
Efficient Training for Pairwise or Higher Order CRFs via Dual Decomposition

Nikos Komodakis

University of Crete

http://www.csd.uoc.gr/˜komod

Abstract

We present a very general algorithmic framework for

structured prediction learning that is able to efficiently han-

dle both pairwise and higher-order discrete MRFs/CRFs1.

It relies on a dual decomposition approach that has been

recently proposed for MRF optimization. By properly com-

bining this approach with a max-margin method, our frame-

work manages to reduce the training of a complex high-

order MRF to the parallel training of a series of simple

slave MRFs that are much easier to handle. This leads to

an extremely efficient and general learning scheme. Fur-

thermore, the proposed framework can yield learning al-

gorithms of increasing accuracy since it naturally allows a

hierarchy of convex relaxations to be used for MRF infer-

ence within a max-margin learning approach. It also of-

fers extreme flexibility and can be easily adapted to take ad-

vantage of any special structure of a given class of MRFs.

Experimental results demonstrate the great effectiveness of

our method.

1. Introduction

Due to the wide applicability of discrete Markov Ran-

dom Fields (MRFs), related MAP estimation algorithms

have attracted a significant amount of interest in computer

vision research. However, besides MAP estimation, the task

of learning the parameters of a MRF plays an equally im-

portant role for successfully applying MRFs to computer vi-

sion problems (a MAP-MRF solution is often of little value

if the used MRF does not properly represent the problem

at hand). Due to the fact that MRF variables interact with

each other, MRF learning is a difficult task (it is a character-

istic example of a so-called structured prediction problem).

This difficulty becomes even greater due to the computa-

tional challenges that are often raised by computer vision

applications with regard to learning. For instance, many

of the MRFs used in vision are of large scale. Also, the

complexity and diversity of vision tasks often require the

training of MRFs with complex potential functions. On top

of that, during the last years the use of high order MRFs is

becoming increasingly popular in vision since such MRFs

are often found to considerably improve the quality of es-

timated solutions. Most of the MRF learning methods pro-

1In this paper, the terms Markov Random Field (MRF) and Conditional

Random Field (CRF) will be used interchangeably.

posed so far in the vision literature compromise with regard

to at least some of the above issues. For instance, most of

these methods impose restrictions on the type of the MRF

potential functions that can be used during learning, and/or

can handle only pairwise MRFs [3, 9, 14, 15, 11, 10, 2].

The goal of this work is to propose a very general learn-

ing framework that addresses all of the above mentioned

challenges and is applicable to a very broad class of prob-

lems. To achieve this goal the proposed framework makes

use of some recent advances made on the MRF optimiza-

tion side [8, 7], which it combines with a max-margin ap-

proach for learning [16]. More specifically, it makes use

of a dual decomposition approach [8] that has been previ-

ously used for MAP estimation. Thanks to this approach,

it essentially manages to reduce the task of training an ar-

bitrarily complex MRF to that of training in parallel a se-

ries of simpler slave MRFs that are much easier to handle

within a max-margin framework. The concurrent training

of the slave MRFs takes place in a principled way through

an efficient projected subgradient algorithm. This lead to a

powerful learning framework that makes the following con-

tributions compared to prior art: (1) it is able to efficiently

handle not just pairwise but also high-order MRFs, (2) it

does not impose any restrictions on the type of MRF poten-

tial functions that can handle or on the topology of the MRF

graph, (3) the reduction to the parallel training of a series of

slaves MRFs in combination with the projected subgradient

method leads to a highly efficient learning scheme that is

also scalable even to very large problems, (4) it allows the

use of a hierarchy of convex relaxations for approximating

MAP-MRF estimation within learning for structured pre-

diction (where this hierarchy includes some widely used LP

relaxations for MRF inference), thus leading to structured

prediction learning algorithms of increasing accuracy, (5)
it is extremely flexible and extendable since the only thing

that requires from a user is to be able to compute an opti-

mizer for a slave MRF, while everything else is taken care

by the framework. It can thus be easily adapted to take ad-

vantage of the special structure that may exist in any given

class of MRFs that one wishes to train.

Previous approaches such as the cutting plane method

[4] require solving a very expensive LP relaxation for the

full MRF per iteration. They also require a QP with a

growing number of constraints to be optimized at each step

1841

http://www.csd.uoc.gr/~komod


(although the number of constraints is polynomially upper-

bounded, it can grow large in practice). Both issues impose

great computational cost especially for problems of large

scale or high order that are often typical in computer vision.

As a result, algorithms such as [4] are orders of magnitude

slower than our method. Additionally, our method is much

more general compared to approaches such as [5, 10]. The

fact that it proposes the core idea that the training of a

complex MRF can be decomposed in a principled manner

to the parallel training of a series of slave subproblems

gives to our algorithm extreme generality and flexibility.

