Introduction to Deep Generative Modeling

Lecture #3

HY-673 – Computer Science Dep., University of Crete

Professors: Yannis Pantazis & Yannis Stylianou

TAs: Michail Raptakis & Michail Spanakis

Taxonomy of Deep Generative Models According to the Likelihood Function

Introduction to Estimator Theory

• What is an estimator?

Let $\mathcal{D} = \{x_1, \dots, x_n\}$ be a set of data drawn from $p_d(x)$, and $p_{\theta}(x)$ be a family of models with $\theta \in \Theta$. A point estimator $\hat{\theta} = \hat{\theta}(\mathcal{D})$ is a random variable for which we want:

$$p_{\hat{\theta}}(x) \approx p_d(x)$$

Introduction to Estimator Theory

- How to construct an estimator?
 - Maximum Likelihood Estimation (MLE)
 - Maximum A Posteriory (MAP) Estimation
 - Based on a Probability Distance or a Divergence (implicit)
 - Bayesian Inference (learns a distribution for the estimator's parameters)

Maximum Likelihood Estimator

• Maximum Likelihood Estimator:

$$\hat{\theta}_{\text{MLE}}(\mathcal{D}) = \underset{\theta}{\operatorname{arg\,max}} p_{\theta}(\mathcal{D}) := p_{\theta}(x_1, \dots, x_n).$$

• Equivalently, under the i.i.d. assumption:

$$\hat{\theta}_{\text{MLE}}(\mathcal{D}) = \underset{\theta}{\operatorname{arg\,max}} \sum_{i=1}^{n} \log p_{\theta}(x_i) =: L(\theta; \mathcal{D}) \ (\equiv L_n(\theta)).$$

Maximum Likelihood Estimator

• MLE interpretation:

- $-L_n(\hat{\theta}_1) > L_n(\hat{\theta}_2)$ implies that $\hat{\theta}_1$ is $\underline{more\ likely}$ to have generated the observed samples $x_1, ..., x_n$.
- Thus, it provides a ranking of model's fitness/accuracy/matching to the data.

• 1d Gaussian, unknown mean $\theta = \mu$, known variance σ^2 :

Dataset: $\mathcal{D} = \{x_1, \dots, x_n\},\$

Model family: $p_{\theta}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\theta)^2}{2\sigma^2}}$.

$$L(\theta, \mathcal{D}) = \sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i - \theta)^2}{2\sigma^2}} \right) = -\frac{n}{2} \log(2\pi\sigma^2) - \sum_{i=1}^{n} \frac{1}{2\sigma^2} (x_i - \theta)^2.$$

$$\frac{d}{d\theta}L(\theta;\mathcal{D}) = -\frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \theta) \qquad \text{Thus, } \frac{d}{d\theta}L(\hat{\theta};\mathcal{D}) = 0 \Longrightarrow \hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

• Exponential distribution:

$$p_{\theta}(x) = \begin{cases} \theta e^{-\theta x}, & x \ge 0 \\ 0, & x < 0. \end{cases}$$

$$L(\theta, \mathcal{D}) = \sum_{i=1}^{n} (\log \theta - \theta x_i)$$

$$\frac{d}{d\theta}L(\theta; \mathcal{D}) = \sum_{i=1}^{n} \left(\frac{1}{\theta} - x_i\right)$$

Thus,
$$\frac{d}{d\theta}L(\hat{\theta}; \mathcal{D}) = 0 \implies \hat{\theta} = \frac{n}{\sum_{i=1}^{n} x_i}$$
.

• Linear model with Gaussian error:

Dataset: $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}$ with $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$,

Model family: $y_i = \theta^T x_i + e_i$ with $e_i \sim \mathcal{N}(0, \sigma^2)$ and $\theta \in \mathbb{R}^d$.

$$L(\theta, \mathcal{D}) = \sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \theta^T x_i)^2}{2\sigma^2}} \right) = -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \theta^T x_i)^2.$$

Partial derivative or gradient vector: $\frac{\partial}{\partial \theta} L(\theta; \mathcal{D}) = -\frac{1}{\sigma^2} \sum_{i=1}^{n} (y_i - \theta^T x_i) x_i^T$.

