints and we
thus tighten our current relaxation.

For the general case, cycle repair may essentially mimic the procedure de-
scribed above. Let thus C = p1p2 . . . pn (with p1 = pn) be an inconsistent cycle,

3 Making the residual rp1p2
(a, a) non-zero is trivial if we are allowed to decrease the

dual objective function. But then, when we reapply dual ascent, we will obtain
the same dual solution that we started with (cycle C will thus remain inconsistent).
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e.g., with respect to minimal node (p1, l1), which will be called the anchor node
hereafter. One way for cycle repair to repair this inconsistent cycle is to allow
the anchor node to later raise its height. For this, as explained in the previous
example, it suffices that no tight link exists between the anchor node and any
of the minimal nodes in the adjacent object p2. This, in turn, means that if any
such link exists, a positive value ε must be added to its associated virtual poten-
tial (the link would then be non-tight, as its residual would be equal to ε > 0).
Hence, for all minimal nodes (p2, l2) of object p2 that satisfy rp1p2

(l1, l2) = 0,
we need to apply the following update:

fp1p2
(l1, l2)+=ε (12)

As a result of this, however, feasibility constraint f �C f ′ is now violated (where
f ′ simply denotes the virtual potentials before the update). To restore feasibility,
we thus have to add −ε to the virtual potentials of some subset S of non-tight
links (note that the virtual potential of tight links cannot decrease, as this would
result into negative residuals, thus violating feasibility). It is not difficult to ver-
ify that this set S suffices to contain all non-tight links {(pk, lk), (pk+1, lk+1)}
between an anchored node (pk, lk) (where 2 ≤ k ≤ n − 1) and a non-anchored
node (pk+1, lk+1) (where lk+1 = l1 if k+1 = n). Here we say that a node (pk, lk)
is anchored if only if there exists a path (p1, l1) → (p2, l2) → . . . → (pk, lk) from
the anchor node (p1, l1) to node (pk, lk) such that all the path links are tight
(before applying (12)) and all the path nodes are minimal (e.g, in Fig. 2(b),
the anchor node is (p1, a) and the set S consists of the red links). The following
transformation must then be applied:

∀{(pk, lk), (pk+1, lk+1)}∈S, fpkpk+1
(lk, lk+1)−=ε.

A possible choice for ε is to set it equal to any positive value that ensures that
none of the decreased residuals of the links in S will become negative, e.g:

ε = min
{(pk,lk),(pk+1,lk+1)}∈S

rpkpk+1
(lk, lk+1). (13)

Note that, since C is inconsistent, such a positive ε will always exist.

Finally, for implementing the dual ascent routine, one of the ways to
achieve that is to use the augmenting DAG algorithm [6]. This is an iterative
algorithm that increases the dual objective by keep perturbing the current dual
solution until it satisfies Thm. 2. To this end, it uses a procedure based on a so
called augmenting directed acyclic graph (DAG) (this somewhat resembles the
augmenting path algorithm for max-flow/min-cut). In our case, an additional ad-
vantage comes from the fact that the change from f to fnext after each cycle repair
is always small (i.e, local), which means that the change from the augmenting
DAG of relaxation D(ḡ, f) to that of D(ḡ, fnext) will be small as well. Hence, the
convergence of dual ascent for D(ḡ, fnext) will be extremely fast, given that
this routine has already converged for D(ḡ, f) (this somewhat resembles the case
of path augmenting max flow algorithms when applied to dynamic graphs).

After our algorithm in Fig. 3 converges, we have to compute an MRF labeling
based on the final dual solution, i.e, the final heights and residuals. To this end,
one can traverse all objects in some predefined order, say, p1, p2, . . . , pn, and,
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then assign to each object pi a label l̂i that satisfies the following criteria: it has
minimal height (i.e, node (pi, l̂i) is minimal) and also minimizes the non-negative

sum
∑

j<i rpipj
(l̂i, l̂j). The justification for this procedure comes from the next

theorem, which generalizes Thm. 3:4

Theorem 4 ([12]) There always exist an optimal labeling l̂ = {l̂p} of MRF(ḡ, f̄)

and an optimal dual solution (h, r) of D+(ḡ, f̄ ) such that each node (p, l̂p) is

minimal, i.e., hp(l̂p) = minl hp(l), and all links {(p, l̂p), (p
′, l̂p′)} are tight, i.e.,

∑

pp′ rpp′(l̂p, l̂p′) = 0 (thus
∑

pp′ rpp′(l̂p, l̂p′) attains its minimum possible value).