It thus handles in a unified, elegant and modular manner

high-order models, models that employ tighter relaxations

for improved accuracy, as well as models with any type

of special characteristics (e.g., submodularity). More

generally, simply by properly choosing what slaves to use,

one can directly apply our algorithm to an even wider range

of problems, which opens new possibilities. Furthermore,

some additional advantages of our method are that it is

inherently parallelizable, it naturally handles not just a

squared l2-norm but also a very broad class of other regular-

izers (including sparsity inducing norms - e.g. l1 - that are

often crucial for learning), it offers guaranteed convergence

rates in all of these cases, and it also allows for general loss

functions as well as for an infeasible training set.

In the remainder of the paper we review the dual decom-

position method for MAP estimation in §2 and the max-

margin structured prediction approach in §3, we describe

and analyze our framework in §4-§7, we present experimen-

tal results in §8, and we finally conclude in §9.

2. MRF Optimization via Dual Decomposition

Let G = (V , C) be a hypergraph consisting of a set

of nodes V and a set of hyperedges C. Let also u =
{up(·)}p∈V and h = {hc(·)}c∈C be two sets of functions

defined respectively on the nodes and hyperedges of G. The

energy of a MRF with unary potentials u and higher-order

potentials h is then defined as

MRFG(x;u,h) :=
∑

p∈V

up(xp) +
∑

c∈C

hc(xc) , (1)

where xc is used to denote the set of labels {xp|p ∈ c}. In

MRF optimization the goal is to find the minimum of the

above energy function, which is denoted by MRFG(u,h):

MRFG(u,h) = min
x

MRFG(x;u,h) (2)

The above problem is in general NP-hard. One com-

mon way to compute approximately optimal solutions to it

is by making use of convex relaxations. The dual decom-

position framework in [8] provides a very general and flex-

ible method for deriving and solving tight dual relaxations

in this case. According to this framework, a set {Gi} of

sub-hypergraphs of the original hypergraph G = (V , C) is

chosen such that Gi = (Vi, Ci) and V = ∪Vi, C = ∪Ci. The

original hard problem MRFG(u,h) (also called the master)

is then decomposed into a set of easier to solve subproblems

{MRFGi
(θi,h)} (called the slaves), which are defined on

these sub-hypergraphs {Gi}. Each slave MRF inherits the

higher-order potentials h of the master MRF, but has its own

unary potentials θ
i = {θi

p(·)}. The key property that these

unary potentials θ
i have to satisfy is

∑

i∈Ip

θi
p(·) = up(·) , ∀p ∈ V (3)

where Ip denotes the set of indices of all sub-hypergraphs

containing node p, i.e.,

Ip = {i|p ∈ Vi} . (4)

The above property simply expresses the fact that the sum of

the unary potentials of the slaves should give back the unary

potentials of the master MRF. As a result of this property the

sum of the minimum energies of the slaves can be shown to

always provide a lower bound to the minimum energy of the

master MRF, i.e., it holds
∑

i MRF(θi,h) ≤ MRF(u,h).
Maximizing this lower bound by adjusting the unary poten-

tials θ
i (which are the dual variables in this case) gives rise

to a dual relaxation for problem (2):

DUAL{Gi}(u,h) = max
{θi}

∑

i
MRFGi

(θi,h) (5)

s.t.
∑

i∈Ip

θi
p(·) = up(·) . (6)

In this manner, simply by choosing different decomposi-

tions {Gi} of the hypergraph G, one can derive different

convex relaxations, which in practice turn out to provide

very good approximations for problem (2). These include

the standard marginal polytope LP relaxation for pairwise

MRFs, as well as other relaxations that are much tighter.

Before proceeding we should note that the dual variables

{θi} in the above problem can be equivalently expressed in

terms of another set of auxiliary variables {λi} as

θi
p(·) = λi

p(·) +
up(·)

|Ip|
. (7)

In this case it is trivial to verify that constraint (6) for vari-

ables {θi} translates into the following constraint for vari-

ables {λi} ∑

i∈Ip

λi
p(·) = 0 . (8)

Hereafter whenever we refer to variables {θi} we will as-

sume that there also exist variables {λi} satisfying eq. (8)

(and vice versa).

3. Max-margin Markov Networks

Let us now come to the issue of MRF training. To this

end, let {z̄k, x̄k}Kk=1 be a training set of K samples, where

1842



z̄k, x̄k represent respectively the input data and the label

assignments of the k-th sample. We assume that the MRF

instance associated with the k-th sample is defined on a hy-

pergraph Gk = (Vk, Ck) and both the unary potentials uk

and the higher-order potentials hk of that MRF can be ex-

pressed in terms of feature vectors extracted from the data

uk
p(xp) = wT gp(xp, z̄

k), hk
c (xc) = wT gc(xc, z̄

k) , (9)

where w is a unknown vector of parameters we seek to es-

timate, while gp(·, ·) and gc(·, ·) represent known vector-

valued feature functions.

Let ∆(x,x′) represents a dissimilarity measure be-

tween any two solutions x and x′ (obviously it will hold

∆(x,x) = 0). In a maximum margin Markov network [16]

we seek a vector of parameters w such that the MRF energy

of the desired solution x̄k is smaller by ∆(x, x̄k) than the

MRF energy of any other solution x, i.e.

