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ABSTRACT

frequency mismatches. Moreover, in [1], an adaptive QHVHM)
was suggested, where the model adapts to the local chastictof

In this paper, we present an extension of a recently developehe signal and provides high-quality speech reconstmgtia [5],

AM-FM decomposition algorithm, which will be referred to te
extended adaptive Quasi-Harmonic Model (eaQHM). It wasipre
ously shown that the adaptive Quasi-Harmonic Model (aQHM) [
is an efficient AM-FM decomposition algorithm with applicats

the aQHM was used for the accurate estimation of amplituddren
guency (AM-FM) modulations in speech. The aQHM models a sig-
nal as a sum of exponentials with linearly time-varying dtopes
and non-stationary phases. Hence, the model phase parameapt

in speech analysis. In this paper, we show that a simple exten the |ocal characteristics of the signal phase and thaisgiguency.

sion of the aQHM algorithm to include not only frequency but oever in many cases, e.g.

also amplitude adaptation results in higher performanderims of
Signal-to-Reconstruction-Error Ratio (SRER). To suppmrt hy-
pothesis, eaQHM is tested both on synthetic signals and abses
of the ARCTIC database of speech. Overall, compared withiQH
eaQHM improves the SRER by more thadB, on average.

in speech, rapid nonlinearitmel
changes occur within short time intervals. As a consequesitese
adaptation alone is not enough and amplitude adaptatidedsac-
essary in these cases.

In this paper, we present an extension of the aQHM, referved t
as the extended adaptive Quasi-Harmonic Model (eaQHMeén t

Index Terms— adaptive Quasi-Harmonic Model, Frequency es-€aQHM, the adaptation process includes not only the frezieen

timation, Amplitude estimation, Speech analysis

1. INTRODUCTION
Speech modeling has found one of its principal exponentsdrsi-
nusoidal model [2], which has been successfully appliecheesh
coding and speech modifications. Sinusoidal modeling esge

but also the amplitudes of the basis functions onto whichsige
nal is projected. This yields a model which can adapt to the an
lyzed signal better than aQHM. Experiments conducted othsyic
and real speech signals show that eaQHM improves the Signal-
Reconstruction-Error Ratio (SRER) compared to that obthiny
aQHM. The latter is demonstrated through synthetic andsgegch
signals.

a speech signal as a sum of sinewaves, with constant ameditud The rest of the paper is organized as follows. In Section 2 le w

and frequencies over successive frames. The Harmonic miseN
Model, HNM [3], is another well known model, with applicati®in

briefly review the Quasi-Harmonic Model, QHM, and the adapti
ity algorithm, aQHM. Section 3 presents the extension of BQH

speech synthesis and speech modification. The HNM decomposgaQHM. Section 4 shows a synthetic signal example and aigres

speech into two components; the harmonic component, wieigh r
resents the deterministic part of speech, and the noise @uenp,
which represents the stochastic part of speech. In this higi
quality prosodic modifications can be achieved. Moreovergt
varying amplitude and frequency component separation grexit
interest in speech processing sciences due to its stroatorethip
with the speech production mechanisms [4].

However, frequency estimation sensitivity is a major draokbof
these models. Poor estimation of frequencies yields vegly hiod-
eling error and results in artifacts in the reconstructeskshp signal.
Recently, a time-varying sinusoidal representation reféto as the

the robustness of the eaQHM in white Gaussian noise, compare
aQHM. Section 5 provides real speech analysis results ftbr &le
gorithms. Finally, Section 6 concludes the paper.

2. OVERVIEW OF QHM AND aQHM
In sinusoidal modeling, a signal can be represented asifsilo

K .
z(t) = <Z akeﬂﬂf’“t) w(t), t=

whereK is the number of components with complex amplitudgs

-N,..,N 1)

Quasi-Harmonic Model (QHM) has been proposed, which has beeat frequenciegs, andw(t) is the analysis window. Let us assume

shown to have low sensitivity to frequency estimation esrf].

that f denote the correct frequencies of the sighal components. In

This is due to the fact that the model contains a frequency miSsinusoidaj modeling, frequencies are estimated first,(bygpeak-

match corrector which is able to estimate and consequeothect

Work of Yannis Pantazis was partially supported by the NetiGcience
Foundation (USA, CMMI-0835673). Work of Yannis Stylianoasyartially
supported by FP7-FET-OPEN programme LISTA. The projectTRISc-
knowledges the financial support of the Future and Emergeahiologies
(FET) programme within the Seventh Framework Programmérfsearch
of the European Commission, under FET-Open grant numb&225This
work was also supported by France Telecom R&D agreement 4091

picking, by considering harmonics of a fundamental freqyeetc.),
before the estimation of the complex amplitudes. The estichire-
guencies will be denoted here BBy. Then, we may write:

fk:fk+77k> k:17“'7K (2)

If the error, 7y, is high, then the estimation of the complex ampli-
tudes,ax, is severely biased.



