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ABSTRACT

In this paper, a recently proposed high-resolution Sinusoidal Model,
dubbed the extended adaptive Quasi-Harmonic Model (eaQHM),
is applied on modeling unvoiced speech sounds. Unvoiced speech
sounds are parts of speech that are highly non-stationary in the
time-frequency plane. Standard sinusoidal models fail to model
them accurately and efficiently, thus introducing artefacts, while
the reconstructed signals do not attain the quality and naturalness
of the originals. Motivated by recently proposed non-stationary
transforms, such as the Fan-Chirp Transform (FChT), eaQHM is
tested to confront these effects and it is shown that highly accu-
rate, artefact-free representations of unvoiced sounds are possible
using the non-stationary properties of the model. Experiments on
databases of unvoiced sounds show that, on average, eaQHM im-
proves the Signal to Reconstruction Error Ratio (SRER) obtained
by the standard Sinusoidal Model (SM) by 93%. Moreover, mod-
eling superiority is also supported via informal listening tests with
two other models, namely the SM and the well-known STRAIGHT
method.

Index Terms— Sinusoidal Model, extended Adaptive Quasi-
Harmonic Model, Speech Analysis, Unvoiced Speech

1. INTRODUCTION

Representing speech in an intuitive and compact way is a challeng-
ing problem that has gained significant attention since the start of
the digital computer era. Many state-of-the-art systems include the
so-called Sinusoidal Model (SM) [1] for modeling the speech spec-
tral content, exploiting its inherent ability in accurately capturing
the quasi-periodic phenomena that typically occur in speech signals.
The SM treats unvoiced parts of speech the same way as voiced
ones, based on the principle that the periodogram peaks are close
enough to satisfy the requirements imposed by the Karhunen-Loeve
expansion [2]. Furthermore, more sophisticated models decompose
speech into deterministic and stochastic components and can provide
high-quality representations of a given speech signal, well-suitable
for applications such as transformations [3, 4, 5], conversion [4, 6],
and speech synthesis [7, 8]. The success of sinusoidal models led
to a number of refinements, as (for example) in spectral estima-
tion [9, 10, 11] and unvoiced speech modeling [4, 12, 13].

When discussing about unvoiced speech, one can understand that
it consists of signals whose nature is either noise-like (called frica-
tives), silence-like followed by a sharp attack (called stops), or a
combination (called affricates). A stop sound is produced with com-
plete closure of the articulators involved, so that the stream of air
cannot escape through the mouth. Voiced stops are produced with
vibrating vocal folds whereas in voiceless stops vocal folds are apart.

A fricative is produced with close approximation of the two articu-
lators, so that the stream of air is partially obstructed and turbulent
airflow is produced. Finally, an affricate is a stop, followed by a
fricative sound.

Although unvoiced speech used to be less popular in applications
than voiced speech, there are numerous recent works that utilize a
representation of unvoiced speech. In [14], emotion detection and
classification of speech is presented, using a standard sinusoidal rep-
resentation of voiced and unvoiced speech, utilizing the sinusoidal
parameters as features for the classifiers. Moreover in [15], a very
similar approach is followed for speech emotion recognition, tak-
ing sinusoidal parameters and their first- and second-order differ-
ences into account. Unvoiced speech is also included in this work,
as well as elsewhere [16, 17]. Finally, applications such as time-
and pitch-scaling can benefit from a sinusoidal representation of un-
voiced speech [18, 19].