MRFGk(x̄k;uk,hk) ≤MRFGk(x;uk,hk)−∆(x, x̄k)+ξk .
(10)

To ensure that a feasible solution w always exists, we have

also introduced into the above constraints a slack variable

ξk, which should ideally be equal to zero. In general, how-

ever, it will hold ξk > 0 and so we must adjust w such that

ξk takes a minimal value. As a result, we end up minimizing

a regularized hinge loss function of the following form

min
w

µR(w) +

K
∑

k=1

ξk .

In the above formula the term R(w) represents a regulariza-

tion term, which can be chosen in many different ways. For

instance, R(w) can be set equal to 1
2 ||w||

2, or to a sparsity

inducing norm such as ||w||1. Furthermore, due to con-

straints (10), slack variable ξk equals

ξk = MRFGk(x̄k;uk,hk)−

min
x

(

MRFGk(x;uk,hk)−∆(x, x̄k)
)

.
(11)

We may assume that the dissimilarity measure ∆(x, x̄k) de-

composes in the same way as the MRF energy, i.e., it holds

∆(x, x̄k) =
∑

p∈Vk

δp(xp, x̄k
p) +

∑

c∈Ck

δc(xc, x̄
k
c ) . (12)

Therefore, by defining the new MRF potentials ūk, h̄k

ūk
p(·) = uk

p(·) − δp(·, x̄
k
p) (13)

h̄k
c (·) = hk

c (·)− δc(·, x̄
k
c ) , (14)

the slack variable ξk can be reexpressed as the following

loss function LGk(x̄k, ūk, h̄k;w)

LGk(x̄k, ūk, h̄k;w) ≡

≡MRFGk(x̄k; ūk, h̄k)−min
x

MRFGk(x; ūk, h̄k)

= MRFGk(x̄k; ūk, h̄k)−MRFGk(ūk, h̄k) , (15)

and our objective function thus becomes equal to

min
w

µR(w) +

K
∑

k=1

LGk(x̄k, ūk, h̄k;w) . (16)

Equality (15) simply expresses the fact that the used loss

LGk(x̄k, ūk, h̄k;w) equals zero only if the MRF with po-

tentials ūk, h̄k attains its minimum energy at the desired

solution x̄k.

4. Learning via Dual Decomposition

Unfortunately, even evaluating the loss function

LGk(x̄k, ūk, h̄k;w) is in general intractable, let alone min-

imizing it. The reason for this is because it is in general NP-

hard to obtain the minimum energy MRFGk(ūk, h̄k) used

in the definition of LGk(x̄k, ūk, h̄k;w). Here we propose

to approximate this minimum energy with the optimum of

a convex relaxation of the form (5) that has been derived

based on the dual decomposition framework.

To that end, we assume that each hypergraph Gk =
(Vk, Ck) has been decomposed into sub-hypergraphs

{Gk
i = (Vk

i , Ck
i )} and for each sub-hypergraph Gk

i a slave

MRF with unary potentials θ
(i,k) and higher-order poten-

tials h̄k has been defined on it. In that case the resulting

convex relaxation DUAL{Gk
i
}(ū

k, h̄k) associated with the

k-th MRF problem MRFGk(ūk, h̄k) will be

DUAL{Gk
i
}(ū

k, h̄k)= max
{θ(i,k)}

∑

i
MRFGk

i
(θ(i,k), h̄k) (17)

s.t.
∑

i∈Ik
p

θ(i,k)
p (·) = ūk

p(·) , (18)

where Ik
p = {i|p ∈ Vk

i }. If we now replace in (15) the

optimum energy MRFGk(ūk, h̄k) with the optimum of the

convex relaxation DUAL{Gk
i
}(ū

k, h̄k) then it will hold that

LGk(x̄k, ūk, h̄k;w) ≈

≈ MRFGk(x̄k; ūk, h̄k)−DUAL{Gk
i
}(ū

k, h̄k)

= MRFGk(x̄k; ūk, h̄k)− max
{θ(i,k)}

∑

i
MRFGk

i
(θ(i,k), h̄k)

= min
{θ(i,k)}

(

MRFGk(x̄k; ūk, h̄k)−
∑

i
MRFGk

i
(θ(i,k), h̄k)

)

,

(19)

where in the last equality we have used the identity

−maxi(ai) = min(−ai). Due to the fact that variables

θ
(i,k) have to satisfy constraint (18) the following equality

stands in this case

MRFGk(x̄k; ūk, h̄k) =
∑

i
MRFGk

i
(x̄k; θ(i,k), h̄k) .(20)

1843



By substituting this equality into (19), we get

LGk(x̄k, ūk, h̄k;w) ≈

≈ min
{θ(i,k)}

∑

i

(

MRFGk
i
(x̄k; θ(i,k), h̄k)−MRFGk

i
(θ(i,k), h̄k)

)

= min
{θ(i,k)}

∑

i

LGk
i
(x̄k, θ(i,k), h̄k;w) (21)

Therefore, the final function we now need to minimize is

the following one, resulting from substituting (21) into (16)

min
w,{θ(i,k)}

µR(w) +
∑

k

∑

i

LGk
i
(x̄k, θ(i,k), h̄k;w) (22)

s.t.
∑

i∈Ik
p

θ(i,k)
p (·) = ūk

p(·) . (23)

As can be seen, the initial objective function (16) (which

was intractable due to containing the hinge losses LGk(·))
has now been decomposed into the hinge losses LGk

i
(·) that

are a lot easier to handle.