2.1. Quasi-Harmonic Model, QHM
To cope with this problem, in [5] and [6] the use of the Quasi-
Harmonic Model (QHM) for the representation of speech wag su

gested:
< ) w(t), t

whereb;, denotes the complex slope of theh component. In the
frequency domain, theth component is written as:

Xul) = aW(f = f) +igsW'(F~fi) @

whereW (f) is the Fourier transform of the analysis window and
W'(f) is the derivative o/ (f) over f. In [6], it was shown that
QHM is able to correct frequency mismatches using the ptiojec
of b, ontoay. Indeed, it was shown that an estimationmpfcan be
obtained by:

K

Z(ak + tbk)ej%'fkt
k=1

z(t) N,..,N

®)

RyI IR
L P2k _iakbk_akbk

M = or 27 ®)

|ax|?
whereaf, b andaj, bi are the real and imaginary parts of
and by, respectively. In [6], it was also shown that this corregtio
depends on the magnitude @f ,, and the value of the teri?’”( f)
at fr. The estimation ofi, by is performed via Least Squares (LS).

2.2. Adaptive Quasi-Harmonic Model, aQHM
To better model the speech signal, especially its non siatjopart,
an adaptive QHM model has been suggested.

K, R N
:C(t) _ (Z(ak + tbk)ej(¢k(t+fz)¢k(tz))> w(t), te [—Tth]
k=1
(6)

where ¢y (t) denotes the phase function of th€" component and
t; is the center of the analysis window. The tebpplays the same
role as in QHM; it provides a means to update the frequenchef t
underlying sine wave at the center of the analysis windpwiven
the samples of the input signal in vectgithe model parameters are
found via LS:

m = (B"WHWE) B wHW s @)
wherea = [a1,- - ,ak,], b = [b1, -+ ,bxk,], W is the matrix

containing the window values in the diagonalis the input signal
vector, the matrix¥ is defined a¥Z = [Eo|E1], the submatrice®;,
i = 0, 1 have elements given by

(Eo)ni = e (@1 (tn 1) =Sk (t1))

8
and

(B)ni = tyed Pk (tntt)=op(t)) tn(E0)n.k, 9)
and the instantaneous phase of #i& component can be computed
as

R t+t
¢k(t) = / 27‘(’}‘l1€(1,t)d1,t7 te [—Tl,Tl], (10)

t
where f,,(t) is the frequency trajectory of the’” component. In
contrast to QHM, where the argument of the basis functiopsuia-
metric and stationary, in aQHM the argument of the basis-func
tions is neither parametric nor necessarily stationaryredeer, the
aQHM basis functions use the instantaneous phases whietblean
estimated from the input signal. In that sense these areadbgative
to the estimates of the current characteristics of the kigna

3. EXTENSION OF aQHM, eaQHM
The extension of aQHM to include amplitude adaptation @ight-
forward:

K

SC(t) _ <Z(a’k + tbk)A’jq(:(—;;l)ej(ék(tHl)ék(ﬁ))) w(t),
k=1
te [—Tl,Tl]
(11)

wheret; is still the center of the analysis window arg, (¢) is the
instantaneous amplitude of t#é" component. The estimation of
the unknown parameters of eaQHM is similar to that of QHM:

F{j = (BFWHWE) 'EFWHW s (12)
wherea = (a1, - ,ak,], b = [b1,- - ,bxk,], W is the matrix con-
taining the window values in the diagonalis the input signal vec-
tor, the matrixE. is defined ad’. = [Feo|Fe1], and the submatrices
E.i,i = 0,1 have elements given by

Ag(tn + 1) e Ok (tntt1) =Sk (t1))

(Beo)n,k = (13)
and Ar(t)
(Bet )i = %@‘Bmtneﬂ%(tnﬂz)*%(tz)) = tn(Ee0)n.k,
(14)

It is clear that the basis functions are adapted to the lcoalitude
characteristics of the signal. Note that the instantaneoyglitude
Ar(t) is divided by Ax(t;), so as to have unit value at the center of
the analysis window.

