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expansion, but, unlike that method, it can also guarantee analmost optimal solution for a much wider
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real time, with the resulting disparity coinciding with that of α-expansion.
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Fast Primal-Dual Strategies for MRF Optimization

Résumé : Nous proposons un nouvel algorithme efficace d’optimisation basé sur les champs de
Markov. Cet algorithme s’appelle Fast-PD, et généralise l’algorithme deα-expansion. Parmi ses
principaux avantages, nous notons sa grande rapidité par rapport à la dernière méthode. Il peut être de
3 à 9 fois plus rapide que l’algorithme deα-expansion. Il puise son efficacité dans l’exploitation des
informations qui émanent non seulement du champ de Markov primal, mais aussi du problème dual.
En outre, son utilisation pour accélérer les champs de Markov statiques s’étend aussi à l’amélioration
des performances des champs de Markov dynamiques, c’est à dire ceux qui varient au cours du
temps. En plus de sa rapidité, Fast-PD ne fait aucun compromis quant à l’optimalité de ses solutions
: il peut calculer les mêmes solutions queα-expansion, mais contrairement à cette méthode, il
peut aussi garantir une solution presque optimale pour une classe beaucoup plus large de problèmes
NP-difficiles de champs de Markov. Les résultats obtenus surdes champs de Markov statiques et
dynamiques démontrent l’efficacité et la puissance de cet algorithme. A titre d’exemple, Fast-PD
est utilisé pour calculer la disparité sur des séquences d’images stéréoscopiques en temps réel. La
disparité obtenue est la même que celle qui résulte de l’algorithme deα-expansion.

Mots-clés : Fast-PD, Champs de Markov (Statiques et Dynamiques), programmation linéaire,
optimisation.
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1 Introduction

Discrete MRFs are ubiquitous in computer vision, and thus optimizing them is a problem of funda-
mental importance. According to it, given a weighted graphG (with nodesV , edgesE and weights
wpq), one seeks to assign a labelxp (from a discrete set of labelsL) to eachp ∈ V , so that the
following cost is minimized:

∑

p∈V
cp(xp) +

∑

(p,q)∈E
wpqd(xp, xq). (1)

In the above formula,cp(·), d(·, ·) determine the singleton and pairwise MRF potential functions
respectively1.

Up to now, graph-cut based methods, likeα-expansion [2], have been very effective in MRF
optimization, generating solutions with good optimality properties [7]. However, besides solutions’
optimality, another important issue is that of computational efficiency. In fact, this issue has recently
been looked at for the special case of dynamic MRFs [4, 3], i.e. MRFs varying over time. Thus,
trying to concentrate on both of these issues here, we raise the following questions:

• Can there be a graph-cut based method, which will be more efficient, but equally (or even
more) powerful, thanα-expansion, for the case of single MRFs?

• Furthermore, can that method also offer a computational advantage for the case of dynamic
MRFs?

With respect to the questions raised above, this work makes the following contributions:

Efficiency for single MRFs: α-expansion works by solving a series of max-flow problems. Its
efficiency is thus largely determined from the efficiency of these max-flow problems, which,
in turn, depends on the number of augmenting paths per max-flow. Here, we build upon recent
work of [5], and propose a new primal-dual MRF optimization method, called Fast-PD. This
method, like [5] orα-expansion, also ends up solving a max-flow problem for a series of
graphs. However, unlike these techniques, the graphs constructed by Fast-PD ensure that the
number of augmentations per max-flow decreases dramatically over time, thus boosting the
efficiency of MRF inference. To this end, we also prove a generalized relationship between
the number of augmentations and the so-calledprimal-dual gapassociated with the original
MRF problem and its dual. Furthermore, for fully exploitingthis property two extensions are
also proposed: anadapted max-flow algorithm, as well as anincremental graph construction
method.

Optimality properties: But, despite its efficiency, our method also makes no compromise regard-
ing the optimality of its solutions. So, ifd(·, ·) is a metric, Fast-PD is as powerful asα-
expansion, i.e. it computes exactly the same solution, but with a substantial speedup. More-
over, it applies to a much wider class of MRFs2, e.g. even with a non-metricd(·, ·), while still
guaranteeing an almost optimal solution.

1Hereafter,d(·, ·) will be called simply a distance function
2Fast-PD requires onlyd(a, b)≥0, d(a, b)=0⇔a=b
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Efficiency for dynamic MRFs: Furthermore, our method can also be used for boosting the effi-
ciency of dynamic MRFs. We note here that many works have beenproposed in this regard
recently [4, 3]. These methods can be applied to dynamic MRFsthat are binary or have convex
priors. On the contrary, Fast-PD naturally handles a much wider class of dynamic MRFs, and
can do so by also exploiting information from a problem, which is dual to the original MRF
problem. Fast-PD can thus be thought of as a generalization of previous techniques.

The rest of the technical report is organized as follows. In sec. 2, we briefly review the work
of [5] about using the primal-dual schema for MRF optimization. The Fast-PD algorithm is then
described in sec. 3. Its efficiency for optimizing single MRFs is further analyzed in sec. 4, where
related results and some important extensions of Fast-PD are presented as well. Sec. 5 explains
how Fast-PD can boost the performance of dynamic MRFs, and also contains more experimental
results. Finally, we conclude in section 6, while appendices A and B contain technical proofs for the
theorems of this report.

2 Primal-dual MRF optimization algorithms

In this section, we review very briefly the work of [5]. Consider the primal-dual pair of linear
programs, given by:

PRIMAL : min cT x DUAL : max bT y

s.t. Ax = b,x ≥ 0 s.t. AT y ≤ c

One seeks an optimal primal solution, with the extra constraint of x being integral. This makes for
an NP-hard problem, and so one can only hope for finding an approximate solution. To this end, the
following schema can be used:

Theorem 1(Primal-Dual schema). Keep generating pairs of integral-primal, dual solutions(xk,yk),
until the elements of the last pair, sayx,y, are both feasible and have costs that are close enough,
e.g. their ratio is≤ fapp:

cT x ≤ fapp · bT y (2)

Thenx is guaranteed to be anfapp-approximate solution to the optimal integral solutionx∗, i.e.
cT x ≤ fapp · c

T x∗.

The above schema has been used in [5], for deriving approximation algorithms for a very wide
class of MRFs. To this end, MRF optimization was first cast as an equivalent integer program and
then, as required by the primal-dual schema, its linear programming relaxation and its dual were
derived. Based on these LPs (Linear Programs), the authors then show that, for Theorem 1 to be true
with fapp=2 dmax

dmin

3, it suffices that the next (so-calledrelaxed complementary slackness) conditions

3dmax≡maxa 6=b d(a, b), dmin≡mina 6=b d(a, b)

Laboratoire MAS
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1: [x,y]←INIT _DUALS_PRIMALS( ); xold←x

2: for each labelc in L do
3: y←PREEDIT_DUALS(c,x,y);
4: [x′,y′]←UPDATE_DUALS_PRIMALS(c,x,y);
5: y

′←POSTEDIT_DUALS(c,x′,y′);
6: x←x

′; y←y
′;

7: end for
8: if x 6=xold then
9: xold←x; goto 2;

10: end if

Fig. 1: The primal dual schema for MRF optimization.

hold true for the resulting primal and dual variables:

hp(xp) = mina∈L hp(a), ∀p∈V (3)

ypq(xp) + yqp(xq) = wpqd(xp, xq), ∀pq∈E (4)

ypq(a) + yqp(b) ≤ 2wpqdmax, ∀pq∈E , a∈L, b∈L (5)