4 Experimental results

To verify our algorithm’s effectiveness, we tested it on various MRF problems.
We begun by applying it on a standard set of benchmark MRF problems from
vision [13] and Fig. 4 shows some of our results. For instance, Figures 4(a), 4(b)
show stereo matching results from the widely used Middlebury stereo data set,
Fig. 4(c) contains a result related to image inpainting and denoising, Fig. 4(d)
displays an image segmentation result, while Fig. 4(e) contains a result from a
panoramic stitching application. Similarly, Fig. 4(f) shows a result from a group
photo merging application. In all cases, our method yielded solutions which were
either optimal or had energy that was extremely close to the optimum (this can
be proved due to that the dual costs always form a lower bound on the minimum
MRF energy). For instance, the worst accuracy of the labelings obtained for all
MRFs was 0.0071 (where accuracy is defined as Energy of labeling−best lower bound

best lower bound ).
Next, in order to do a more thorough analysis and to see how our algorithm

behaves in much more difficult cases, we went on and tested it on a set of hard
synthetic MRF problems. We thus begun by conducting a full set of experiments
on binary MRF problems, which are often used as subroutines by many popular
MRF algorithms like [14],[15]. The binary MRFs were defined on 4-connected
30×30 grids and had different percentages of non-attractive couplings5. Unary
potentials ḡp(·) were drawn independently from a Gaussian distribution N (0, 1),
while pairwise potentials were set as: f̄pp′(0, 0) = f̄pp′(1, 1) = 0, f̄pp′(0, 1) =
f̄pp′(1, 0) = λpp′ , with λpp′ drawn from |N (0, σ2)| for attractive couplings and
from −|N (0, σ2)| for non-attractive couplings. The percentage of non-attractive
couplings was controlled by parameter ρ, which was set to 1%, 25% and 50% in 3
different experiments6. Also, for each experiment, we allowed parameter σ (that
controls the strength of the coupling) to vary and take values from {0.1, 2, 4, 6, 8}.
These two parameters, ρ and σ, affect the difficulty of the resulting MRF.

Along with our algorithm, the BP, TRW-S [4] and QPBOP [16] algorithms
have been tested as well7. The results appear in Fig. 5, where each point on a

4 Thm. 3 provides only a sufficient (but not a necessary) condition for optimality, since
it refers to a dual solution of D(ḡ, f̄) and not of D+(ḡ, f̄).

5 For binary (but not for multi-label) MRFs, attractive is equivalent to submodular
6 By flipping labels, cases ρ = 50 + ε and ρ = 50− ε reduce to each other
7 We also tested the augmenting DAG method, but it performed similarly to TRW-S.
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Fig. 4: Results from the benchmark MRF problems in [13].
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Fig. 5: Comparison results for binary MRFs with different percentage ρ of non-
attractive couplings. For each value of ρ (i.e, for each plot), we also vary the coupling
strength σ (horizontal axis). The vertical axis represents relative MRF energies (for an
algorithm with energy E, its relative energy is (E − Emin)/|Emin|, where Emin equals
the minimum energy among all tested algorithms).

plot corresponds to the average of 20 random MRF instances. As can be seen,
our algorithm had the best performance in all cases (i.e, for all combinations of
ρ and σ). Its running times varied depending on the binary MRF’s difficulty and
were up to 1.5 secs using heavily unoptimized code on a 1.4GHz CPU (contrary,
e.g., to 0.53 secs for QPBOP). Note that the QPBOP algorithm did not perform
very well in this case (and we speculate that this can be due to a possibly large
percentage of unlabeled nodes). Also note that the method from [7] cannot be
applied here, due to the large number of ties that would exist.

As can be seen, in the case of binary MRFs, it is only for extremely small ρ
(i.e, for almost submodular MRFs) that methods such as TRW-S (which was a
top performer in [13]) are able to perform equally well with our algorithm. The
reason is that, in this case, the standard LP relaxation upon which such methods
rely is already a very good approximation to the MRF problem (recall that, in
the special case of binary MRFs that are submodular, TRW-S can compute the
global optimum, just like our method). This is also shown in more detail in
Fig. 6(a), where the lower and upper bounds (generated while applying TRW-S
and our algorithm to a binary MRF with ρ = 1%) have been plotted. In this
case, the lower/upper bounds of TRW-S correspond to dual/primal costs of the
standard LP relaxation. Since, as shown in Fig. 6(a), these bounds converge,
this, therefore, implies that the LP relaxation is tight.
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Fig. 6: (a) Upper (solid) and lower (dashed) bounds after running TRW-S and our
method on 2 different binary MRFs. Such bounds correspond to primal costs (i.e, MRF
energies) and dual costs respectively. For a binary MRF with only 1% non-attractive
terms, the upper and lower bounds of TRW-S converge (i.e, LP-relaxation (8) is tight).
(b) This is not the case, however, for a binary MRF with 50% non-attractive terms.
But, thanks to cycle repairing, our algorithm uses a much tighter relaxation and so its
upper and lower bounds converge even in this case. (c) An example of non-rigid point
matching. Source points (red) were generated by applying a global rigid motion plus a
random non-rigid perturbation to the target points (green). Despite the heavy distor-
tion, our algorithm succeeded to find a meaningful set of point correspondences. (d) On
the other hand, BP failed as it did not manage to effectively minimize the MRF energy.
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Fig. 7: Comparison results for multi-label MRFs.