From a technical point of view, a sinusoidal representation of
unvoiced speech is appealing for two main reasons: (1) locating the
voicing boundaries when separating voiced from unvoiced speech
is not an easy task, and (2) separate manipulation of deterministic
and stochastic components increases the risk that listeners perceive
them as separately processed. However, it is questionable how and
why sinusoids are appropriate when representing these consonants.
When dealing with unvoiced speech, approaches that assume station-
arity inside the analysis window suffer from artefacts, such as the so-
called pre-echo effect [20, 21], that is inherent in the Fourier Trans-
form mostly used in these methods, and from reduced intelligibility
due to the misrepresentation of the stochastic content by stationary
sinusoids. The main reason behind these problems is that unvoiced
speech is represented by stationary sinusoids inside an analysis win-
dow. Thus, in the literature, many alternatives include the use of
short analysis windows combined with multi-resolution techniques
when unvoiced sounds are detected as in [21], but this does not al-
leviate neither the pre-echo effect (in stop sounds), nor the recon-
struction quality (in other unvoiced sounds). Ultimately, copy strate-
gies [22], transform coding [21] [23], or modulated noise [4, 12, 22]
are used instead.

A first step towards modeling unvoiced speech has been pre-
sented in [20], where voiceless (and their corresponding voiced)
stop sounds were very efficiently modeled using an adaptive Si-
nusoidal Model, dubbed extended adaptive Quasi-Harmonic Model
(eaQHM) [24], as high-resolution, non-stationary, time-varying si-
nusoids. It has been shown that these models can adapt to the ana-
lyzed signal better than typical sinusoidal representations, therefore
achieving high reconstruction quality, as measured by the Signal-to-
Reconstruction-Error Ratio (SRER) [24, 25]. Experiments showed
that eaQHM provides a nearly pre-echo-free representation of stop
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sounds, without the necessity of using very short analysis window
lengths for these sounds, neither the use of a transient detector as
in [21].

To the direction of fricatives and affricates, let us examine a sam-
ple more closely using the Fast Fourier Transform (FFT) and the
recently proposed Fan-Chirp Transform (FChT) [26, 27]. In Fig-
ure 1, a fricative /s/ is depicted, along with the corresponding spec-
trograms based on the FFT and the FChT. Although in the FChT
there are not any prominent time-frequency tracks that can justify a
sinusoidal model framework, intuitively, an adaptive decomposition
of unvoiced speech should attempt to locate “optimal” frequency
tracks that collectively minimize the mean-square error inside the
frame. These “optimal” frequency tracks become more discernible
in the FChT-based spectrogram, whereas in the DFT-based spectro-
gram severe blurring still exists.
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Fig. 1. Spectral analysis of unvoiced speech. Top: Unvoiced speech
waveform, Bottom left: FFT-based spectrogram slice of the corre-
sponding waveform. Bottom right: FChT-based spectrogram slice
of the corresponding waveform. Horizontal axis is time in seconds
in all figures.

In this paper, eaQHM is applied on the problem of modeling un-
voiced speech, and more specifically, fricative and affricate sounds.
We will show how adaptivity (1) can compensate the analysis prob-
lems of such sounds and (2) is capable of accurately representing
them as AM-FM components. Experiments are conducted on a large
database of more than 400 isolated sounds, and SRER measures are
presented and discussed. Finally, subjective listening tests reveal that
adaptive sinusoids perceptually outperform the baseline model (SM)
and a state-of-the-art representation (STRAIGHT) [28].

The rest of the paper is organized as follows. In Section 2,
we quickly review adaptive Sinusoidal Modeling, and especially the
eaQHM. Section 3 presents a fricative as a case study, and the limita-
tions of classic sinusoidal modeling versus adaptive modeling are re-
vealed. Section 4 compares two well-know sinusoidal-based speech
representations (standard Sinusoidal Model and STRAIGHT) with
the eaQHM in modeling a large speech database of unvoiced sounds.
SRER measures are provided and the relative performance is dis-
cussed. Section 5 presents the results of a formal listening test based

on sinusoidal resynthesis of unvoiced speech. Finally, Section 6 con-
cludes the paper.

2. ADAPTIVE SINUSOIDAL MODELING

The aSMs utilize the Least-Squares minimization criterion to esti-
mate the parameters. The adaptive term is justified by successive
refinements of the model basis functions based on instantaneous pa-
rameter re-estimation.