In these formulas, the primal variables, denoted byx= {xp}p∈V , determine the labels assigned
to nodes (calledactive labelshereafter), e.g.xp is the active label of nodep. Whereas, the dual vari-
ables are divided intobalanceandheightvariables. There exist 2 balance variablesypq(a), yqp(a)
per edge(p, q) and labela, as well as 1 height variablehp(a) per nodep and labela. Variables
ypq(a), yqp(a) are also calledconjugateand, for the dual solution to be feasible, these are set oppo-
site to each other, i.e. :yqp(·) ≡ −ypq(·). Furthermore, the height variables are always defined in
terms of the balance variables as follows:

hp(·) ≡ cp(·) +
∑

q:qp∈E
ypq(·). (6)

Note that, due to (6), only the vectory (of all balance variables) is needed for specifying a dual
solution. Furthermore, for simplifying conditions (4),(5), one can also define:

loadpq(a, b)≡ypq(a)+yqp(b). (7)

Base on the above definition, conditions (4),(5) can be rewritten as:

loadpq(xp, xq) = wpqd(xp, xq), ∀pq∈E (8)

loadpq(a, b) ≤ 2wpqdmax, ∀pq∈E , a∈L, b∈L (9)

and so, whenever we refer to conditions (4),(5) hereafter, we will implicitly refer to conditions (8),(9)
as well.

The main goal of a MRF primal-dual method is to satisfy all conditions (3)-(5), and, to this end,
the primal-dual variables are iteratively updated until all of these conditions become true. The basic
structure of a primal-dual algorithm can be seen in Fig. 1. During an innerc-iteration (lines3-6 in
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Fig. 2: (a) Dual variables’ visualization for a simple MRF with 2 nodes{p, q} and 2 labels{a, c}. A copy
of labels{a, c} exists for every node, and all these labels are represented by balls floating at certain heights.
The role of theheight variableshp(·) is to specify exactly these heights. Furthermore, balls arenot static, but
may move (i.e. change their heights) in pairs by updating conjugatebalance variables. E.g., here, ballc at p
is pulled up by+δ (due to increasingypq(c) by +δ) and so ballc at q moves down by−δ (due to decreasing
yqp(c) by−δ). Active labels are drawn with a thicker circle.(b) If label c atp is belowxp during ac-iteration,
then (due to (3)) we want labelc to raise and reachxp. We thus connect nodep to the sources with an edgesp
(i.e. p is ans-linked node), and flowfsp represents the total raise ofc (we also setcap

sp = hp(xp) − hp(c)).
(c) If label c atp is abovexp during ac-iteration, then (due to (3)) we want labelc not to go belowxp. We thus
connect nodep to the sinkt with edgept (i.e. p is at-linked node), and flowfpt represents the total decrease in
the height ofc (we also setcappt

=hp(c)−hp(xp) so that labelc will still remain abovexp).

Fig. 1), a labelc is selected and a new primal-dual pair of solutions(x′,y′) is generated based on
the current pair(x,y). To this end, among all balance variablesypq(.), only the balance variables
of c-labels(i.e. ypq(c)) are updated during ac-iteration. |L| such iterations (i.e. onec-iteration per
label c in L) make up an outer iteration (lines2-7 in Fig. 1), and the algorithm terminates if no
change of label takes place at the current outer iteration.

The main update of the primal and dual variables takes place in UPDATE_DUALS_PRIMALS dur-
ing an inner iteration, and (as it was shown in [5]) this update reduces to solving a max-flow problem
in an appropriate graphGc. Furthermore, the routinesPREEDIT_DUALS andPOSTEDIT_DUALS sim-
ply apply corrections to the dual variables before and afterthis main update, i.e. to variablesy andy′

respectively.4 Also, for simplicity’s sake, note that we will hereafter refer to only one of the methods
derived in [5], and this will be the so-called PD3a method.

3 Fast primal-dual MRF optimization

The complexity of the PD3a primal-dual method largely depends on the complexity of allmax-flow
instances (one instance per inner-iteration), which, in turn, depends on the number of augmentations

4Throughout this technical report, we use the following convention for the notation of the dual variables during an inner-
iteration: before theUPDATE_DUALS_PRIMALS routine, all dual variables are denoted without an accent, e.g. ypq(·), hp(·).
After UPDATE_DUALS_PRIMALS has updated the dual variables, we always use an accent for denoting these variables, e.g.
we writey′

pq(·), h′
p(·) in this case.

Laboratoire MAS
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per max-flow. So, for designing faster primal-dual algorithms, we first need to understand how the
graphGc, associated with the max-flow problem at ac-iteration of PD3a, is constructed.

To this end, we also have to recall the following intuitive interpretation of the dual variables [5]:
for each nodep, a separate copy of all labels inL is considered, and all these labels are represented
as balls, which float at certain heights relative to a reference plane. The role of the height variables
hp(·) is then to determine the balls’ height (see Figure 2(a)). E.g. the height of labela at nodep is
given byhp(a). Also, expressions like “labela at p is below/above labelb” imply hp(a) ≶ hp(b).
Furthermore, balls are not static, but may move in pairs through updating pairs of conjugate balance
variables. E.g. , in Figure 2(a), labelc atp is raised by+δ (due to adding+δ to ypq(c)), and so label
c at q has to move down by−δ (due to adding−δ to yqp(c) so that conditionypq(c)=−yqp(c) still
holds). Therefore, the role of balance variables is to raiseor lower labels. In particular, the value of
balance variableypq(a) represents the partial raise of labela at p due to edgepq, while (by (6)) the
total raise ofa atp equals the sum of partial raises from all edges ofG incident top.

Hence, PD3a tries to iteratively move labels up or down, until all conditions (3)-(5) hold true.
To this end, it uses the following strategy: it ensures that conditions (4)-(5) hold at each iteration
(which is always easy to do) and is just left with the main taskof making the labels’ heights satisfy
condition (3) as well in the end (which is the most difficult part, requiring each active labelxp to be
the lowest label forp).

For this purpose, labels are moved in groups. In particular,during ac-iteration, only thec-labels
are allowed to move (see Fig. 3). Furthermore, the main movement of all c-labels (i.e. the main
update of dual variablesypq(c) andhp(c) for all p, q) takes place inUPDATE_DUALS_PRIMALS, and
this movement has been shown that it can be simulated by pushing the maximum flow through a
directed graphGc (which is constructed based on the current primal-dual pair(x,y) at ac-iteration).
The nodes ofGc consist of all nodes of graphG (the internal nodes), plus 2externalnodes, the

inner c-iterationinner c-iteration

PREEDIT_DUALS

POSTEDIT_DUALS

UPDATE_DUALS_PRIMALS
(run max-flow in graph Gc)

Fig. 3: The basic structure of an innerc-iteration is shown here. During such an iteration, only thec-labels
are allowed to move (i.e. only them can change their heights). The main movement of thec-labels takes place
inside theUPDATE_DUALS_PRIMALS routine, and this movement is simulated by pushing the maximum-flow
through an appropriate directed graphGc. However, besides the movement duringUPDATE_DUALS_PRIMALS,
c-labels also move before and after that routine as well. Thishappens because routinesPREEDIT_DUALS and
POSTEDIT_DUALS also apply corrections to the dual variables, and these corrections take place before and after
max-flow respectively.
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c

capsp

hp(xp)

hp(c)

p

xp

c

hp(xp) hp(c)

p

xp

c

fsp
capsp

hp(xp)

hp(c)

p

xp

correction

(a) before max-flow (b) after max-flow (c) after correction by
PREEDIT_DUALS or POSTEDIT_DUALS