Like aQHM, eaQHM requires an initialization step, so QHM ik
used for this purpose, although any frequency estimatigorghm
can be used. Thus, the initials steps consist of the follgwin

flg(tl) = flg(tl—l) =+ 7k
A1) = |akl, dn(t) = Laj, (16)

wheret; is the center of th&” analysis frame. The AM-FM decom-
position algorithm using eaQHM is provided below:

1. Initialization:
Provide initial frequency estimatg (¢1)
FOR framel =1,2,--- , L

(15)

(a) Computel, bt using LS

(b) Updatef?(t;) using (15)

(c) ComputeA?(#;) and¢y(t;) using (16)
(d) fR(tien) = fR(1)

END
Interpolation of the parametefsi (¢), f2(t), d2(t)}

. Adaptation of amplitudes and phases:
FOR adaptation = 1,2, - - -
FOR frame =1,2,--- , L

(a) Computesl,, b using¢i~'(t) and (11)
(b) Updatef; () using (5)
(c) ComputeAi(#;) and (t;) using (16)

END
Interpolation of the parametefsiy (), fi(t), o5 ()}
END

N



The convergence criterion for both algorithms was seletttbd
the following:
SRER'' — SRER'
SRER*!

where SRER' is the Signal-to-Reconstruction-Error Ratio of the
resynthesized signal in th&"* adaptation, defined as

<e€

O (t)

SRER = 20logio (17)

T (t)—2(t)
whereo, denotes the standard deviationadft), x(¢) is the actual
signal andz(t) is the reconstructed signal, and wheis a threshold
set t00.02 in our experiments. As a last step of the algorithm, the
signal can finally be approximated as the sum of its AM-FM comp
nents:

K ~
B(t) =D Ap(t)e
k=1

4. VALIDATION ON SYNTHETIC SIGNALS
For the purpose of demonstrating the performance of eaQHM, w
consider a two-component signal with modulated amplituaied

frequencies, defined as:
z(t) = a1 (t)ej(27"fl t+e1(1) 4 g, (t)ej(27rf2t+<b2(t)) (18)

where the above parameters are given in Table 1, and the isampl

[ Sinusoid | 1st | 2nd |
fi 700 1000
0] 75 + cos(27w80t) % + cos(2w50t)
a;i(t) 2 4 0.8 cos(27100)t | 2 + 0.6 cos(27100t)

Table 1. The parameters of the synthetic signal.

frequency isFs; = 8 kHz, while the window length i40 msec. It
should be noted that the amplitudes of the sighal comporeaets
high-frequency modulated and thus, the local amplitudesliity is
violated. The time-varying amplitudes (¢) and the time-varying
frequencies; = f; + 5= L ¢i(t), fori = 1,2, are to be estimated.
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Fig. 1. Parameter estimation for aQHM. Upper panel: Amplitude
(left) and Frequency (right) estimation for first componehbwer
panel: Amplitude (left) and Frequency (right) estimation $econd
component.
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In Figure 1, the parameters as they are estimated by aQHMeare dFig. 2. Parameter estimation for eaQHM. Upper panel: Amplitude
(left) and Frequency (right) estimation for first componehbwer
eaQHM algorithm. As it can be seen in Figures 1 and 2, eaQHManel: Amplitude (left) and Frequency (right) estimation $econd

picted, whereas in Figure 2, the same information is degifctethe

performs better than aQHM in the estimation of the time vayyre-
guencies and, especially, of the time varying amplitudes.

To test the robustness of the estimations provided by eaCidili;
tive white Gaussian noise @0 and 10 dB SNR was added to the
synthetic signale(¢) described above. For comparison purposes
results for the aQHM are also provided. The performance @fth
gorithms is measured through the Mean Absolute Error (MAE) f
amplitudes and frequencies. The MAE of a paramétes defined
as:

M
MAE{0} = % SO0 — g (19)
i=1

whered® is the estimated parameter at th@é simulation, and\/
is the number of Monte Carlo simulations. The results showthis

section are based ol = 10000 Monte Carlo simulations and the Monte Carlo simulations.

length of a Hamming analysis window for both models Wwasnsec.
The analysis step size was sef teample. Table 2 presents the MAE
and SRER scores for the aforementioned levels of noise.

com

ponent.