Thus,
$$\frac{\partial}{\partial \theta} L(\hat{\theta}; \mathcal{D}) = 0 \implies \hat{\theta} = \left(\sum_{i=1}^{n} x_i x_i^T\right)^{-1} \left(\sum_{i=1}^{n} x_i y_i\right).$$

• In matrix form:

$$y = X\theta + e \text{ with } y = [y_1, ..., y_n]^T \in \mathbb{R}^n, X = \begin{bmatrix} x_1^T \\ \vdots \\ x_n^T \end{bmatrix} \in \mathbb{R}^{n \times d},$$

$$e = [e_1, ..., e_n]^T \in \mathbb{R}^n \text{ and } e \sim \mathcal{N}(0, \sigma^2 I_n).$$

$$L(\theta,\mathcal{D}) = C - \frac{1}{2\sigma^2} (y - X\theta)^T (y - X\theta). \qquad \qquad \text{Maximizing L}(\theta) \text{ is equivalent to}$$

$$\frac{\partial}{\partial \theta} L(\theta; \mathcal{D}) = -\frac{1}{\sigma^2} X^T (y - X\theta)$$

Maximizing L(θ) is equivalent to minimizing the Sum of Squares (Least Squares)

Exactly the same solution as LS!

Thus,
$$\frac{\partial}{\partial \theta} L(\hat{\theta}; \mathcal{D}) = 0 \implies \hat{\theta} = (X^T X)^{-1} X^T y.$$

• Logistic regression with sigmoids a.k.a. binary classification.

Dataset: $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}$ with $x_i \in \mathbb{R}^d$ and $y_i \in \{0, 1\}$,

Model family: $p_{\theta}(y_i = 1 | x_i) = \sigma(\theta^T x_i), p_{\theta}(y_i = 0 | x_i) = 1 - p_{\theta}(y_i = 1 | x_i),$

 $\theta \in \mathbb{R}^d$ and $\sigma(z) = \frac{1}{1+e^{-z}}$ be the sigmoid function.

Compact form: $p_{\theta}(y_i|x_i) = p_{\theta}(y_i = 1|x_i)^{y_i} p_{\theta}(y_i = 0|x_i)^{1-y_i}$.

$$L(\theta, \mathcal{D}) = \sum_{i=1}^{n} y_i \log \frac{1}{1 + e^{-\theta^T x_i}} + (1 - y_i) \log \frac{e^{-\theta^T x_i}}{1 + e^{-\theta^T x_i}}$$

Unfortunately, $\frac{\partial}{\partial \theta} L(\hat{\theta}; \mathcal{D}) = 0$ is a non-linear system of equations.

- Solution: Iteratively solve for the root of the system of equations.
- Gradient ascent.
 - 1. Randomly initialize $\theta^0 = (\theta_1^0, \dots, \theta_d^0)$.
 - 2. Compute $\nabla_{\theta} L(\theta; \mathcal{D})$.
 - 3. Update $\theta^{t+1} = \theta^t + \alpha_t \nabla_{\theta} L(\theta; \mathcal{D})$.
 - 4. Repeat 2 & 3 until convergence. Learning rate
- Caution: MLE results in a non-convex optimization problem \Rightarrow stack to a local maximum.

Maximum Likelihood Estimator

• We could obtain a histogram (i.e., empirical or sampling distribution) for the estimator as

$$\{\hat{\theta}(\mathcal{D}'): \mathcal{D}' \sim p_d(x)\}$$

 \hookrightarrow The variance of the sampling distribution is a measure of uncertianty about $\hat{\theta}(\mathcal{D})$.

 \hookrightarrow One standard approach to approximate the sampling distribution is the bootstrap algorithm.

Kullback-Leibler Divergence (KLD)

• Geometric interpretation:

MLE is equivalent to minimizing the KLD of $p_d(x)$ w.r.t. $p_{\theta}(x)$.

Model family

Maximum Likelihood Estimator

• MLE asymptotics:

$$L_n(\theta) \stackrel{n \to \infty}{\longrightarrow} \int \log p_{\theta}(x) p_d(x) dx = \mathbb{E}_{p_d}[\log p_{\theta}(x)] =: L(\theta; p_d) \ (\equiv L(\theta)).$$

• MLE is equivalent to minimizing the cross entropy!

$$\underset{\theta}{\operatorname{arg\,max}} L(\theta; p_d) = \underset{\theta}{\operatorname{arg\,min}} H^{\times}(p_d||p_{\theta}).$$

where the cross entropy of probability P with PDF p(x) with respect to probability Q with PDF q(x) is defined as

$$H^{\times}(P||Q) := \int \log \frac{1}{q(x)} p(x) dx = -\int \log q(x) p(x) dx.$$

Kullback-Leibler Divergence

• MLE is also equivalent to minimizing the KLD of $p_d(x)$ w.r.t. $p_{\theta}(x)$.

$$\underset{\theta}{\operatorname{arg\,max}} L(\theta; p_d) = \underset{\theta}{\operatorname{arg\,min}} D_{KL}(p_d||p_\theta)$$

• The Kullback-Leibler divergence (KLD) of P w.r.t. Q is defined as:

$$D_{\mathrm{KL}}(P||Q) := \int \log \frac{p(x)}{q(x)} p(x) dx = \int \log p(x) p(x) dx - \int \log q(x) p(x) dx$$

• Thus,

$$D_{\mathrm{KL}}(P||Q) = -H(P) + H^{\times}(P||Q).$$

-H(P) $H^{\times}(P||Q)$ Cross Entropy

Kullback-Leibler Divergence

• KLD satisfies the divergence property:

$$D_{\mathrm{KL}}(P||Q) \geq 0$$
 and $D_{\mathrm{KL}}(P||Q) = 0 \iff P = Q$.