Fig. 4: (a) Labelc atp is belowxp, and thus labelc is allowed to raise itself in order to reachxp. This means
that p will be an s-linked node of graphGc, i.e. cap

sp > 0, and thus a non-zero flowfsp (representing the
total raise of labelc in UPDATE_DUALS_PRIMALS) may pass through edgesp. Therefore, in this case, edge
sp may become part of an augmenting path during max-flow.(b) After UPDATE_DUALS_PRIMALS (i.e. after
max-flow), labelc has managed to raise byfsp and reachxp. Since it cannot go higher than that, no flow
can pass through edgesp, i.e. cap

sp = 0, and so no augmenting path may traverse that edge thereafter. (c)
However, due to some correction applied later toc-label’s height byPREEDIT_DUALS or POSTEDIT_DUALS,
labelc has dropped belowxp once more andp has become ans-linked node again (i.e.cap

sp > 0). Edgesp
can thus be part of an augmenting path again (as in (a)).

sources and the sinkt. In addition, all nodes ofGc are connected by two types of edges:interior
andexterior edges. Interior edges come in pairspq, qp (with one such pair for every 2 neighbors
p, q in G), and are responsible for updating the balance variables during UPDATE_DUALS_PRIMALS.
In particular, the corresponding flowsfpq/fqp represent the increase/decrease of balance variable
ypq(c), i.e. y′

pq(c)= ypq(c)+ fpq − fqp. Also, as we shall see, the capacities of these edges are
responsible to ensure (along withPREEDIT_DUALS, POSTEDIT_DUALS) that conditions (4), (5)
hold true.

But for now, in order to understand how to make a faster primal-dual method, it is the exterior
edges (which are in charge of the update of height variables during UPDATE_DUALS_PRIMALS), as
well as their capacities (which are left with ensuring condition (3) on their own), that are of interest
to us. The reason is that these edges determine the number ofs-linked nodes, which, in turn, affects
the number of augmenting paths per max-flow. In particular, each internal node connects to either
the sources (i.e. it is ans-linked node) or to the sinkt (i.e. it is at-linked node) through one of
these exterior edges, and this is done (with the goal of ensuring (3)) as follows: if labelc at p is
abovexp during ac-iteration(i.e. hp(c) > hp(xp)), then labelc should not go belowxp, or else (3)
will be violated forp. Nodep thus connects tot through directed edgept (i.e. p becomest-linked),
and flowfpt represents the total decrease in the height ofc duringUPDATE_DUALS_PRIMALS, i.e.
h′

p(c) = hp(c)−fpt (see Fig. 2(c)). Furthermore, the capacity ofpt is set so that labelc will still
remain abovexp, i.e. cappt

= hp(c)−hp(xp). On the other hand, if labelc atp is below active label
xp (i.e. hp(c) < hp(xp)), then (due to (3)) labelc should raise so as to reachxp, and sop connects
to s through edgesp (i.e. p becomess-linked), while flowfsp represents the total raise of ballc, i.e.
h′

p(c)=hp(c)+fsp (see Fig. 2(b)). In this case, we also setcap
sp =hp(xp)−hp(c).

Laboratoire MAS
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[x,y]←INIT _DUALS_PRIMALS ( ): x←random labels; y←0;
∀pq,adjust ypq(xp) or yqp(xq) so that loadpq(xp, xq)=wpqd(xp, xq)

y←PREEDIT _DUALS(c,x,y):
∀pq,if loadpq(c, xq)>wpqd(c, xq) or loadpq(xp, c)>wpqd(xp, c)

adjust ypq(c) so that loadpq(c, xq)=wpqd(c, xq)

[x′,y′]←UPDATE_DUALS_PRIMALS (c,x,y): x
′←x; y

′←y;
Construct Gc

and apply max-flow to compute all flows fsp/fpt , fpq

∀pq, y′
pq(c)←ypq(c)+fpq−fqp

∀p , if an unsaturated path from s to p exists, then x′
p←c

y′←POSTEDIT_DUALS(c,x′,y′): {We denote load′
pq(·, ·)=y′

pq(·)+y′
qp(·)}

∀pq,if load′
pq(x

′
p, x′

q)>wpqd(x′
p, x

′
q) {This implies x′

p =c or x′
q =c}

adjust y′
pq(c) so that load′

pq(x
′
p, x′

q)=wpqd(x′
p, x

′
q)

Fig. 5: Fast-PD’s pseudocode.

This way, by pushing flow through the exterior edges ofGc, all c-labels that are strictly below an
active label try to raise and reach that label duringUPDATE_DUALS_PRIMALS5. Not only that, but
the fewer are thec-labels below an active label (i.e. the fewer are thes-linked nodes), the fewer will
be the edges connected to the source, and thus the less will bethe number of possible augmenting
paths. In fact, the algorithm terminates when, for any labelc, there are no morec-labels strictly below
an active label (i.e. nos-linked nodes exist and thus no augmenting paths may be found), in which
case condition (3) will finally hold true, as desired. Put another way,UPDATE_DUALS_PRIMALS

tries to pushc-labels (which are at a low height) up, so that the number ofs-linked nodes is reduced
and thus fewer augmenting paths may be possible for the next iteration.

However, althoughUPDATE_DUALS_PRIMALS tries to reduce the number ofs-linked nodes (by
pushing the maximum amount of flow),PREEDIT_DUALS or POSTEDIT_DUALS very often spoil
that progress. As we shall see later, this occurs because, inorder to restore condition (4) (which
is their main goal), these routines are forced to apply corrections to the dual variables (i.e. to the
labels’ height). This is abstractly illustrated in Figure 4, where, due toUPDATE_DUALS_PRIMALS

(i.e. due to max-flow), ac-label has initially managed to reach an active labelxp, but it has again
dropped belowxp, due to some correction by these routines. In fact, as one canshow, the only point
where a news-linked node can be created is during eitherPREEDIT_DUALS or POSTEDIT_DUALS.

To fix this problem, we will redefinePREEDIT_DUALS, POSTEDIT_DUALS so that they can now
ensure condition (4) by using just a minimum amount of corrections for the dual variables, (e.g. by
touching these variables only rarely). To this end, however, UPDATE_DUALS_PRIMALS needs to be
modified as well. The resulting algorithm, called Fast-PD, carries the following main differences
over PD3a during ac-iteration (its pseudocode appears in Fig. 5):

5Equivalently, ifc-label atp cannot raise high enough to reachxp, UPDATE_DUALS_PRIMALS then assigns thatc-label
as the new active label ofp (i.e. x′

p=c), thus effectively making the active label go down. This once again helps condition
(3) to become true, and forms the main rationale behind the update of the primal variablesx in UPDATE_DUALS_PRIMALS.