To minimize the resulting convex function we will use a

projected subgradient algorithm. For deriving the subgra-

dient updates, in this case it is easier to temporarily replace

variables {θ(i,k)} with the variables {λ(i,k)} as defined in

eq. (7). As can be seen from eq. (8) the latter variables must

belong to the following set

Λ =

{

{λ(i,k)}|
∑

i∈Ik
p

λ(i,k)
p (·) = 0

}

. (24)

According to the projected subgradient method, variables

w, {λ(i,k)} must be updated at each iteration using the fol-

lowing scheme

w← w − αt · dw (25)

λ
(i,k) ← ProjΛ(λ(i,k) − αt · dλ

(i,k)) , (26)

where dw, {dλ
(i,k)} denote the components of a subgradi-

ent of the objective function (22), Proj
Λ

(·) denotes projec-

tion onto the set Λ, and αt is given, e.g., by

αt =
γt

||{dw, dλ(i,k)}||

with γt being a positive multiplier used at the t-th iteration

satisfying limt→∞ γt = 0,
∑∞

t=0 γt = ∞. Optionally, one

may also choose to apply different learning rates with re-

spect to dw and {dλ
(i,k)}.

To compute a subgradient of the objective func-

tion (22), we must first compute a subgradient for

−MRFGk
i
(θ(i,k), h̄k) = −minx MRFGk

i
(x; θ(i,k), h̄k),

which is the only non-differentiable term included in the

definition of LGk
i
(·). To that end, we will use the following

well known lemma:

Lemma. Let f(·) = maxm=1,...,M fm(·), with fm(·) con-

vex and differentiable. A subgradient of f at y is given by

∇fm̂(y), where m̂ is any index for which f(y) = fm̂(y).

From the above lemma it follows that a subgra-

dient of −MRFGk
i
(θ(i,k), h̄k) is given by the vector

−∇MRFGk
i
(x̂k; θ(i,k), h̄k), where x̂(i,k) denotes a mini-

mizer of the slave MRF for Gk
i . That vector has the follow-

ing components d̂wk, d̂λ
(i,k):

d̂wk =−
∂

∂w

(

∑

p

θ(i,k)
p (x̂(i,k)

p ) +
∑

c

hk(x̂(i,k)
c )

)

(7),(9)
= −

∑

p

gp(x̂
(i,k)
p , z̄k)

Ik
p

−
∑

c

gc(x̂
(i,k)
c , z̄k) (27)

d̂λ(i,k)
p (·) = −

∂

∂λ
(i,k)
p

(

θ(i,k)
p (x̂(i,k)

p )
)

(7)
= −

[

x̂(i,k)
p = ·

]

(28)

where [ · ] equals 1 if the expression in square brackets is

satisfied, and 0 otherwise. Based on the above, the compo-

nents dw, {dλ
(i,k)} of the total subgradient of the objective

function (22) are given by

dw = ∇R(w) +
∑

k,i,p

gp(x̄
k
p, z̄k)− gp(x̂

(i,k)
p , z̄k)

Ik
p

+
∑

k,i,c

(

gc(x̄
k
c , z̄k)− gc(x̂

(i,k)
c , z̄k)

)

(29)

dλ(i,k)
p (·) =

[

x̄k
p = ·

]

−
[

x̂(i,k)
p = ·

]

(30)

After the update λ
(i,k) ← λ

(i,k) − αt · dλ
(i,k), (26) also

requires the resulting variables to be projected onto the fea-

sible set Λ. This projection is equivalent to subtracting

the average vector
(

∑

i∈Ik
p

λ
(i,k)
p (·)

)

/Ik
p from each vector

λ
(i,k)
p (·) such that the sum

∑

i∈Ik
p

λ
(i,k)
p (·) remains equal to

zero as required by the definition of Λ. Based on this ob-

servation and the definition of dλ
(i,k) given in eq. (30), the

combined update (26) reduces to

λ(i,k)
p (·) += αt





[

x̂(i,k)
p = ·

]

−

∑

j∈Ik
p

[

x̂
(j,k)
p = ·

]

Ik
p



 .

(31)

The pseudocode of the resulting learning algorithm is

shown in fig. 1.

