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ABSTRACT

Percussive musical instrument sounds figure among the most chal-
lenging to model using sinusoids particularly due to the characteris-
tic attack that features a sharp onset and transients. Attack transients
present a highly nonstationary inharmonic behaviour that is very dif-
ficult to model with traditional sinusoidal models which use slowly
varying sinusoids, commonly introducing an artifact known as pre-
echo. In this work we use an adaptive sinusoidal model dubbed
eaQHM to model percussive sounds from musical instruments such
as plucked strings or percussion and investigate how eaQHM han-
dles the sharp onsets and the nonstationary inharmonic nature of
the attack transients. We show that adaptation renders a virtually
perceptually identical sinusoidal representation of percussive sounds
from different musical instruments, improving the Signal to Recon-
struction Error Ratio (SRER) obtained with a traditional sinusoidal
model. The result of a listening test revealed that the percussive
sounds modeled with eaQHM were considered perceptually closer to
the original sounds than their traditional-sinusoidal-modeled coun-
terparts. Most listeners reported that they used the attack as cue.

Index Terms— musical instrument modeling, percussion musi-
cal instruments, adaptive sinusoidal models, attack transients, pre-
echo

1. INTRODUCTION

Sinusoids have been used to model the quasi-periodic (stationary)
oscillations in music and speech [1, 2, 3, 4]. However, the sounds of
musical instruments and speech also contain transients and noise.
Percussive sounds produced by plucking strings (such as harpsi-
chords, harps, and the pizzicato playing technique) or striking per-
cussion instruments (such as drums, idiophones, or the piano) are no-
toriously difficult to model because they feature a sharp attack with
highly nonstationary oscillations that die out very quickly, called
transients. A transient signal is essentially localized in time and it
has a finite duration. Therefore, transients are poorly represented
as stationary oscillations (i.e., by slowly-varying sinusoids). The
attack is the most salient perceptual feature of musical instrument
sounds that listeners use in dissimilarity judgments [5, 6, 7]. It is
well known that much of the characteristic quality of many musical
sounds derives from the characteristics of the attack [8], although
the harmonic structure of the stationary oscillations (when there is a
steady state) is also clearly important [9]. Thus modeling attack tran-
sients is essential to obtain a perceptually similar representation of
musical instrument sounds. Modeling percussive musical instrument
sounds with quasi-stationary sinusoids commonly results in percep-
tually less sharp attacks because of poor temporal resolution and an

artifact know as pre-echo. Transients require shorter windows to be
properly detected and modeled, but short windows blur stationary si-
nusoids in the frequency domain. Additionally, stationary sinusoids
are supposed to vary slowly inside the analysis window, thus win-
dows centered around the onset smear out the attack.

There have been different proposals to detect, model, and even
use transients in instrument recognition, sound representation and
transformation [10, 11, 12, 13]. Serra [3, 14] developed the deter-
ministic plus stochastic model to account for the stationary and non-
stationary characteristics of sounds. However, transients and noise
are not modeled separately. Levine [13] proposes to decompose the
sounds into sinusoids plus transients plus noise and model each sep-
arately. Short analysis windows increase temporal resolution to de-
tect and model transients, therefore the use of multi-resolution tech-
niques [15] seems like a natural choice to detect modulations at dif-
ferent time scales. Daudet [16] discusses the use of pruned wavelet
trees in transient modeling due to the natural multiresolution nature
of wavelets. Keiler et al. [17] propose to analyze transient musi-
cal instrument sounds with an auto-regressive model. Tan and Sen
[18] propose to use the attack transient envelope in musical instru-
ment recognition. Macon [19] uses an all-pole filter excited by an
impulse to represent percussion musical instrument sounds such as
woodblocks, xylophones, or chimes. Laroche [20] applies a multi-
channel excitation-filter model to piano sounds. Atomic decompo-
sition algorithms [21, 22, 23] can render a sparse representation that
is perceptually good provided that there are appropriate atoms in the
dictionary. While the sparsity and potential quality of matching pur-
suit models are desirable, the atomic decomposition is a less natural
representation of the physical process than sinusoidal oscillations.
Naturally, each model has advantages and disadvantages. This work
requires a musical instrument sound model that represents the phys-
ical process intuitively and compactly while rendering perceptually
close representations.