RR n° 0605



10 N. Komodakis, G. Tziritas, N. Paragios

- the newPREEDIT_DUALS modifies a pairypq(c), yqp(c) of dual variables only when absolutely
necessary. So, whereas the previous version modified these variables (thereby changing the height
of a c-label) wheneverc 6=xp, c 6=xq (which could happen extremely often), a modification is now
applied only ifloadpq(c, xq)>wpqd(c, xq) or loadpq(xp, c)>wpqd(xp, c) (which, in practice, hap-
pens much more rarely). In this case, a modification is needed(see code in Fig. 5), because the
above inequalities indicate that condition (4) will be violated if either(c, xq) or (xp, c) become the
new active labels forp, q. On the contrary, no modification is needed if the following inequalities
are true:

loadpq(c, xq)≤wpqd(c, xq), loadpq(xp, c)≤wpqd(xp, c),

because then, as we shall see below, the newUPDATE_DUALS_PRIMALS can always restore (4) (i.e.
even if(c, xq) or (xp, c) are the next active labels - e.g. , see (14)). In fact, the modification toypq(c)
that is occasionally applied by the newPREEDIT_DUALS can be shown to be the minimal correction
that restores exactly the above inequalities (assuming, ofcourse, this restoration is possible).

- Similarly, the balance variablesy′
pq(x

′
p) (with x′

p = c) or y′
qp(x

′
q) (with x′

q = c) are modi-
fied much more rarely by the newPOSTEDIT_DUALS. So, whereas the previous version modified
these variables (thereby changing the height of ac-label) whenever they were negative (which, in
practice, happened most of the time), the new routine applies a modification only ifload′

pq(x
′
p, x′

q)>

wpqd(x′
p, x

′
q),

6 which may happen only in very seldom occasions (e.g. if the distance functiond(·, ·)
is a metric, one may then show that this can never happen). If the above inequality does hold true,
thenPOSTEDIT_DUALS simply needs to reduceload′

pq(x
′
p, x

′
q) so as to just restore (4).

- But, to allow for the above changes, we also need to modify the construction of graphGc in
UPDATE_DUALS_PRIMALS. In particular, forc6=xp andc6=xq, the capacities of interior edgespq, qp
must now be set as follows:7

cappq =
[

wpqd(c, xq)−loadpq(c, xq)
]+

, (10)

capqp =
[

wpqd(xp, c)−loadpq(xp, c)
]+

, (11)

where[x]+≡max(x, 0). Besides ensuring condition (5) (by not letting the balancevariables increase
too much), the main rationale behind the above definition of interior capacities is to also ensure that
(after max-flow) condition (4) will be met by most pairs(p, q), no matter if(c, xq) or (xp, c) are
the next labels assigned to them (which is good, since we willthus manage to avoid the need for a
correction byPOSTEDIT_DUALS for all but a fewp, q). To see this, the crucial thing to observe is
that if, say,(c, xq) are the next labels forp andq, then capacitycappq can be shown to represent the
increase ofloadpq(c, xq) after max-flow, i.e. :

load′
pq(c, xq) = loadpq(c, xq) + cappq. (12)

Hence, if the following inequality is true as well:

loadpq(c, xq) ≤ wpqd(c, xq) , (13)

then condition (4) will do remain valid after max-flow, as thefollowing trivial derivation shows:

6As in (7), we defineload′
pq(a, b)≡y′

pq(a)+y′
qp(b) for variabley′.

7If c=xp or c=xq, thencappq=capqp=0 as before, i.e. as in PD3a.

Laboratoire MAS



Fast Primal-Dual Strategies for MRF Optimization 11

xp≠ c
⋀

xq≠ c

cappq=[wpqd(c,xq)-loadpq(c,xq)]
+

capqp=[wpqd(xp,c)-loadpq(xp,c)]+
xp = c

⋁

xq = c

cappq= 0

capqp= 0
capsp=[hp(xp)-hp(c)]+

cappt=[hp(c)-hp(xp)]
+

interior capacitiesexterior capacities

Fig. 6: Capacities of graphGc, as set by Fast-PD.

load′
pq(c, xq)

(12), (10)
= loadpq(c, xq) + [wpqd(c, xq) − loadpq(c, xq)]

+

(13)
= loadpq(c, xq) + [wpqd(c, xq) − loadpq(c, xq)] = wpqd(c, xq) (14)

But this means that a correction may need to be applied byPOSTEDIT_DUALS only for pairsp, q
violating (13) (before max-flow). However, such pairs tend to be very rare in practice (e.g. , as one
can prove, no such pairs exist whend(·, ·) is a metric), and thus very few corrections need to take
place.

Fig. 6 summarizes how Fast-PD sets the capacities for all edges ofGc. As already mentioned,
based on the interior capacities, one may show thatUPDATE_DUALS_PRIMALS (with the help of
PREEDIT_DUALS, POSTEDIT_DUALS in a few cases) ensures (4),(5), while, thanks to the exterior
capacities,UPDATE_DUALS_PRIMALS can ensure (3). As a result, the next theorem holds (see ap-
pendix A for a complete proof):

Theorem 2. The last primal-dual pair(x,y) of Fast-PD satisfies conditions(3)-(5), and sox is an
fapp-approximate solution.

In fact, Fast-PD maintains all good optimality properties of the PD3a method. E.g. , for a metric
d(·, ·), Fast-PD proves to be as powerful asα-expansion (see appendix B for a proof):

Theorem 3. If d(·, ·) is a metric, then the Fast-PD algorithm computes the bestc-expansion after
anyc-iteration.

4 Efficiency of Fast-PD for single MRFs

But, besides having all these good optimality properties, avery important advantage of Fast-PD over
all previous primal-dual methods, as well asα-expansion, is that it proves to be much more efficient
in practice.

In fact, the computational efficiency for all methods of thiskind is largely determined from the
time taken by each max-flow problem, which, in turn, depends on the number of augmenting paths
that need to be computed. For the case of Fast-PD, the number of augmentations per inner-iteration
decreases dramatically, as the algorithm progresses. E.g.Fast-PD has been applied to the problem
of image restoration, where, given a corrupted (by noise) image, one seeks to restore the original
(uncorrupted) image back. In this case, labels correspond to intensities, while the singleton potential
functioncp(·) was defined as a truncated squared differencecp(a) = min{|Ip−a|2, 104} between the
label and the observed intensityIp at pixelp. Fig. 7(b) contains a related result about the denoising
of a corrupted (with gaussian noise) “penguin” image (256 labels and a truncated quadratic distance
d(a, b) = min(|a − b|2, D) - whereD = 200 - were also used in this case). Fig. 9(a) shows the
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12 N. Komodakis, G. Tziritas, N. Paragios

(a) Noisy
“penguin”image

(b) Restoration of the
“penguin”image by

the Fast-PD algorithm

(c) “Tsukuba”image (d) Corresponding disparity as
estimated by Fast-PD

(e) “SRI tree”image (f) Corresponding disparity as
estimated by Fast-PD

Fig. 7: Image restoration and stereo matching results by the Fast-PD algorithm.

corresponding number of augmenting paths per outer-iteration (i.e. per group of|L| inner-iterations).
Notice that, for bothα-expansion, as well as PD3a, this number remains very high (i.e. almost over
2 · 106 paths) throughout all iterations. On the contrary, for the case of Fast-PD, it drops towards
zero very quickly, e.g. only 4905 and 7 paths had to be found during the 8th and last outer-iteration
respectively (obviously, as also shown in Fig. 10(a), this directly affects the total time needed per
outer-iteration). In fact, for the case of Fast-PD, it is very typical that, after very few inner-iterations,
no more than 10 or 20 augmenting paths need to be computed per max-flow, which really boosts the
performance in this case.
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dual1 dualkdualk-1… primalk primalk-1 primal1
gapk

…

dual costs primal costs

(a) High-level view of the Fast-PD algorithm

dual1 primalk primalk-1 primal1
gapk

…

fixed dual cost primal costs

(b) High-level view of theα-expansion algorithm

Fig. 8: (a) Fast-PD generates pairs of primal-dual solutions iteratively, with the goal of always reducing the
primal-dual gap (i.e. the gap between the resulting primal and dual costs). But, for the case of Fast-PD, this
gap can be viewed as a rough estimate for the number of augmentations, and so this number is forced to reduce
over time as well.(b) On the contrary,α-expansion works only in the primal domain (i.e. it is as if a fixed dual
cost is used at the start of each new iteration) and thus the primal-dual gap can never become small enough.
Therefore, no significant reduction in the number of augmentations takes place as the algorithm progresses.