 \underline{Proof} Jensen's inequality

$$\mathbb{E}_P\left[-\log\frac{q(x)}{p(x)}\right] \ge -\log\left(\mathbb{E}_P\left[\frac{q(x)}{p(x)}\right]\right) = -\log\left(\int\frac{q(x)}{p(x)}p(x)dx\right) = 0$$

- KLD is asymmetric, i.e., $D(P||Q) \neq D(Q||P)$.
- Nevertheless, it offers a notion of a (pseudo-)distance.

Maximum A Posteriori Estimator

$$\hat{\theta}_{\text{MAP}} = \underset{\theta}{\operatorname{arg\,max}} \ p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{p(\mathcal{D})}.$$

- 1. $p(\mathcal{D}|\theta) = p_{\theta}(\mathcal{D})$: likelihood.
- 2. $p(\theta)$: prior probability (prior knowledge).
- 3. $p(\mathcal{D}) = \int p(\theta')p(\mathcal{D}|\theta')d\theta'$: evidence (usually intractable but with tractable approximations).

Maximum A Posteriori Estimator

$$\hat{\theta}_{MAP} = \underset{\theta}{\operatorname{arg\,max}} \{ \log p_{\theta}(\mathcal{D}) + \log p(\theta) \}.$$

• 1d Gaussian: $\mathcal{D} = \{x_1, \dots, x_n\}, p_{\theta}(x) = \mathcal{N}(\theta, \sigma^2), p(\theta) = \mathcal{N}(\theta_0, \sigma_0^2).$

$$\frac{d}{d\theta}L_{\text{MAP}}(\theta) = -\frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \theta) - \frac{1}{\sigma_0^2} (\theta - \theta_0) = 0$$

$$\implies \hat{\theta}_{\text{MAP}} = \frac{\sum_{i=1}^{n} x_i - \rho \theta_0}{n - \rho}, \quad \rho = \frac{\sigma^2}{\sigma_0^2}.$$

 \hookrightarrow What happens as n increases?

Maximum A Posteriori Estimator

• Often, the prior probability acts as regularization.

$$\hat{\theta}_{\text{MAP}} = \underset{\theta}{\text{arg max}} \{ \log p_{\theta}(\mathcal{D}) + \log p(\theta) \}.$$

- Linear model: $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}, x_i \in \mathbb{R}^d, y_i \in \mathbb{R}, \text{ model:} y_i = \theta^T x_i + \epsilon_i, \epsilon_i \sim \mathcal{N}(0, 1)$
 - $-p(\theta) = \mathcal{N}(0, \lambda^{-1}I_d) \Rightarrow \text{rigde regression a.k.a.}$ (Tikhonov) regularized Least Squares.
 - $-p(\theta) = \text{Laplace}(0, \lambda^{-1}) \Rightarrow \text{lasso regression (least absolute shrinkage and selection operator)}.$

- Basic toolkit to assess an estimator:
 - 1. Unbiasedness.
 - 2. Consistency.
 - 3. Bias-Variance Trade-Off.
 - 4. Efficiency.
 - 5. Fisher Information.
 - 6. Cramér-Rao Lower Bound (CRLB).

1. Unbiasedness:

Key assumption:
$$\exists \theta^* \text{ s.t. } p_d(x) = p_{\theta^*}(x).$$

• An unbiased estimator is an estimator whose expected values (w.r.t. the data generation distribution) is equal to the parameter:

$$Bias(\hat{\theta}) = \theta^* - \mathbb{E}_{p_d}[\hat{\theta}].$$

• The <u>sample mean</u> $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x_i$ with $x_i \sim p_{\theta^*}(x) \equiv \mathcal{N}(\theta^*, \sigma^2)$, i.i.d., is an unbiased estimator.