In general, an aSM can be described as

x(t) =

(
K∑

k=−K

Ck(t)ψk(t)

)
w(t) (1)

where ψk(t) denotes the set of basis functions, Ck(t) denotes the
(complex) amplitude term of the model, 2K + 1 is the number of
exponentials (hence, K + 1 sinusoids), and finally w(t) is the anal-
ysis window with support in [−T, T ].

Using this notation, in conventional sinusoidal models (includ-
ing the SM, the Harmonic Model (HM) [4], the Quasi-Harmonic
Model (QHM) [29], and others), the set of basis functions ψk(t) in
the analysis part is stationary in frequency and in amplitude. For
example, the basis functions in the SM are in the form of

ψSMk (t) = 1 · ej2πfkt, CSMk (t) = ak (2)

where the amplitudes and frequencies of the basis functions are con-
stant (in other words, stationary) inside the analysis window (1 and
fk, respectively). On the contrary, eaQHM does not share this as-
sumption.

Specifically, eaQHM projects a signal segment onto a set of non-
parametric, time-varying basis functions with instantaneous ampli-
tudes and phases that are adapted to the local characteristics of the
underlying signal [24]:

ψeaQHMk (t) = Âk(t)ejΦ̂k(t), CeaQHMk (t) = (ak + tbk) (3)

where ak and bk are the complex amplitude and the complex slope
of the model respectively, and Âk(t), Φ̂k(t) are functions of the in-
stantaneous amplitude and phase of the signal, given by

Âk(t) =
|ak(t)|
|ak(0)| , Φ̂k(t) = φ̂k(t)− φ̂k(0) (4)

Both instantaneous parameters are obtained from an initialization
step (a preliminary estimation and interpolation of the instantaneous
parameters). Clearly, ψeaQHMk (t) define basis functions that vary
inside the analysis window.

The instantaneous phase φ̂k(t) is computed using a frequency in-
tegration scheme [25], although cubic phase interpolation could be
used as well [1]. The instantaneous amplitude |ak(t)| is estimated
via linear interpolation, while fk(t) is estimated via spline interpo-
lation. The eaQHM is actually a parameter-refinement mechanism,
thus it requires an initialization, as already mentioned. For this pur-
pose, any AM-FM decomposition algorithm can be used, but in most
of the previous works concerning the eaQHM [24, 30], the Harmonic
Model (HM) [4] or the Quasi-Harmonic Model [29] is used.

Considering that a preliminary estimation of the instantaneous
components |âk(t)| and φ̂k(t) of the signal is available, the estima-
tion of the unknown parameters of eaQHM is similar to that of the
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Harmonic Model or the Quasi-Harmonic Model, using the Least-
Squares minimization method. However, the basis functions are both
non-parametric and non-stationary. Parameters Âk(t) and Φ̂k(t) are
iteratively refined using ak and bk, forming a frequency correction
term η̂k for each sinusoid, first introduced in [29], Applying the η̂k
on each frequency track, interpolating the instantaneous parameters
over successive frames and restructuring the basis functions leads to
more accurate model parameter estimation. These form a new fre-
quency mismatch correction, η̃k. This way, the loop goes on until
the instantaneous parameters yield a close representation of the un-
derlying signal, according to a Signal-to-Reconstruction-Error Ratio
(SRER) based criterion [24, 20]. Finally, the signal is reconstructed
from its AM-FM components as

s(t) =

K∑
k=−K

|âk(t)|ejφ̂k(t) (5)

where φ̂k(t) is formed by a frequency integration scheme [25].
After applying the eaQHM for a number of adaptations, the in-

stantaneous parameters are interpolated over successive frames and
the overall signal is synthesized as in Eq. (5). It should be empha-
sized that the standard SM and eaQHM end up in the same number
of parameters per time instant ti for resynthesis (three parameters
per frame, namely the amplitude |ak(ti)|, the frequency fk(ti), and
the phase φk(ti)). For more insight on eaQHM and the adaptation
algorithm, please refer to [24].