MAE scores and SRER
SNR[ Model | ai(t) | a2(t) | Fi(t) | F»(t) |SRER(dB
~ aQHM | 0.2380| 0.1842| 7.6105] 9.1731| 22.6
eaQHM | 0.0889| 0.0949 | 5.9217 | 7.0505 42.0
b0 d aQHM | 0.2235| 0.1735| 7.2704 | 7.8563 18.2
eaQHM | 0.1036| 0.1079] 6.1682| 7.1241| 20.3
104 aQHM | 0.2317| 0.1860| 8.6071| 9.0302| 10.7
eaQHM | 0.1490| 0.1476| 8.0513| 8.1022 10.9

Table 2. MAE scores and SRER for aQHM and eaQHM fidr*



5. VALIDATION ON VOICED SPEECH speakers in the ARCTIC database. The sampling frequendyeof t
The next step is to test the proposed model on real speecin pad  speech signals was downsampledlékHz. A Hamming window
ticular, on voiced speech signals. The suggested iterafite-M of fixed length was used3 times the average pitch period of the
decomposition algorithm based on aQHM/eaQHM can be appliegpeaker. The same window was used for both aQHM and eaQHM.
on voiced speech signals in a straightforward way. Actyale  The number of components was setfo= 30. The average and
aQHM/eaQHM algorithm can be applied on a large voiced speechtandard deviation of the SRER (in dB) is provided in Tablal@ng
segment. Indeed, assuming that voiced speech is quasijmeaind ~ with various time-steps. Table 3 also presents the averagdber
that the frequency content of voiced speech signals doeshaoige ~ of adaptations (NoA) needed for the algorithms to convergés
very fast, then we only need to provide the fundamental &aqu of

the first voiced frame at the beginning of the voiced segmferit; ), ARCTIC database evaluation

and then assumg? (t1) = kfo(t1). Applying QHM analysis on Step | Method | Mean (dB) | Std (dB) | NoA
the first voiced frame, an updated setfpfcan be obtained for that 1 msec aQHM 34.5 4.6 2.9
frame. The updated set of frequencies can then be usediabéasit eaQHM 35.8 5.7 3.8
timates for the next voiced frame. Continuing in this wag ¥hole 2 msec aQHM 31.0 4.0 3.5
voiced region will be analyzed by providing just the fundautad eaQHM 33.2 5.0 3.9
frequency for the first frame of the voiced segment. It is Wwaorbt- aQHM 30.8 34 3.6
ing that the accuracy of the fundamental frequency estimataot 4 msec eaQHM 32.8 4.6 6.1

crucial for aQHM, since frequency mismatches are easilyected.

For our purpose, we consider a voiced speech signal fromilig-C Table 3. Mean and Standard Deviation of SRER (in dB) for approx-

ARCTIC database with sampling frequenEy = 16 kHz and dura- . : :
tion of about0.35 sec. For both algorithms, the number of harmonicslmately50 minutes of voiced speech from the ARCTIC database.

was set taK = 40 and an estimate of the fundamental frequency of

the beginning of the segment was given to the algorithm. Astmo

10 adaptations were allowed to the models. The analysis windo

size was2.5 pitch periods and the analysis step size waample.

In the following, the signals are considered up to a fixed mmaxn 6. CONCLUSIONS

voiced frequency 3500 Hz). The original signal, along with the In this paper, an extension to the recently developed aQHjd-al

aQHM/eaQHM reconstructed signals and corresponding staar  rithm was presented, called eaQHM. In eaQHM, the amplitude,

tion errors, are shown in Figure 3. along with the frequency of the signal, was included in thapad

To objectively compare the performance of both algorithths, tation process in a straightforward way. Experiments ontstic

signals showed that eaQHM performs better than aQHM in tefms
MAE and SRER. Its robustness in the presence of white Gaussia

evident that, on average, eaQHM scores higher in terms ofRSRE
V(,equiring, however, slightly more iterations than aQHM.

z % noise was demonstrated. Experiments on voiced speech tgng
8 . ARCTIC database showed that eaQHM outperforms aQHM in terms
;é of signal reconstruction.
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