In this work, we propose to represent the oscillatory modes of
musical instruments with nonstationary sinudoids to capture both
the quasi-stationary behavior and transients (as amplitude and fre-
quency modulations). We use an adaptive sinusoidal model dubbed
extended adaptive Quasi-Harmonic Model (eaQHM) [24] to repre-
sent percussive musical instrument sounds such as plucked strings
and idiophones (struck). The eaQHM algorithm has been applied on
the speech counterparts of percussive sounds, or stop sounds, outper-
forming standard sinusoidal models (SM) [25] with the same com-
plexity (number of resynthesis parameters). The analysis stage uses
one extra parameter (degree of freedom) to iteratively estimate pa-
rameter values. However, it is adaptation of the sinusoids inside the
analysis window that allows representation of both transients and
stationary oscillations with sharp onsets (no pre-echo) and very lit-



tle residual. We compare eaQHM and SM, evaluating the quality of
the representations quantitatively and qualitatively, showing that the
“signal to reconstruction error rate” (SRER) is higher for eaQHM
locally (before the attack) and globally (whole duration). Then we
confirm that eaQHM produces percussive sounds perceptually closer
to the original recordings with a listening test.

The next section reviews eaQHM to show that complexity (fi-
delity of representation) lies in adaptation rather than the higher
number of analysis degrees of freedom. Then, we compare the
model representation of percussive musical instrument sounds with
SM and eaQHM in terms of analysis and re-synthesis parameters
(degrees of freedom). Next, we evaluate objectively and subjectively
the SM and eaQHM model representation of percussive musical in-
strument sounds. Finally, we present the conclusions and discuss
future perspectives of the work described.

2. ADAPTIVE SINUSOIDAL MODELING

In what follows, x (t) represents the analysis step, x̂ (t) represents
the synthesis equation (the sinusoidal component), and x̄ (t) is the
subtractive residual x̄ (t) = x (t) − x̂ (t). The Quasi-Harmonic
Model (QHM) [26] liest at the heart of eaQHM, addressing fre-
quency mismatch by frequency updating. QHM is defined as

x(t) =

[
K∑

k=−K

(ak + tbk) ej2πf̂kt
]
w (t) (1)

where ak and bk are the complex amplitude and the complex
slope of the kth sinusoid and w (t) is the analysis window. The
term tbk can be interpreted as the time-domain representation of the
derivative in the frequency domain. The analysis frequencies f̂k are
initialized as harmonically related. There is a frequency mismatch
between the true frequency fk and the frequency f̂k of the kth sinu-
soid given by

ηk = fk − f̂k. (2)

The error ηk leads to the underestimation of amplitudes for sinu-
soidal models that rely on peak picking. Pantazis et al. [26] showed
that QHM is able to provide an estimate of ηk given by

η̂k =
1

2π

<{ak}={bk} − ={ak}<{bk}
|ak|2

. (3)

QHM estimates the analysis parameters ak and bk by least-
squared errors and uses them to obtain the synthesis parameters |ak|
and η̂k. Thus the synthesized signal is represented as

x̂(t) =

[
K∑

k=−K

|ak|ej(2π(f̂k+η̂k)t+φ̂)

]
w (t) . (4)

Later, Pantazis et al. [27] suggested an adaptive QHM (aQHM)
model that iteratively corrects the amplitude |ak| and frequency
(f̂k + η̂k) estimates. The aQHM algorithm improves the accuracy
of parameter estimation, but it still uses stationary sinusoids inside
the analysis window to represent the sounds. Therefore, the non-
stationary oscillations such as transients cannot be well represented
by QHM. Ideally, both the amplitudes and phases should capture
variations that occur in time scales smaller than the size of the
window like

x̂(t) =

K∑
k=−K

âk (t) ejφ̂k(t) (5)
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Fig. 1. Inside the analysis window, the frequency trajectory of a
partial (solid grey line) is assumed to be constant for stationary sinu-
soidal models like QHM (dotted line), while eaQHM (dashed line)
iteratively adapts to the shape of the instantaneous frequency.