This property can be explained by the fact that Fast-PD maintains both a primal, as well as a
dual solution throughout its execution. Fast-PD then manages to effectively use the dual solutions of
previous inner iterations, so as to reduce the number of augmenting paths for the next inner-iteration.
Intuitively, what happens is that Fast-PD ultimately wantsto close the gap between the primal and
the dual cost (see Theorem 1), and, for this, it iteratively generates primal-dual pairs, with the goal
of decreasing the size of this gap (see Fig. 8(a)). But, for Fast-PD, the gap’s size can be thought of
as, roughly speaking, an upper-bound for the number of augmenting paths per inner-iteration. Since,
furthermore, Fast-PD manages to reduce this gap at any time throughout its execution, the number
of augmenting paths is forced to decrease over time as well.

On the contrary, a method likeα-expansion, that works only in the primal domain, ignores dual
solutions completely. It is, roughly speaking, as ifα-expansion is resetting the dual solution to zero
at the start of each inner-iteration, thus effectively forgetting that solution thereafter (see Fig. 8(b)).
For this reason, it fails to reduce the primal-dual gap and thus also fails to achieve a reduction in
path augmentations over time, i.e. across inner-iterations. However, not only theα-expansion, but
the PD3a algorithm as well fails to mimic Fast-PD’s behavior (despite being a primal-dual method).
As explained in sec. 3, this happens because, in this case,PREEDIT_DUAL andPOSTEDIT_DUAL

temporarily destroy the gap just before the start ofUPDATE_DUALS_PRIMALS, i.e. just before max-
flow is about to begin computing the augmenting paths. (Note,of course, that this destruction is only
temporary, and the gap is restored again after the executionof UPDATE_DUALS_PRIMALS).

The above mentioned relationship between primal-dual gap and number of augmenting paths is
formally described in the next theorem:

Theorem 4. For Fast-PD, the primal-dual gap at the current inner-iteration forms an approximate
upper bound for the number of augmenting paths at each iteration thereafter.
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14 N. Komodakis, G. Tziritas, N. Paragios

Proof. The same dual linear program as in [5] has been used, and so thecost of a dual solution is
defined as:

dual cost =
∑

p

min
a∈L

hp(a) , (15)

which implies that:
dual cost ≤

∑

p

min(hp(c), hp(xp)) (16)

Furthermore, in the case of the Fast-PD algorithm, it can be shown that the following equality will
hold before the start of max-flow at an inner-iteration (see lemma B.1):

primal cost =
∑

p

hp(xp) (17)

Based on (16), (17), the following inequality then results:

primal dual gap = primal cost− dual cost ≥
∑

p

hp(xp) −
∑

p

min(hp(c), hp(xp))

=
∑

p

[hp(xp) − hp(c)]
+ =

∑

p

cap
sp. (18)

But the quantity
∑

p cap
sp obviously forms an upper-bound on the maximum flow during ac-

iteration, which, in turn, upper-bounds the number of augmenting paths (assuming integral flows).
In addition to that, the upper bound defined by

∑

p cap
sp will not increase during any of the next

c-iterations (which means that the number of augmentations will keep decreasing over time), and so
the current primal-dual gap will be an approximate upper bound for the number of augmentations of
the nextc-iterations as well.

The fact that the upper bound
∑

p cap
sp =

∑

p[hp(xp)−hp(c)]
+ will not increase during any of

the next iterations may be justified by that any of the terms[hp(xp)−hp(c)]
+ can increase only dur-

ing eitherPREEDIT_DUALS or POSTEDIT_DUALS (it is easy to show thatUPDATE_DUALS_PRIMALS

may only decrease the value of these terms). However, bothPREEDIT_DUALS andPOSTEDIT_DUALS

modify the height variableshp(·) only in very rare occasions during the execution of Fast-PD (e.g.
if d(·, ·) is a metric, one may prove that none of the height variables need to be altered byPOSTE-
DIT_DUALS). Hence, the terms[hp(xp)− hp(c)]

+ will typically not be altered by these routines (or
they will be altered by a negligible amount at most), and so only UPDATE_DUALS_PRIMALS may
modify these terms, thus decreasing their values.

Due to the above mentioned property, the time per outer-iteration decreases dramatically over
time. This has been verified experimentally with virtually all problems that Fast-PD has been tested
on. E.g. Fast-PD has been also applied to the problem of stereo matching. In this case, the conven-
tional measure of SSD (sum of squared differences) or SAD (sum of absolute differences) has been
used for the singleton potentialscp(·). Fig. 7(d) contains the resulting disparity (of size384 × 288
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Fig. 9: (a) Number of augmenting paths per outer iteration for the “penguin” example (similar results hold for
the other examples as well). Only in the case of Fast-PD, thisnumber decreases dramatically over time.(b)
This property of Fast-PD is directly related to the decreasing number ofs-linked nodes per outer-iteration (this
number is shown here for the same example as in (a)).
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laptop has been used).
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with 16 labels) for the well-known “Tsukuba” stereo pair, while fig. 7(f) contains the resulting dis-
parity (of size 256×233 with 10 labels) for an image pair from the well-known “SRItree” sequence
(in both cases, a truncated linear distanced(a, b) = min(|a − b|, D) - with D = 2 andD = 5 - has
been used, while the weightswpq were allowed to vary based on the image gradient atp). Figures
10(b), 10(c) contain the corresponding running times per outer iteration. Notice how much faster the
outer-iterations of Fast-PD become as the algorithm progresses, e.g. the last outer-iteration of Fast-
PD (for the “SRI-tree” example) lasted less than 1 msec (since, as it turns out, only 4 augmenting
paths had to be found during that iteration). Contrast this with the behavior of either theα-expansion
or the PD3a algorithm, which both require an almost constant amount of time per outer-iteration,
e.g. the last outer-iteration ofα-expansion needed more than 0.4 secs to finish (i.e.it was more than
400 times slower than Fast-PD’s iteration!). Similarly, for the “Tsukuba” example,α-expansion’s
last outer-iteration was more than 2000 times slower than Fast-PD’s iteration.

4.1 Max-flow algorithm adaptation

However, for fully exploiting the decreasing number of pathaugmentations and reduce the running
time, we had to properly adapt the max-flow algorithm. To thisend, the crucial thing to observe
was that the decreasing number of augmentations was directly related to the decreasing number of
s-linked nodes, as already explained in sec. 3. E.g. fig. 9(b) shows how the number ofs-linked
nodes varies per outer-iteration for the “penguin” example(with a similar behavior being observed
for the other examples as well). As can be seen, this number decreases drastically over time. In fact,
as implied by condition (3), nos-linked nodes will finally exist upon the algorithm’s termination.
Any augmentation-based max-flow algorithm striving for computational efficiency, should certainly
exploit this property when trying to extract its augmentingpaths.