5. Algorithmic Analysis

By applying the dual decomposition method we man-

aged to replace each term LGk(·), which is the hinge loss

of a complicated high-order MRF on Gk, by the terms

{LGk
i
(·)} that are the hinge losses of a series of simpler

slave MRFs on sub-hypergraphs {Gk
i }. In this manner we

have essentially achieved the following: the difficult task of

1844



Input:

Training samples {z̄k, x̄k}Kk=1, hypergraphs {Gk=(Vk, Ck)}Kk=1

Unary and high-order feature functions {gp(·, ·)}, {gc(·, ·)}

Learning algorithm:

∀k, choose decomposition {Gk
i =(Vk

i , Ck
i )} of hypergraph Gk

∀k, i, set λ
(i,k) = 0, initialize θ

(i,k) according to (7)

repeat

// optimize slave MRFs

∀k, i, compute minimizer x̂
(i,k) of slave MRFGk

i
(θ(i,k), ĥk)

// update w

Compute dw based on eq. (29)

w← w − αt · dw

// update θ
(i,k)

∀k, i, p, λ
(i,k)
p (·) += αt·

(

[

x̂
(i,k)
p = ·

]

−

∑

j∈Ik
p

[

x̂
(j,k)
p =·

]

Ik
p

)

Update θ
(i,k) using (7)

until convergence

Fig. 1: Pseudocode of the learning algorithm.

training an arbitrarily complex high-order MRF has been re-

duced to the much easier task of training in parallel a series

of simpler slave MRFs.

At a high level the algorithm operates as follows to

achieve this: it allows each slave MRF to have its own unary

potentials θ
(i,k), which depend on w. It then tries to adjust

these potentials (via also adjusting w) such that the mini-

mizer x̂(i,k) of each slave MRF coincides with the desired

solution x̄k on the nodes of Gk
i . Note that in such a case

the resulting convex relaxation is tight (since the minimiz-

ers x̂(i,k) of all slave MRFs are consistent with each other)

and thus the sum of hinge losses
∑

i LGk
i
(·) equals the orig-

inal hinge loss LGk(·). Of course, when adjusting the unary

potentials of the slaves the algorithm must take into account

that these are not independent but they have to satisfy con-

straint (23), i.e., their sum should naturally equal the unary

potentials of the original MRF on Gk.

At this point it is also worth looking at how the algorithm

adjusts the unary potentials θ
(i,k). This is done via updates

(31), (25), both of which modify θ
(i,k) due to (7). The aim

of the former updates is to modify θ
(i,k) such that the min-

imizers of different slave MRFs agree with each other. In-

deed, it is easy to verify that the right hand side of (31)

equals zero (i.e., no update is applied to θ
(i,k)) only if all

minimizers assign a common label to node p. On the con-

trary, if node p (contained, say, in only 2 sub-hypergraphs

Gk
i , Gk

j ) is assigned 2 different labels li, lj during the t-th

iteration (i.e., x̂
(i,k)
p = li, x̂

(j,k)
p = lj) then (31) reduces to

the following update (assuming that αt = 2ǫ)

θ(i,k)
p (li) += ǫ , θ(j,k)

p (li) −= ǫ , (32)

θ(i,k)
p (lj) −= ǫ , θ(j,k)

p (lj) += ǫ , (33)

which is easily seen to encourage a common label assign-

ment for p in both Gk
i , Gk

j . Furthermore, the role of the

second updates (25) is exactly to encourage this common

label assignment to actually coincide with the desired label

x̄k
p .

Regarding the correctness of the proposed algorithm the

following general theorem follows directly from the fact

that we make use of the projected subgradient method:

Theorem 1. if multipliers αt ≥ 0 satisfy limt→∞ αt = 0,
∑∞

t=0 αt =∞ then the proposed algorithm converges to an

optimal solution of problem (22).

In addition, all known convergence rate results for subgra-

dient methods carry over to our case.

6. Choice of decompositions {Gk

i
} and tighter

approximations

A user of the proposed learning framework only needs

to know how to compute a minimizer for a slave MRF. Ev-

erything else is being taken care of by the algorithm! As a

result, the proposed framework provides extreme flexibility

and generality. For instance, a user is allowed to use differ-

ent decompositions {Gk
i }. This can improve the learning

algorithm in various ways.

Let F0 denote the minimum of the original regularized

loss function (16) and let F{Gk
i
} denote the minimum of

loss function (22) that results when using decomposition

{Gk
i }. The following holds true [1]:

Theorem 2. Loss F{Gk
i
} upper boundsF0, i.e., F0≤F{Gk

i
}

Therefore, by minimizing F{Gk
i
} we are guaranteed to

decrease the original loss F0 as well. However, by ap-

propriately choosing the hypergraph decomposition {Gk
i }

we can improve the approximation F{Gk
i
} to the true loss

F0. This happens because the tightness of the convex re-

laxation DUAL{Gk
i
} depends crucially on the choice of de-

composition {Gk
i }. We will say decomposition {G̃k

j } is

stronger than decomposition {Gk
i } (and we will denote this

by {Gk
i } < {G̃k

j }) if the convex relaxation from {G̃k
j } is

tighter than the relaxation from {Gk
i }, i.e., it always holds

DUAL{Gk
i
}<DUAL{G̃k

j
}. The following theorem is true:

Theorem 3 ([1]). If {Gk
i }<{G̃

k
j } then F0≤F{G̃k

j
}<F{Gk

i
},

i.e., F{G̃k
j
} is a better approximation to F0 than F{Gk

i
}.