where âk (t) and φ̂k (t) are the instantaneous amplitude and
phase of the kth sinusoid. Kafentzis et al. [25] proposed to adapt
both the instantaneous amplitude âk (t) and the instantaneous phase
φ̂k (t) inside the analysis window with the extended adaptive QHM
(eaQHM). The analysis equation becomes

x(t)=

 Kl∑
k=−Kl

(ak + tbk) âk (t) ej(φ̂k(t+tl)−φ̂k(tl))

w(t) (6)

where l is the frame index, ak and bk are the analysis parame-
ters, and âk (t) and φ̂k (t) are the time-varying amplitude and phase
of each sinusoid respectively. The instantaneous values âk (t) are
estimated by spline interpolation inside the analysis window w (t)

and φ̂k (t) is the integral of the instantaneous frequency f̂k (t), ob-
tained by least squares interpolation. In this model, both âk (t) and
φ̂k (t) are iteratively adapted, so the signal is projected onto a set
of non-stationary basis functions âk (t) ejφ̂k(t) inside the analysis
window that is locally adapted to the signal. Figure 1 illustrates the
time-varying nature of the frequency trajectories for one sinusoid.
The instantaneous amplitude can be depicted similarly.

Kafentzis et al. [24] showed that the basis functions are adapted
to the local amplitude and phase characteristics of the signal, result-
ing in an adaptive AM-FM model of the analyzed signal. It was also
shown that eaQHM can fully address the highly non-stationary na-
ture of signals such as speech, both in its amplitude and in its phase.
The adaptation algorithm can be found in [27]. The convergence
criterion for eaQHM was the following:

SRERi−1 − SRERi

SRERi−1
< ε (7)

where i is the iteration and SRER is the Signal-to-Reconstruction-
Error Ratio of the resynthesized signal, defined as

SRER = 20 log10

σx
σx−x̂

= 20 log10

RMS (x)

RMS (x̄)
(8)

where x is the original signal, x̂(t) is the reconstructed signal, and
x̄ is the residual signal, and σx denotes the standard deviation of x.
Notice that σx = RMS (x) because the waveforms have zero mean.
In our experiments, ε is set to 0.01.

3. PERCUSSIVE MUSICAL INSTRUMENT SOUNDS AND
ADAPTIVE SINUSOIDAL MODELING

The aim of this section is to illustrate the comparison between SM
and eaQHM to foster the results of the evaluation. We want to show



that eaQHM represents percussive musical instrument sounds per-
ceptually closer than SM with the same model complexity. There-
fore, in this section we will show that adaptation gives sharp onsets
without pre-echo with the same number of partials as SM. Figure
2 illustrates the ability eaQHM has to model sudden variations that
happen in a time frame shorter than the hop size (inside the analy-
sis window). In Figure 2 we see the reconstruction (resynthesized
sound) zoomed in before the onset to show that the eaQHM repre-
sentation is pre-echo free, while SM clearly presents smearing of the
attack. The top of figure 2 shows the onset of the recording of a
plucked guitar string. In the middle we see the waveform resynthe-
sized from SM, and the bottom shows resynthesis with eaQHM. The
pre-echo is highlighted in the middle, where the attack oscillations
are also visually different from the original at the top. The next sec-
tion measures these differences objectively (local SRER) and sub-
jectively (listening test).

Adaptation also allows representation of transients as modula-
tions of the quasi-stationary modes (sinusoidal partials) inside the
analysis window. This results in each sinusoid representing more
information than SM. Traditionally, SM parameter estimations are
constant inside the analysis window, varying only between consecu-
tive windows. The result is a sinusoidal representation that captures
mostly quasi-stationary oscillations (that do not vary much inside the
analysis window), leaving a residual that contains noise and tran-
sients. On the other hand, eaQHM leaves very little residual both
before the onset (locally) and across the whole duration (globally).
The evaluation will measure how much information is captured by
each model (SM and eaQHM) locally and globally by comparing
with the original signal.

The advantage that adaptation gives comes with the price of
higher complexity in the analysis both for the number of parameters
to be fit by the model and the iterative procedure. As evidenced by
Section 2, eaQHM requires a more complex iterative analysis step,
especially when compared with SM. However, once the eaQHM al-
gorithm has fit the parameters of the model, the resynthesis model
has the same complexity (eq. 5) as SM with a representation that
is perceptually closer to the original recordings. Table 1 presents
an overview of the analysis and synthesis complexity of SM and
eaQHM to allow comparison. Complexity is considered as the num-
ber of parameters per frame each model requires to estimate (anal-
ysis) and represent (synthesis) K sinusoidal tracks. Notice that SM
has the same complexity in the analysis and synthesis stages, while
eaQHM fits more parameters iteratively (a few times until conver-
gence) during the analysis stage than for resynthesis.