The most efficient of these algorithms [1] maintains 2 searchtrees for the fast extraction of these
paths, asourceand asink tree. Here, the source tree will start growing by exploring non-saturated
edges that are adjacent tos-linked nodes, whereas the sink tree will grow starting fromall t-linked
nodes. Of course, the algorithm terminates when no adjacentunsaturated edges can be found any
more. However, in our case, maintaining the sink tree is completely inefficient and does not exploit
the much smaller number ofs-linked nodes. We thus propose maintaining only the source tree
during max-flow, which will be a much cheaper thing to do here (e.g. , in many inner iterations,
there can be fewer than 10s-linked nodes, but many thousands oft-linked nodes). Moreover, due
to the small size of the source tree, detecting the termination of the max-flow procedure can now
be done a lot faster, i.e. without having to fully expand the large sink tree (which is a very costly
operation), thus giving a substantial speedup. In additionto that, for efficiently building the source
tree, we keep track of alls-linked nodes and don’t recompute them from scratch each time. In our
case, this tracking can be done without cost, since, as explained in sec. 3, ans-linked node can be
created only inside thePREEDIT_DUALS or thePOSTEDIT_DUALS routine, and thus can be easily
detected. The above simple strategy has been extremely effective for boosting the performance of
max-flow, especially when a small number of augmentations were needed.
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Fig. 11: Suboptimality bounds (per inner iteration) for a stereo matching problem (“Tsukuba” example), as
well as for an image restoration problem (“penguin” example). As can be seen, in both cases the bounds drop
to 1 very fast, meaning that the corresponding solutions have become almost optimal very early (i.e. in very
few iterations).

4.2 Incremental graph construction

But besides the max-flow algorithm adaptation, we may also modify the way graphGc is constructed.
I.e. instead of constructing the capacitated graphGc from scratch each time, we also propose an
incremental way of setting its capacities. The following lemma turns out to be crucial in this regard:

Lemma 1. Let Gc, Ḡc be the graphs for the current and previousc-iteration. Let alsop, q be 2
neighboring MRF nodes. If, during the interval from the previous to the currentc-iteration, no
change of label took place forp andq, then the capacities of the interior edgespq, qp in Gc and of
the exterior edgessp, pt, sq, qt in Gc equal the residual capacities of the corresponding edges inḠc.

The proof follows directly from the fact that if no change of label took place forp, q, then none
of the height variableshp(xp), hq(xq) or the balance variablesypq(xp), yqp(xq) could have changed.
Due to the above lemma, for building graphGc, we can simply reuse the residual graph ofḠc and
only recompute those capacities ofGc for which the above lemma does not hold. This way, an
additional speedup can be obtained in some cases.

4.3 Combining speed with optimality

Fig. 10(d) contains the running times of Fast-PD for variousMRF problems. As can be seen from
that figure, Fast-PD proves to be much faster than either theα-expansion8 or the PD3a method, e.g.
Fast-PD has been more than 9 times faster thanα-expansion for the case of the “penguin” image
(17.44 secs vs 173.1 secs). In fact, this behavior is a typical one, since Fast-PD has consistently
provided at least a 3-9 times speedup for all the problems it has been tested on. However, besides
its efficiency, Fast-PD does not make any compromise regarding the optimality of its solutions. On
one hand, this is ensured by theorems 2, 3. On the other hand, Fast-PD, like any other primal-dual
method, can also tell for free how well it performed by alwaysproviding a per-instance suboptimality

8We note that the publicly available implementation of [7] has been used for theα-expansion algorithm. Furthermore,
sinceα-expansion cannot be applied whend(·, ·) is not a metric, the extension proposed in [6] has been used for the cases
where a non-metric distance functiond(·, ·) was needed.
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bound for its solution. This comes at no extra cost, since anyratio between the cost of a primal
solution and the cost of a dual solution can form such a bound.E.g. fig. 11 shows how these ratios
vary per inner-iteration for the “tsukuba” and “penguin” problems (with similar results holding for
the other problems as well). As one can notice, these ratios drop to 1 very quickly, meaning that
an almost optimal solution has already been estimated even after just a few iterations (and despite
the problem being NP-hard). Before proceeding, we should also note that no special tuning of
either the singleton or the pairwise potential functions took place for deriving the results in Figure 7.
Therefore, by properly adjusting these functions with morecare, even better results may be obtained
by the Fast-PD algorithm. E.g. Figure 12 displays the resulting disparity (for the “Tsukuba” image
pair), when a Potts function (instead of a truncated linear function) has been used as the distance
functiond(·, ·).

5 Dynamic MRFs

But, besides single MRFs, Fast-PD can be easily adapted to also boost the efficiency for dynamic
MRFs [4], i.e. MRFs varying over time, thus showing the generality and power of the proposed
method. In fact, Fast-PD fits perfectly to this task. The implicit assumption here is that the change
between successive MRFs is small, and so, by initializing the current MRF with the final (primal)
solution of the previous MRF, one expects to speed up inference. A significant advantage of Fast-PD
in this regard, however, is that it can exploit not only previous MRF’s primal solution (saȳx), but
also its dual solution (saȳy). And this, for initializing current MRF’s both primal and dual solutions
(sayx,y).

Obviously, for initializingx, one can simply setx=x̄. Regarding the initialization ofy, however,
things are slightly more complicated. For maintaining Fast-PD’s optimality properties, it turns out
that, after settingy= ȳ, a slight correction still needs to be applied toy. In particular, Fast-PD
requires its initial solutiony to satisfy condition (4), i.e.ypq(xp)+yqp(xq)=wpqd(xp, xq), whereas
ȳ satisfiesȳpq(xp)+ ȳqp(xq) = w̄pq d̄(xp, xq), i.e. condition (4) withwpqd(·, ·) replaced by the
pairwise potential̄wpq d̄(·, ·) of the previous MRF. The solution for fixing that is very simple: e.g. we

Fig. 12: Disparity for the “Tsukuba” image as estimated by the Fast-PD algorithm in the case where a Potts
function has been used for the distanced(·, ·).
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(b) Augmenting paths per frame for the “SRI tree” sequence

Fig. 13: Statistics for the “SRI tree” sequence.

can simply setypq(xp)+=wpqd(xp, xq)−w̄pqd̄(xp, xq). Finally, for taking into account the possibly
different singleton potentials between successive MRFs, the new heights will obviously need to be
updated ashp(·)+=cp(·)−cp(·), wherecp(·) are the singleton potentials of the previous MRF. These
are the only changes needed for the case of dynamic MRFs, and thus the new pseudocode appears
in Fig. 14.