Proof:

$$\mathbb{E}_{p_d}[\hat{\theta}] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}_{p_{\theta^*}}[x_i] = \frac{1}{n} \sum_{i=1}^n \theta^* = \frac{1}{n} n\theta^* = \theta^*.$$

1. Unbiasedness:

• An asymptotically unbiased estimator is the least requirement for an estimator:

$$\lim_{n \to \infty} \operatorname{Bias}(\hat{\theta}_n) = 0.$$

- -Example: Let $\theta = \mathbb{E}_{p_d}[g(x)]$ and $\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n g(x_i)$ its estimator. $\hookrightarrow \hat{\theta}_n$ is unbiased and the basic idea of **Monte Carlo** methods.
- -Example: Let $\theta = g(\mathbb{E}_{p_d}[x])$ and $\hat{\theta}_n = g\left(\frac{1}{n}\sum_{i=1}^n x_i\right)$ its estimator. $\hookrightarrow \hat{\theta}_n$ is biased, but asymptotically it is an unbiased estimator.

2. Consistency:

• An unbiased estimator is said to be consistent if the difference between the estimator and the true value becomes smaller as we increase the sample size. Formally:

$$\lim_{n \to \infty} P_{p_d}(|\hat{\theta}_n - \theta^*| > \epsilon) = 0 , \quad \forall \epsilon > 0.$$

-Example (consistent): Sample mean $\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n x_i$ with $x_i \sim \mathcal{N}(\theta^*, \sigma^2)$, i.i.d.

Chebyshev's inequality

$$\operatorname{Var}_{p_d}(\hat{\theta}_n) = \frac{\sigma^2}{n} \Rightarrow P_{p_d}(|\hat{\theta}_n - \theta^*| > \epsilon) \le \frac{\sigma^2}{n\epsilon^2}.$$

-Example (not consistent): $\hat{\theta}_{10} = \frac{1}{10} \sum_{i=1}^{10} x_i$.

- 2. Consistency and (asymptotic) unbiasedness:
- <u>Proposition:</u> If $\operatorname{Var}_{p_d}(\hat{\theta}_n)$ is finite, then, consistency implies asymptotic unbiasness.
- <u>Proposition:</u> If $\operatorname{Var}_{p_d}(\hat{\theta}_n)$ tends to 0 as $n \to \infty$, then, asymptotic unbiasness implies consistency.
- <u>Proposition</u>: If the Mean Squared Error $\mathrm{MSE}(\hat{\theta}_n) := \mathbb{E}_{p_d} \left[(\hat{\theta}_n \theta^*)^2 \right]$ tends to 0 as $n \to \infty$, then, the estimator $\hat{\theta}_n$ is consistent.

3. Bias-variance trade-off in estimation theory:

$$MSE(\hat{\theta}) := \mathbb{E}_{p_d} \left[(\hat{\theta} - \theta^*)^2 \right] = Bias_{p_d}^2(\hat{\theta}) + Var_{p_d}(\hat{\theta}).$$

Bias-variance trade-off in machine learning:

4. Efficiency:

- Let $\hat{\theta}_1$ and $\hat{\theta}_2$ be two unbiased estimators of θ^* . $\hat{\theta}_1$ is more efficient than $\hat{\theta}_2$ if and only if $Var(\hat{\theta}_1) < Var(\hat{\theta}_2)$.
- An estimator $\hat{\theta}$ is efficient if the variance of the estimator, $Var(\hat{\theta})$, equals the Cramér-Rao lower bound.

5. Fisher Information:

$$I(\theta) = \mathbb{E}_{p_{\theta}} \left[\left(\frac{d}{d\theta} \log p_{\theta}(x) \right)^{2} \right].$$

-Example: $p_{\theta}(x) = \text{Bernoulli}(\theta), \ \theta \in [0, 1] : \text{success probability.}$ $I(\theta) = \dots = \frac{1}{\theta(1-\theta)}.$

- 6. Cramér-Rao Lower Bound (CRLB):
 - The variance of any unbiased estimator $\hat{\theta}_n$ of θ^* is bounded by the reciprocal of the Fisher information:

$$\operatorname{Var}_{p_{\theta^*}}(\hat{\theta}_n) \ge \frac{1}{I_n(\theta^*)} = \frac{1}{nI(\theta^*)}, \quad \text{n: } \# \text{ i.i.d. samples drawn from } p_{\theta^*}(x).$$

• MLE is asymptotically efficient!

References

- 1. All of statistics: A Concise Course in Statistical Inference (*Chapters 6 & 9*)
 Larry Wasserman, Springer (2004)
- 2. Probabilistic Machine Learning: An Introduction (*Chapter 4*) Kevin P Murphy, The MIT Press (2022)
- 3. Matrix Calculus:

https://en.wikipedia.org/wiki/Matrix_calculus

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Introduction to Deep Generative Modeling

Lecture #3

HY-673 – Computer Science Dep., University of Crete

Professors: Yannis Pantazis & Yannis Stylianou

TAs: Michail Raptakis & Michail Spanakis