3. ADAPTIVE SINUSOIDAL MODELLING OF UNVOICED
SPEECH

As a reminder, fricatives are consonants produced by forcing air
through a narrow passage made by placing two articulators close
together, while affricates consist of a stop sound, followed by a
fricative. For modelling such sounds, a similar strategy as for stop
sounds [20] is followed for their analysis. A test case of a frica-
tive /s/ is depicted in Figure 3, where the reconstructed signals from
eaQHM (Fig. 3, right) and SM (Fig. 3, left) are presented, along
with their corresponding residuals. As expected, that the adaptive
model will finetune its local parameters to the local energy maxima
of the spectrum, through its inherent frequency correction mecha-
nism. The basis functions of the successive adaptation steps will be
formed by the corrected parameters, thus giving AM-FM compo-
nents that come more and more closer to the spectral characteristics
of the waveform.

In technical details, the signal is sampled at Fs = 16 kHz, and
a low initial frequency value such as 80 Hz, which results in fre-
quency values of 80k Hz, k = −100, · · · , 100, is chosen for both
models. Hence, the frequencies cover the full-band of the spectrum.
The frame rate is set to 1 sample and the analysis window is three
times the local pitch period, that is 3/80 seconds, and is of Ham-
ming type. Same settings are applied to the Sinusoidal Model. The
SRER performance of eaQHM was found to be 33.03 dB, over the
8.86 dB of the standard SM. Clearly, eaQHM outperforms SM by
more than 400% in this test case. Thus, eaQHM seems to be promis-
ing for modeling unvoiced sounds. Figure 2 shows how the SRER
evolves over the adaptation number, starting from 14.2 dB without
any adaptation - performing simple Least Squares minimization on
purely harmonic basis functions - and reaching up to 33.03 dB on the
5th adaptation. The initial harmonic grid does not fully capture the

present spectral energy, but successive adaptations locally finetune
the frequencies, resulting in a remarkably better spectral representa-
tion of the sound.
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Fig. 2. Estimated waveforms for a fricative sound /s/. Upper panel:
Original signal. Middle panel: SM (left) reconstruction and eaQHM
(right) reconstruction. Lower panel: SM (left) and eaQHM (right)
reconstruction error.
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Fig. 3. SRER evolution over adaptation number for eaQHM for the
test case signal /s/. Adaptation number 0 stands for no adaptation
(stationary basis functions).

4. OBJECTIVE EVALUATION

To validate and extend our assumption, 485 voiceless fricatives and
affricates (and their corresponding voiced ones, for comparison pur-
poses) have been automatically extracted from speech in English ut-
tered by a male and a female subject and analyzed using both the
SM and eaQHM. Voiced fricatives include /v/, /D/, /s/, and /S/, while
unvoiced ones are /f/, /T/, /z/, and /Z/. Affricates include /tS/ and
/dZ/. The number of samples extracted from the male speaker was
almost the same as those from the female speaker. The frame rate of
1 sample used in the previous section is not realistic for applications.
Thus, the frame rates selected are 1 ms, 2 ms, and 4 ms. Parameters
other than the frame rate remain the same as in the previous section.
Table 1 presents the results per speech sound, in terms of mean value
of SRER. It is

As it can be observed from Table 1, the performance of the adap-
tive model sustains in high reconstruction levels, even with a frame
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Validation for Unvoiced Speech
Signal to Reconstruction Error Ratio (dB)