As expected, for dynamic MRFs, the speedup provided by Fast-PD is even greater than single
MRFs. E.g. Fig. 13(a) shows the running times per frame for the “SRI tree” image sequence. Fast-
PD proves to be be more than 10 times faster thanα-expansion in this case (requiring on average 0.22
secs per frame, whereasα-expansion required 2.28 secs on average). Fast-PD can thusrun on about
5 frames/sec, i.e. it can do stereo matching almost in real time for this example (in fact, if successive
MRFs bear greater similarity, even much bigger speedups canbe achieved). Furthermore, fig. 13(b)

[x,y]←INIT _DUALS_PRIMALS (x̄, ȳ):
x← x̄; y← ȳ;
∀pq, ypq(xp) +=wpqd(xp, xq)−w̄pq d̄(xp, xq);

∀p, hp(·) += cp(·)−cp(·);

Fig. 14: Fast-PD’s new pseudocode for dynamic MRFs.
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Fig. 15: The final costs primalx̄, dual̄y of the previous MRF are slightly perturbed to give the initial costs
primalx, dualy of the current MRF. Therefore, the initial primal-dual gap of the current MRF will be close to
the final primal-dual gap of the previous MRF. Since the latter is small, so will be the former, and thus few
augmenting paths will need to be computed for the current MRF.
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Fig. 16: Fast-PD reduces the number of augmenting paths in 2 ways: internally, i.e. across iterations of the
same MRF (see red arrows), as well as externally, i.e. acrossdifferent MRFs (see blue arrow).

shows the corresponding number of augmenting paths per frame for the “SRI tree” image sequence
(for bothα-expansion and Fast-PD). As can be seen from that figure, a substantial reduction in the
number of augmenting paths is achieved by Fast-PD, which helps that algorithm to reduce its running
time.

This same behavior has been observed in all other dynamic problems that Fast-PD has been tested
on as well. Intuitively, what happens is illustrated in Fig.15. Fast-PD has already managed to close
the gap between the costs primalx̄, dual̄y of the final primal-dual solutions̄x, ȳ of the previous MRF.
However, due to the possibly different singleton(i.e. cp(·)) or pairwise(i.e. wpqd(·, ·)) potentials of
the current MRF, these costs need to be perturbed to generatethe costs primalx, dualy for the initial
solutionsx,y of the current MRF. Nevertheless, as only slight perturbations take place, the new
primal-dual gap (i.e. between primalx, dualy) will still be close to the previous gap (i.e. between
primal̄x, dual̄y) and will remain small. Few augmenting paths will thereforehave to be found for
the current MRF, and thus the algorithm’s performance is boosted.

Put otherwise, for the case of dynamic MRFs, Fast-PD managesto boost performance, i.e. reduce
number of augmenting paths, across two different “axes”. The first axis lies along the different inner-
iterations of the same MRF (e.g. see red arrows in Fig. 16), whereas the second axis extends across
time, i.e. across different MRFs (e.g. see blue arrow in Fig.16, connecting last iteration of MRFt−1

to first iteration of MRFt).
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6 Conclusions

In conclusion, a new graph-cut based method for MRF optimization has been proposed. It general-
izesα-expansion, while it also manages to be substantially faster than this state-of-the-art technique.
Hence, regarding optimization of static MRFs, this method provides a significant speedup. In ad-
dition to that, however, it can also be used for boosting the performance of dynamic MRFs. In
both cases, its efficiency comes from the fact that it exploits information not only from the “primal”
problem (i.e. the MRF optimization problem), but also from a“dual” problem. Moreover, despite
its speed, the proposed method can nevertheless guarantee almost optimal solutions for a very wide
class of NP-hard MRFs. Due to all of the above, and given the ubiquity of MRFs, we strongly be-
lieve that the Fast-PD algorithm can prove to be an extremelyvaluable tool for many problems in
computer vision in the years to come.
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Appendix A: Proof of Theorem 2 about the optimality of Fast-
PD’s solutions

The purpose of this section is to provide the proof for Theorem 2, which certifies that the solutions
estimated by the Fast-PD algorithm have guaranteed optimality properties. But before that, the
following 3 lemmas need to proved first:

Lemma A.1
During a c-iteration, the following inequalities hold true exactly after UP-

DATE_DUALS_PRIMALS:

y′
pq(c) ≤ ypq(c) + cappq (19)

y′
qp(c) ≤ yqp(c) + capqp (20)

Proof. An intuitive proof comes from the fact that flowsfpq andfqp represent the increase of the
balance variablesypq(c) andyqp(c) respectively duringUPDATE_DUALS_PRIMALS. Since it is al-
ways true that:

fpq ≤ cappq ,

fqp ≤ capqp ,

the lemma then follows directly.

Lemma A.2 During a c-iteration, the following entailments hold true:

loadpq(c, x̄q) ≤ wpqd(c, x̄q) ⇒ load′
pq(c, x̄q) ≤ wpqd(c, x̄q) , (21)

loadpq(x̄p, c) ≤ wpqd(x̄p, c) ⇒ load′
pq(x̄p, c) ≤ wpqd(x̄p, c) , (22)

wherex̄ can be any labeling which is ac-expansion of the primal solutionx at the start of the current
c-iteration. (In the above entailments, quantitiesloadpq(c, x̄q), loadpq(x̄p, c) are supposed to have
been estimated using the value of the balance variables exactly after PREEDIT_DUALS).

Proof. If x̄q = c then (21) is trivial to prove. We may therefore assume thatx̄q = xq 6= c (sincex̄
is ac-expansion ofx). So, in order to prove (21), let us then also assume that:

loadpq(c, xq) ≤ wpqd(c, xq) (23)

But then, by combining Lemma A.1 with the definition of capacity cappq in (10), we get:

y′
pq(c)

(19)
≤ ypq(c) + cappq

(10)
= ypq(c) + [wpqd(c, xq) − loadpq(c, xq)]

+

(23)
= ypq(c) + wpqd(c, xq) − loadpq(c, xq)

= wpqd(c, xq) − yqp(xq)
xq 6=c
= wpqd(c, xq) − y′

qp(xq)

which thus proves (21). The proof for (22) proceeds similarly.
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Lemma A.3 At the lastc-iteration of the Fast-PD algorithm, the following inequalities hold (for
anyp, q):

load′
pq(c, x

′
q) ≤ wpqdmax (24)

load′
pq(x

′
p, c) ≤ wpqdmax (25)

Proof. The lemma is trivial if eitherc = x′
p or c = x′

q , and so we will hereafter assume thatc 6= x′
p

andc 6= x′
q. Furthermore, since this is the lastc-iteration, no label change takes place, and so:

x′
p = xp, x′

q = xq. (26)

CASE 1: If the following two inequalities hold true:

loadpq(c, xq) ≤ wpqd(c, xq) , (27)

loadpq(xp, c) ≤ wpqd(xp, c) , (28)

then the lemma follows directly from Lemma A.2.

CASE 2: It thus remains to consider the case where at least one of the inequalities (27), (28) is
violated. Then (and only then),PREEDIT_DUALS (by definition) will adjustypq(c) so that:

loadpq(c, xq) = wpqd(c, xq) (29)

Hence, condition (27) will be restored after the adjustment. We may then assume that (28) will
remain violated after the adjustment (or else we would fall back to case 1), i.e. we may assume that:

loadpq(xp, c) > wpqd(xp, c) (30)

Based on (29), (30) and the definition of capacities in (10), (11), it then results thatcappq = capqp =
0. This implies thaty′

pq(c) = ypq(c), and it is then easy to show that:

load′
pq(c, xq) = loadpq(c, xq) (31)

load′
pq(xp, c) = loadpq(xp, c) (32)

But then:
load′

pq(c, xq)
(31)
= loadpq(c, xq)

(29)
= wpqd(c, xq) ≤ wpqdmax (33)

and also:

load′
pq(xp, c)

(32)
= loadpq(xp, c) = [loadpq(xp, c) + loadpq(c, xq)] − loadpq(c, xq) (34)

= loadpq(xp, xq) − loadpq(c, xq) (35)
(4),(29)

= wpqd(xp, xq) − wpqd(c, xq) ≤ wpqdmax, (36)

with equality (35) being true due to the identityloadpq(xp, c)+loadpq(c, xq) = loadpq(xp, xq).
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We may now proceed to prove Theorem 2, which (as already mentioned) forms the main goal of
this section.