The next section evaluates the quality of the representation for
both models with the same resynthesis complexity. Notice that
eaQHM requires initialization of the frequency estimation proce-
dure described in (2) and (3). For all the percussive sounds modeled
with eaQHM in this work, we initialized the frequency estimation
as 200 integer multiples of f0 = 40 Hz. This limits the number

Table 1. Comparison of model complexity between SM and eaQHM
for the analysis and synthesis stages. The table presents the number
of parameters per frame as a function of the number of sinusoids K
to estimate (analysis complexity) and to represent (synthesis com-
plexity) sounds.

Parameters per frame
SM eaQHM

Analysis 2K + 1 : ak, fk 3K + 1 : ak, bk, fk
Synthesis 2K + 1 : ak, fk 2K + 1 : âk, φ̂k
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Fig. 2. Resynthesis around the onset for a percussive sound. The top
shows the original waveform, the middle part illustrates SM while
the bottom shows eaQHM.

of spectral peaks to 200 and spans the whole frequency range with
the sampling frequency of Fs = 16 kHz used. For both SM and
eaQHM, the Hann analysis window is set to 3 times the period of
the lowest frequency f0 (i.e., T0 = 20 ms), a 2048-point FFT is
computed for each analysis frame, and the hop size is set to 2 ms.
For eaQHM, the maximum number of iterations is 5. Note that the
algorithm might converge before reaching the maximum number of
iterations if the convergence criterion in eq. (7) is met.

4. EVALUATION

In this section we present the results of the objective and subjective
evaluation of the eaQHM model compared to SM. Both eaQHM and
SM used the same input parameter values (number of sinusoids, win-
dow size, hop size, etc. See Section 3), differing only in the analysis
complexity (see Table 1). The objective evaluation uses the Signal to
Reconstruction Error Ratio (SRER). Higher values of SRER indicate
less residual energy, therefore a better model representation. The
subjective evaluation used was an online listening test to assess the
perceptual similarity between the original recording of the percus-
sive musical instrument sounds and the sounds resynthesized from
the model parameters. The listening test aims to show that eaQHM
renders sharper attacks (no pre-echo) and better modeled transients
(nonstationarity), thus closer to the original recording with the same
model complexity (number of resynthesis parameters) as SM.

Table 2 lists the percussive sounds used in this work 1 divided
in two classes, percussion and plucked strings. All sounds belong to
the same pitch class (C), ranging in pitch height from C3 (f0 ' 131
Hz) to C7 (f0 ' 2093 Hz), but most are C3 or C4. The dynam-
ics range between mezzo-forte and forte, while the duration was kept
under 2 s. The recordings were chosen to represent the range of per-
cussive sounds with sharp attack and highly nonstationary transients
from musical instruments commonly found in traditional Western
orchestras. Two different glockenspiel, three different vibraphone,
and three different harp sounds were used.

1Sounds from Vienna Symphonic Library database of musical instru-
ment samples http://www.vsl.co.at/en/65/71/84/1349.vsl



4.1. Signal to Reconstruction Error Ratio

Table 3 shows both the local and global SRER values for eaQHM
and SM calculated using (8). The local SRER is computed using
only the samples in the first analysis window, right before the onset
of the waveform. Therefore, the local SRER gives information about
the presence or absence of pre-echo. Global values of SRER are
computed for the whole waveform, serving as an estimate of the total
residual energy “missed” by each model. Notice that eaQHM results
in a higher SRER value both locally and globally.

4.2. Preference Listening Test

The aim of the listening test was to evaluate which resynthesised
sound was perceptually closer to the original recording. We pre-
sented the original recording followed by resynthesis from SM or
eaHQM (presented as model 1 and 2 in random order). The lis-
tener was asked to choose which was perceptually closer to the orig-
inal recording. The test was forced choice, which means the lis-
tener did not have the option of selecting no preference. The test
contained 19 percussive sounds, 13 plucked strings and 6 percus-
sion instruments among those listed in Table 2. The listening test is
available online at http://www2.csd.uoc.gr/˜kafentz/
listest/pmwiki.php?n=Main.ListeningTest. Table 4
shows the result of the listening test as percentage choice, that is,
the percentage times each model was selected as perceptually closer
to the original recording. In total, the results of 51 people were in-
cluded in the evaluation.