Fricatives Affricates
Step Model /v/ /D/ /s/ /S/ /f/ /T/ /z/ /Z/ /tS/ /dZ/

1 ms
SM 14.7 13.2 13.9 11.3 12.7 15.1 17.5 17.3 11.3 11.5

eaQHM 26.4 25.6 24.1 26.4 25.8 24.3 29.5 28.9 25.1 24.8

2 ms
SM 13.1 11.3 12.1 10.4 10.2 14.7 15.9 15.2 11.0 10.9

eaQHM 23.5 23.1 22.6 24.7 23.5 22.6 28.6 27.8 23.1 23.8

4 ms
SM 12.2 10.6 11.2 9.6 9.7 8.9 13.3 13.7 9.3 10.2

eaQHM 22.4 22.2 21.9 23.1 22.6 21.7 27.5 27.1 21.5 22.3

Table 1. Signal to Reconstruction Error Ratio values (dB) for all models on a large database of fricatives and affricates. Step denotes the
analysis frame rate.

rate up to 4 ms. The mean standard deviation per model is: 3.4
dB (SM) and 4.1 dB (eaQHM). No significant variations in standard
deviation were observed across different sounds. Experiments with
higher frame rates were performed as well, such as 5 and 10 ms, that
showed an average decrease of 3.9 and 6.5 dB respectively, com-
pared to the 4 ms case, for all sounds for eaQHM. The SM showed
an average decrease of 4.1 and 7.8 dB compared to the 4 ms case.
Therefore it is suggested, as a rule of a thumb, the use of as low
frame rate as possible to attain a high enough perceptual and recon-
struction quality. The average number of adaptations required for
the convergence is found to be 3.8, 4.1, and 4.7 for eaQHM, for step
sizes of 1, 2, and 4 ms, for all sounds.

5. SUBJECTIVE EVALUATION

Since isolated unvoiced sounds are hard to be subjectively evaluated
mainly due to their short duration, the performance of the algorithms
are tested on the basis of full speech waveform reconstruction using
eaQHM as a full signal model, as described in [30]. The goal of
the listening test was not only to evaluate the perceived quality of
the resynthesized unvoiced speech, but to reveal the advantages of
having a single deterministic model for all parts of speech. Lis-
teners were asked to evaluate the similarity between each one of
28 recordings of short words and their corresponding reconstruction
using SM, STRAIGHT, and eaQHM. Also, the listeners were re-
quested to absolutely focus on the quality of unvoiced speech, com-
pared to the original. The waveforms were sampled at Fs = 16
kHz. For the analysis of sinusoidal models, the window length is 3
times the local pitch period, obtained from the well-known SWIPE
pitch estimator [31]. The window type is Hamming for both mod-
els, and the frame rate is 1 ms (best performance according to Ta-
ble 1) for all three models. For synthesis, parameter interpolation
is selected for both sinusoidal models. For STRAIGHT, the de-
fault parameters are used. In total, 300 and 2051 parameters per
frame are required for resynthesis using both sinusoidal models and
STRAIGHT, respectively. 12 listeners participated in the test us-
ing only high-quality headphones in a quiet laboratory environment,
and the Mean Opinion Scores (MOS) are presented in Figure 4.
Apparently, eaQHM provides transparent perceived quality of un-
voiced speech, compared to the stationary sinusoidal approach of the
SM and the aperiodicity component which models non-deterministic
parts of speech of the STRAIGHT method.
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Fig. 4. Listening Test based on Mean Opinion Score (MOS), along
with the 95% confidence intervals.

6. CONCLUSIONS

In this paper, high-resolution modeling of unvoiced speech sounds is
presented and addressed via the extended adaptive Quasi-Harmonic
Model. It is shown that local adaptation of the analysis parameters
results in AM-FM components that are able to decompose and re-
construct unvoiced sounds effectively. SRER measures validate the
latter for different unvoiced speech categories and different frame
rates. It is found that eaQHM gives an average of 93% higher SRER
values compared to the standard Sinusoidal Model. Listening tests
also verified the transparency of the reconstruction quality. The lat-
ter is important to support the transition from hybrid speech models
to full-band ones that operate on the full length of the speech signal,
without any quality degradation, and thus providing a uniform and
highly accurate representation of speech as high resolution AM-FM
components. Future work will focus mostly on speech transforma-
tions, since the preservation of the modeled unvoiced parts under
modification (pitch and time scale) is promising.
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