One decomposition we can choose is Gk
single = {Gk

c}

that contains a sub-hypergraph Gk
c = (Vk

c , Ck
c ) for each

clique c ∈ Ck, where Vk
c = {p|p ∈ c} and Ck

c = {c},
i.e., each slave MRF consists of a single high-order clique.

This is essentially the simplest possible slave, and is often

very easy to solve regardless of the complexity of the origi-

nal MRF. Therefore, the resulting learning algorithm can be

used for training almost any high-order MRF. Furthermore,

the convex relaxation resulting from Gk
single can be shown

to coincide with the LP relaxation of the following integer

1845



program [6]:

min
z

∑

p

∑

xp

ūk
p(xp)zp(xp) +

∑

c

∑

xc

h̄k
c (xc)zc(xc) (34)

s.t.
∑

xp

zp(xp) = 1 , ∀p (35)

∑

xc:xp=l
zc(xc) = zp(l) , ∀c ∈ C, p ∈ c (36)

zp(·), zc(·) ∈ {0, 1} , (37)

where variables zp(xp) and zc(xc) exist respectively for

each label xp of node p and each labeling xc of clique c.

The above relaxation generalizes the marginal polytope re-

laxation for pairwise MRFs, and often provides a good ap-

proximation to MRFGk(ūk, h̄k).
However, one can also choose decompositions {G̃k

j }

stronger than Gk
single, which thus lead to better approxima-

tions of lossF0. For instance, this can be achieved by taking

advantage of the special structure that may exist in certain

classes of MRFs. One such example was given in [6] for

the case of MRFs with the so-called pattern-based poten-

tials. More generally, the following theorem holds true:

Theorem 4 ([1]). F{G̃k
j
} is a better approximation to F0

than FGk
single

only if at least one sub-hypergraph G̃k
j ex-

ists such that slave MRFs on G̃k
j do not have the integrality

property2.

For instance, based on the above theorem one can prov-

ably derive a better learning algorithm for pairwise MRFs

simply by using decompositions containing loopy sub-

graphs of small tree width (MRFs on such subgraphs can

be efficiently optimized via the junction tree algorithm).

However, besides improving the accuracy of a learning

algorithm, a proper choice of a decomposition {Gk
i } can

also improve the computational efficiency of that algorithm.

For instance, in the case of pairwise MRFs a decomposi-

tion Gk
tree = {T k

i } consisting of spanning trees T k
i may

be used for that purpose. Although in this case the accu-

racy of learning is not improved compared to Gk
single (since

DUALGk
tree

= DUALGk
single

and thus FGk
tree

= FGk
single

),

the speed of convergence does improve. The reason is

because convex relaxation DUALGk
tree

converges faster as

each slave MRF now covers a much larger number of nodes.

More generally, computational efficiency can be improved

simply by choosing a decomposition that is specifically

adapted to the class of MRFs we want to learn. For in-

stance, if part of the energy of a MRF is known to be sub-

modular we can take advantage of this fact simply by using

that part as a slave. The very fast graph-cut based optimiz-

ers that exist for submodular energies can be used directly

and will greatly reduce the computational cost of learning

in this case.

2We say that an MRF has the integrality property if and only if the

corresponding LP relaxation of (34) is tight.

0 100 200
0

10

20

30

intensity difference

 

 

pairwise potential

Fig. 2: Pairwise potential function V (·) learnt by our method.

0 5 10 15 20
0

2

4

6
x 10

4

time (secs)

 

 

primal objective function

(a)

0 20 40 60
0

2

4

6

time (secs)

a
v
g

 t
e

s
t 

e
rr

o
r

 

 

subgradient
DLPW
our method

(b)

Fig. 3: (a) Primal objective (22) and (b) average test errors as a

function of time.

7. Incremental and stochastic subgradient

To further improve computational efficiency we can use

an incremental subgradient method, which is well suited

to functions like (22) that can be expressed as a sum of

component functions. According to this method at each

iteration we need to take a step along the subgradient of

only one component function, where this component func-

tion is picked either deterministically (by repeatedly visiting

all component functions in a fixed order) or uniformly at

random. A component function for objective function (22)

can have the following form: µ′R(·) +
∑

i∈S LGk
i
(·). This

means that at each iteration we consider the hinge losses

LGk
i
(·) for only a subset of slave MRFs from a selected

training sample of index k (in this case updates are simi-

lar to (31), (25) but they take into account only a subset of

slaves). In a randomized version we first pick the index of a

training sample k randomly from {1, . . . , K}, and then the

subset S is picked also randomly from a predefined partition

of the slave indices of the k-th sample. If S is always cho-

sen to contain all slave indices of the k-th sample then this

is essentially equivalent to the more well known stochas-

tic subgradient algorithm. Just like the subgradient method,

incremental subgradient is guaranteed to converge to an op-

timal solution since a similar theorem to Thm. 1 holds true

in this case [12].