However, as can be observed in Fig. 5(c), the situation is completely different
when a mixed MRF (with, say, ρ = 50%) is to be optimized. These are really
very hard problems to solve, for which TRW-S performs poorly. Fig. 6(b) shows
in more detail what is really happening in this case. Contrary to the plot in
Fig. 6(a), the upper and lower bounds of TRW-S no longer converge, and the
reason, of course, is that the standard LP relaxation is now not tight. However,
this is not at all an issue for our algorithm, thanks to the cycle repairing that it
uses. This effectively enables him to take advantage of a much tighter relaxation,
which yields upper and lower bounds far closer to each other (i.e, which almost
converge). As a result, a much better optimum is obtained as well.

Using a procedure similar to the binary case, we also conducted another full
set of experiments for multi-label MRFs, which are even more popular in vision.
The results are shown in Fig. 7 for various combinations of ρ and σ and when 5
labels were used. Our algorithm had again the best performance among all other
methods and did much better than TRW-S (which was a top performer in [13])
in all cases (and even for very small ρ). Note that QPBOP, unlike our method,
is applicable only to binary MRFs, and, so, it had to be replaced with the α-exp
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Fig. 8: Deformable feature matching via MRF optimization. From user selected fea-
tures in a source image, we seek correspondences to automatically extracted features in
a target image (feature similarity and geometric structure are both taken into account).

P+I algorithm proposed in [16] (note that this is essentially a generalization of
α-expansion with a QPBOP-based technique being used as the binary optimizer
at each step). Note, also, that the set of cycles {Ci} (used by our algorithm for
the cycle-repairing) consisted only of 1×1, 1×2 and 2×1 rectangles on the grid
(these were the settings used in all the grid-based MRFs of this paper).

We also considered the problem of subgraph matching, where one seeks a
mapping T between a source and a target graph. This can be formulated as a
multi-label MRF problem, where source vertices correspond to MRF sites, while
each target vertex represents one possible label. The unary potential ḡp(T (p))
thus measures the “dissimilarity” between source vertex p and target vertex
T (p), while potential f̄pp′(T (p), T (p′)) measures the “dissimilarity” between
source edge pp′ and target edge T (p)T (p′). We used this formulation for the
purpose of non-rigid registration between geometric point sets. In this case, the
unary potentials are all set to zero (as there is no notion of similarity between
mere geometric points), while the pairwise potentials (of the fully connected
MRF) measure the geometric distortion for each pair of source points as follows:

f̄pp′(T (p), T (p′)) = |d(p, p′) − d(T (p), T (p′))|/d(p, p′),

where d(·, ·) denotes Euclidean distance. Results from applying our method and
BP to this problem are shown in Figures 6(c), 6(d). Contrary to BP, which failed
to effectively minimize the MRF energy in this case, our algorithm managed to
find a good minimum and thus extracted a good point matching despite the
heavy geometric distortion (the result of α-exp P+I algorithm is even worse and
is thus not shown). Note that, since a fully connected MRF has been used, our
algorithm was allowed to use triplets of vertices as the set {Ci} of possible cycles
to repair. Similarly, we have applied our registration algorithm to the problem of
deformable feature matching between images (see Fig. 8), where the unary poten-
tials (instead of being 0) are now based on comparing geometric blur descriptors.

5 Conclusions

We presented a novel LP-based algorithm for MRF optimization, which, contrary
to most state-of-the-art techniques, no longer relies on a weak LP-relaxation. To
this end, an hierarchy of dual relaxations (that become tighter and tighter) has
been introduced, while it was shown how one can take advantage of a very
tight class of relaxations from this hierarchy, named cycle-relaxations. This is
done through an operation called cycled repairing, where inconsistent cycles get
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repaired during optimization, instead of simply being ignored as was the case
up to now. The more the repaired cycles, the tighter the underlying relaxation
becomes. The outcome is an algorithm that can handle difficult MRF problems
with arbitrary pairwise potentials. The impact of our work can be both practical
and theoretical. On the one hand, the proposed method makes one more step
towards the design of optimization algorithms that can effectively handle very
general MRFs, thus allowing users to freely exploit such MRFs for a better
modeling of future vision problems. On the other hand, for a further advance
to be made in MRF optimization, the use of tighter relaxations is a direction
that, we believe, has to be followed. To this end, the idea of cycle-repairing, as
well as that of a dynamic hierarchy of dual relaxations (of which only the cycle-
relaxations have been explored here), provide an extremely flexible and general
framework that can be useful in opening new research avenues in this regard.
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