Proof for Theorem 2. To complete the proof of this theorem, we need to show that each one of the
complementary slackness conditions (3)-(5) will hold trueby the time Fast-PD terminates:

Condition (4): As already explained in section 3, theUPDATE_DUALS_PRIMALS routine can
restore condition (4) for most pairs(p, q) during any inner-iteration. However, even if there do
exist pairs that violate this condition afterUPDATE_DUALS_PRIMALS, then thePOSTEDIT_DUALS

routine can, by definition, always restore condition (4) forthem.
Condition (5): Based on Lemma A.3, it follows that, given any labela, the following inequality

will hold true after the lasta-iteration:

loadpq(a, xq) ≤ wpqdmax. (37)

Similarly, given any labelb, the following inequality will also hold true after the lastb-iteration:

loadpq(xp, b) ≤ wpqdmax. (38)

Combining these inequalities with the identity:

loadpq(a, b) + loadpq(xp, xq) = loadpq(a, xq) + loadpq(xp, b), (39)

we get that:

loadpq(a, b) = [loadpq(a, b) + loadpq(xp, xq)] − loadpq(xp, xq)

(39)
= [loadpq(a, xq) + loadpq(xp, b)] − loadpq(xp, xq)

(37), (38)
≤ 2wpqdmax − loadpq(xp, xq),

and then condition (5) follows trivially, sinceloadpq(xp, xq) = d(xp, xq) ≥ 0 by (4).
Condition (3): It turns out that theUPDATE_DUALS_PRIMALS routine can finally ensure con-

dition (3) due to the way that the exterior capacities of graph Gc are defined. Since Fast-PD uses
the same definition as PD3a for these capacities, the corresponding proof (that has been used for the
case of the PD3a algorithm) in [5] applies here as well.
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Appendix B: Proof of Theorem 3 about the equivalence of Fast-
PD andα-expansion in the case of a metric distance functiond(·, ·)

In this section, we will provide the proof for Theorem 3, which shows that when distanced(·, ·) is a
metric, then Fast-PD can compute exactly the same solution as theα-expansion algorithm. To this
end, we will make use of the following two lemmas:

Lemma B.1 Let us define:

primal(x) ≡ MRF energy of labeling x ,

and let alsox be any primal solution generated during an inner-iterationof the Fast-PD algorithm.
It then holds that:

primal(x) =
∑

p

hp(xp) (40)

Proof.

primal(x)
(1)
=

∑

p

cp(xp) +
∑

pq∈ E

wpqd(xp, xq)

(4)
=

∑

p

cp(xp) +
∑

pq∈ E

load(xp, xq)
(7)
=

∑

p

cp(xp) +
∑

pq∈ E

(

ypq(xp) + yqp(xq)
)

=
∑

p

cp(xp) +
∑

p

∑

q:pq∈ E

ypq(xp) =
∑

p

(

cp(xp) +
∑

q:pq∈ E

ypq(xp)
) (6)

=
∑

p

hp(xp)

Lemma B.2Let the distance functiond(·, ·) be a metric. Letx be the primal solution at the start of
the currentc-iteration, and let alsōx be any solution which coincides with ac-expansion of solution
x. It will then hold that:

load′
pq(x̄p, x̄q) ≤ wpqd(x̄p, x̄q) (41)

Proof. If either x̄p = x̄q = c or x̄p = xp, x̄q = xq, the lemma is trivial to prove. So let us assume
thatx̄p = xp, x̄q = c (the casēxp = c, x̄q = xq can be handled similarly). In this case, we need to
show that:

load′
pq(xp, c) ≤ wpqd(xp, c) (42)

Due to entailment (22) in Lemma A.2, it then suffices to show that the following condition will hold
true afterPREEDIT_DUALS:

loadpq(xp, c) ≤ wpqd(xp, c). (43)

Regarding inequality (43), this will always hold ifPREEDIT_DUALS has to apply no adjustment
to ypq(c) (this results from the definition ofPREEDIT_DUALS). However, even ifPREEDIT_DUALS

must adjust the value ofypq(c), inequality (43) will still hold true, provided thatd(·, ·) is a metric.
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To see that, it suffices to observe that after the adjustment made byPREEDIT_DUALS, it will then
hold:

loadpq(c, xq) = wpqd(c, xq) (44)

and so:

loadpq(xp, c) = [loadpq(xp, c) + loadpq(c, xq)] − loadpq(c, xq)

= loadpq(xp, xq) − loadpq(c, xq)
(4),(44)

= wpqd(xp, xq) − wpqd(c, xq) ≤ wpqd(xp, c) ,

where the last inequality holds due to thatd(·, ·) is a metric and thus has to satisfy the triangle
inequality.

We may now proceed to the main goal of this section, which is the proof of Theorem 3.

Proof for Theorem 3. Let x be the primal solution at the start of the currentc-iteration, letx′

be the solution selected by Fast-PD at the end of the currentc-iteration, and let alsōx be any solution
which coincides with ac-expansion of solutionx.

To prove the theorem, we need to show that:

primal(x′) ≤ primal(x̄) (45)

To this end, it suffices to show that the following conditionshold true:

primal(x′) =
∑

p

h′
p(x

′
p) (46)

∑

p

h′
p(x

′
p) ≤

∑

p

h′
p(x̄p) (47)

∑

p

h′
p(x̄p) ≤ primal(x̄) (48)

Regarding equation (46), this follows directly by applyingLemma B.1 to the primal solutionx′

generated by the Fast-PD algorithm.

To prove inequality (47), one can first show thath′
p(x

′
p) = min{h′

p(xp), h
′
p(c)}. In addition to

that, it will also hold either̄xp = xp or x̄p = c (sincex̄ is ac-expansion ofx). By combining these
facts, it then results thath′

p(x
′
p) ≤ h′

p(x̄p), and thus (47) follows directly.

Finally, inequality (46) will hold true because:

primal(x̄) =
∑

p

cp(x̄p) +
∑

pq∈ E

wpqd(x̄p, x̄q)
(41)
≥

∑

p

cp(x̄p) +
∑

pq∈ E

load′(x̄p, x̄q)

=
∑

p

cp(x̄p) +
∑

pq∈ E

(

y′
pq(x̄p) + y′

qp(x̄q)
)

=
∑

p

cp(x̄p) +
∑

p

∑

q:pq∈ E

y′
pq(x̄p)

=
∑

p

(

cp(x̄p) +
∑

q:pq∈ E

y′
pq(x̄p)

) (6)
=

∑

p

h′
p(x̄p)

Laboratoire MAS



Fast Primal-Dual Strategies for MRF Optimization 27

RR n° 0605



http://www.mas.ecp.fr

Laboratoire MAS − Ecole Centrale Paris

Grande Voie des Vignes

92290 Chatenay Malabry Cedex (France)


	Introduction
	Primal-dual MRF optimization algorithms
	Fast primal-dual MRF optimization
	Efficiency of Fast-PD for single MRFs
	Max-flow algorithm adaptation
	Incremental graph construction
	Combining speed with optimality

	Dynamic MRFs
	Conclusions
	References
	Appendix A: Proof of Theorem 2 about the optimality of Fast-PD's solutions
	Appendix B: Proof of Theorem 3 about the equivalence of Fast-PD and -expansion in the case of a metric distance function d(,)