8. Experimental results

We next evaluate our algorithms using various experi-

ments. The first experiment is about image denoising. In

this case, we have created training and testing datasets con-

1846



(a) (b) (c) (d)

Fig. 4: (a) Noisy test image (b) Denoised image when using a

function V (·) estimated during the course of the learning algo-

rithm (c) Denoised result when using the final V (·) (d) Ground

truth image.

0 100 200 300
0

5

10

15

20

gradient

 

 

function f

(a)

0 10 20 30
1.5

2

2.5

3
x 10

6

time (secs)

o
b
je

c
ti
v
e
 f
u
n
c
ti
o
n

 

 

decomp. G
single

decomp. G
row−col

(b)

Fig. 5: (a) Learnt function f(·) (b) Primal objective (22) as a func-

tion of time for two different graph decompositions.

sisting of synthetic piecewise constant images that have

been corrupted by gaussian noise (see Fig. 4). To de-

noise these images we will use a pairwise MRF whose

unary potential will be uk
p(l) = |l − Ip|, where Ip de-

notes image intensity at pixel p. We also assume that the

MRF pairwise potential hk
pq(·, ·) has the following form

hk
pq(lp, lq) = V (|lp − lq|) Our goal is to learn the underly-

ing function V (·), which means that we need to estimate a

vector w of size 256, each component of which corresponds

to one value of V (·). The resulting V (·) after applying our

method on a training set of 10 images is shown in Fig. 2.

Although V (·) was determined automatically, it looks very

much like a truncated linear function, which fully agrees

with the common practice of using this type of discontinuity

preserving potentials when dealing with piecewise constant

images. Fig. 3(a) shows how the primal objective function

(22) varies during the course of our algorithm. Notice how

quickly convergence takes place. We also compare to two

other methods: the subgradient algorithm from [13] and the

DLPW algorithm from [10]. Fig. 3(b) shows the average

test error (for a test set of 10 noisy synthetic images) as a

function of time for each algorithm. Our method manages

to reduce the test error faster than DLPW. Similarly, it is

a lot more efficient than the subgradient method [13]. The

inefficiency of the method [13] comes from the fact that the

computation of a subgradient is much more expensive than

in our case since it requires fully solving a LP-relaxation

for problem MRFGk(ūk, h̄k) (i.e., for a MRF defined on

the whole graph). We also show in Fig. 4 a sample result

produced when denoising a test image using the function

V (·) learnt by our method.

We next test our method on an application for stereo

(a) (b) (c)

Fig. 6: Disparity maps for the ’Sawtooth’, ’Poster’ and ’Bull’

stereo pairs.

(a) (b) (c)

Fig. 7: Three disparity maps computed for the stereo pair ’Venus’

using functions f(·) estimated at different iterations of our learn-

ing algorithm (the final result is the one shown in (c)).

matching. In this case we want to estimate a disparity per

pixel and we will use a pairwise MRF with unary poten-

tial given by uk
p(l) = |I left

p − Iright
p−l |, where I left, Iright are

the left and right images. A very commonly used pairwise

potential in this case is a gradient-modulated Potts model

of the following form: hk
pq(lp, lq) = f(|∇I left

p |)[lp 6= lq],

where ∇I left
p = I left

p − I left
q represents the gradient of the

left image at p. Our goal is to automatically learn the func-

tion f(·) that is used for assigning a discontinuity penalty

depending on the magnitude of that gradient. Function f(·)
can take 256 different values assuming integer intensities

and so the positive vector w that we need to estimate will

be of size 256 with wi = f(i). In this case we also impose

the restriction that vector w should belong to setW , where

W = {w ≥ 0|wi ≥ wi+1}, thus reflecting the a priori

knowledge that f(·) should be a decreasing function. In this

case the projected subgradient algorithm simply requires

applying an additional projection step w ← ProjW(w) at

the end of each iteration, which is the only modification

needed by our method. We show in Fig. 5(a) the result-

ing function f(·) that was estimated by our learning algo-

rithm using as training set two stereo pairs from the mid-

dlebury stereo dataset (the ‘Tsukuba’ and the ‘Map’ pairs

were used). Using this function, we computed disparity

maps for the ’Venus’, ’Sawtooth’, ’Bull’ and ’Poster’ stereo

pairs from the middlebury dataset (see Fig. 6, Fig. 7). The

corresponding disparity error rates were 4.9%, 4.4%, 2.8%,

3.7% respectively. Fig. 7 also shows 3 different disparity

maps that were computed for one of these test images us-

ing the function f(·) as estimated at 3 different iterations of

our learning algorithm. Notice how the errors in the dispar-

ity are reduced as the algorithm converges. Fig. 5(b) shows

how the primal objective (22) varies as a function of time

1847



0 20 40 60
0

2

4

6
x 10

4

time (secs)

o
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

Fig. 8: Primal objective function during training of high-order

MRFs.

during learning. Notice again that our method manages to

successfully reduce this objective function very fast. On

the contrary, the subgradient method [13] is not practical to

use in this case due to the large size of the MRF problems,

which increases the running time considerably.