4.3. Discussion

The result of the objective evaluation confirms that eaQHM presents
a much higher value of both global and local SRER. Higher global
SRER means that eaQHM represents more information from the
original sound throughout, during nonstationary attack transients
and more stationary oscillations. A higher local SRER indicates less
energy around the onset, which means that eaQHM has virtually no
pre-echo.

The result of the subjective evaluation, on the other hand, con-
firms conclusively that eaQHM renders percussive sounds perceptu-
ally closer to the original than a traditional SM. Table 4 shows that
eaQHM outperformed SM in perceptual similarity for all sounds by
at least 82%. All percussive sounds modeled with eaQHM were as-
sessed perceptually similar to the original.

The participants could leave comments after taking the listening
test. Most participants reported using the attack to tell the difference.
A typical comment was The beginning of the sound was the trigger
for me. After the attack, it was more difficult to tell the difference.
Interestingly, some comments revealed clearly the strategy used to
asses the perceptual similarity. For example, To me, the sound qual-
ity of the pitched, sustained part was more or less identical. The
onset, however, seemed to disturb the results for the simpler model
in a short window around the onset. Another listener reported that
The main difference I perceived was in the sharpness of the attacks.

Table 2. Percussive sounds used in the listening test.
Percussion Plucked String

marimba, glockenspiel, acoustic guitar, cello,
piano, xylophone, classic guitar, harpsichord,

vibraphone, celesta harp, mandolin,
ukelele, viola, violin

Table 3. Global and Local Signal to Reconstruction Error Ratio
(SRER) values in dB for both models (SM and eaQHM) divided into
two classes of percussive sounds, namely, percussion and plucked
string.

Global SRER (dB)
SM eaQHM

Percussion µ = 16.65 σ = 2.55 µ = 48.11 σ = 4.57
Plucked String µ = 19.46 σ = 4.92 µ = 48.16 σ = 4.25

Local SRER (dB)
SM eaQHM

Percussion µ = 12.31 σ = 2.82 µ = 46.03 σ = 4.12
Plucked Strings µ = 13.40 σ = 4.14 µ = 47.03 σ = 3.79

For some of the shorter sounds the pitch also felt (very) slightly dif-
ferent, which seems to confirm that eaQHM does provide a different
frequency estimation.

5. CONCLUSIONS AND FUTURE WORK

Percussive musical instrument sounds figure among the most chal-
lenging to model using sinusoids particularly due to the character-
istic sharp onset and highly nonstationary nature of the attack tran-
sients. Traditional sinusoidal models fail to represent transients well
with slowly-varying sinusoids and render a modeled sound whose
onset is smeared in time (perceptually less sharp than the original)
due to an artifact know as pre-echo. This paper proposes to model
percussive sounds with an adaptive sinusoidal model due to its abil-
ity to accurately model sharp onsets and highly nonstationary attack
transients. The extended adaptive QHM (eaQHM), which is a fam-
ily member of adaptive sinusoidal models, is tested to confront this
effect and it is shown that highly accurate, pre-echo-free representa-
tions of percussive sounds are possible using the adaptive approach.
Results on a database of percussive sounds such as plucked strings
and percussion instruments show that, on average, eaQHM improves
by over 30 dB the Signal to Reconstruction Error Ratio (SRER) ob-
tained by the standard sinusoidal model. A listening test showed that
the percussive sounds modeled by eaQHM are perceptually closer
to the original recordings than the same sounds represented by a
traditional sinusoidal model for more than 80% of the listeners in
all cases. Future perpectives include using eaQHM in transient de-
tection and transient modeling for musical instrument recognition,

Table 4. Result of the listening test to assess the perceptual similar-
ity between the original recording and the reconstructions with both
models. The table shows in percentage how often eaQHM was se-
lected perceptually closer to the original for each class of percussive
sounds.

Percussion Plucked Strings
glockenspiel 98% acoustic guitar 90%
glockenspiel 2 100% celesta 92%
marimba 98% classic guitar 98%
piano 86% harpsichord 94%
vibraphone 98% harp 96%
vibraphone 2 82% harp 2 96%
vibraphone 3 98% harp 3 92%
xylophone 98% mandolin 92%

ukelele 90%
cello 90%
violin 94%



segmentation, and sound transformations such as timbral variations,
perceptually coherent time stretching and pitch shifting.
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