We also compare in Fig. 5(b) the effect of using two dif-

ferent decompositions in our learning algorithm. Decom-

position Grow-col uses each row or column of the MRF grid

as a slave, while Gsingle uses only one edge in the MRF

graph per slave. As explained in §6, Grow-col is expected to

converge faster, which is indeed what happens here.

Finally, to demonstrate the generality and flexibility of

our approach we also did some synthetic experiments on

learning high order MRFs. More specifically, we applied

our method to MRFs with Pn Potts high-order potentials,

which have the following form:

hc(x) =

{

βc
l if xp = l, ∀p ∈ c

βc
max otherwise ,

(38)

where l denotes any label from a discrete set of labelsL. We

assume that each βc
l is equal to the dot product of a vector

of parameters wl with a feature vector zc
l , i.e., βc

l = wl ·z
c
l ,

and the goal of learning includes estimating all vectors wl.

For this we use synthetic data: we randomly sample unary

potentials as well as feature vectors {zc
l } and then we gen-

erate the values βc
l of the high-order potentials based on a

specified set of vectors {wl}. We then approximately mini-

mize the resulting MRF using the method from [6], and the

solution x̄ that we obtain is used as the ground truth for the

current sample (we repeat this process to generate as many

samples as we want). For the corresponding MRF hyper-

graph we assume that its nodes are arranged in a 2D grid

and there exists a high-order clique for each subrectangle

of size s × s in that grid. Our learning algorithm can be

applied to this case by using a decomposition that assigns

one clique per slave. Note that the minimization of each

slave takes time O(|L|) and thus can be achieved very effi-

ciently regardless of the size of the high-order clique. Fig. 8

shows an example of how fast the primal objective function

(22) decreases during learning in this case (we used a grid

of size 50 × 50, the clique size was 3 × 3, |L| = 5, and

we used 100 training samples). The main point we want to

emphasize here is the efficiency of our method even in the

case of training a high-order MRF.

Before finishing we note that the function ∆(·, ·) in (12)

was set equal to the hamming loss for all the experiments in

the paper.

9. Conclusions

We have presented an algorithmic framework that can be

used for training arbitrary MRFs/CRFs. It essentially man-

ages to reduce the training of a complex high-order MRF to

that of training a set of simple random field models. The

derived learning scheme is very general, highly efficient

and extremely flexible (e.g., it can be applied to both pair-

wise and high-order models, it requires no submodularity

assumptions, it is easily adapted to the structure of a given

class of MRFs etc.). Due to these properties, we thus be-

lieve that our framework will find use in a broad class of

computer vision problems, especially now where learning

problems are becoming increasingly important as well as

challenging for a great variety of applications.

References

[1] supplemental material. 1845, 1846

[2] K. Alahari, C. Russell, and P. Torr. Efficient piecewise learning for

conditional random fields. In CVPR, 2010. 1841

[3] D. Anguelov, B. Taskar, V. Chatalbashev, D. Koller, D. Gupta,

G. Heitz, and A. Ng. Discriminative learning of markov random

fields for segmentation of 3d scan data. In CVPR, 2005. 1841

[4] T. Finley and T. Joachims. Training structural svms when exact in-

ference is intractable. In ICML, 2008. 1841, 1842

[5] V. Franc and B. Savchynskyy. Discriminative learning of max-sum

classifiers. JMLR, 2008. 1842

[6] N. Komodakis and N. Paragios. Beyond pairwise energies: Efficient

optimization for higher-order MRFs. In CVPR, 2009. 1846, 1848

[7] N. Komodakis, N. Paragios, and G. Tziritas. MRF optimization

via dual decomposition: Message-passing revisited. In ICCV, 2007.

1841

[8] N. Komodakis, N. Paragios, and G. Tziritas. MRF energy minimiza-

tion and beyond via dual decomposition. PAMI, 2010. 1841, 1842

[9] S. Kumar, J. August, and M. Hebert. Exploiting inference for ap-

proximate parameter learning in discriminative fields: An empirical

study. In EMMCVPR, 2005. 1841

[10] O. Meshi, D. Sontag, T. Jaakkola, and A. Globerson. Learning effi-

ciently with approximate inference via dual losses. In ICML, 2010.

1841, 1842, 1847

[11] D. Munoz, J. A. D. Bagnell, N. Vandapel, and M. Hebert. Contex-

tual classification with functional max-margin markov networks. In

CVPR, 2009. 1841

[12] A. Nedic and D. P. Bertsekas. Incremental subgradient methods for

nondifferentiable optimization. SIAM J. on Optimization, 2001. 1846

[13] N. Ratliff, J. A. D. Bagnell, and M. Zinkevich. (online) subgradient

methods for structured prediction. In AIStats, 2007. 1847, 1848

[14] D. Scharstein and C. Pal. Learning conditional random fields for

stereo. In CVPR, 2007. 1841

[15] M. Szummer, P. Kohli, and D. Hoiem. Learning CRFs using graph

cuts. In ECCV, 2008. 1841

[16] B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks.

In NIPS, 2004. 1841, 1843

1848


