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Introduction to Estimator Theory

e What is an estimator?

Let D = {x1,...,x,} be a set of data drawn from pg(z), and py(x) be a

family of models with 8 € ©. A point estimator § = (D) is a random variable
for which we want:

pg(z) =~ pa(z)

6 €O

Model family



Introduction to Estimator Theory

e How to construct an estimator?

— Maximum Likelihood Estimation (MLE)

— Maximum A Posteriory (MAP) Estimation
— Based on a Probability Distance or a Divergence (implicit)

— Bayesian Inference (learns a distribution for the
estimator’s parameters)



Maximum Likelihood Estimator

e Maximum Likelihood Estimator:

éMLE(D> — arg;nax po(D) :=po(z1,...,Tn)

e Equivalently, under the i.i.d. assumption:

Ovine (D) = arg;naleogpg(xi) =: L(6; D) (= L,(9)).



Maximum Likelihood Estimator

e MLE interpretation:

1.0

— Ln(él) > Ln(ég) implies that 0, is
more likely to have generated
the observed samples x1, ..., x,,.
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Relative likelihood
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— Thus, it provides a ranking of model’s
fitness /accuracy /matching to the data.
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MLE Example #1

2.

e 1d Gaussian, unknown mean 6 = p, known variance o

Dataset: D = {x1,..., x5},

_ (z—0)°

Model family: pg(x) = \/237026 502

- 1 (z;—0)2
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MLE Example #2

e Exponential distribution:

_ 06_95’3, X Z 0 n
po () = 0. 3 <0 L(0.D) = 3 (log 6 — 0z;)
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MLE Example #3

e Linear model with (Gaussian error:

Dataset: D = {(z1,91),...,(Tn,yn)} with 2; € R? and y; € R,
Model family: y; = 01'z; + e; with e; ~ N(0,02) and 0 € RY.

(yi—QTﬂ%)2 n 2 1 - T 2
lo 202 = ——log(2w0*) — — (y; — 0" x;)°.
=3 tos (e )= D>

Partial derivative 0 9 D
or gradient vector: (99 ( )

Thus. 2 _
us, aeL(@ D)=0 =




Lecture #3

MLE Example #3

e In matrix form:

T
y=X0+ewithy=I[y,...yn]t €R", X = | | € R
e=le1,....en]t € R™ and e ~ N(0,0%1,).

1
L(ea D) =C — 2—2(y - XQ)T(ZU — XH). <«—— Maximizing L(0) is equivalent to
o minimizing the Sum of Squares
o 1 (Least Squares)

—L(0;D) = —=X"(y— X0)
e

06 o2
0 ) 2 T —1~T

Exactly the same solution as LS!



MLE Example #4

e Logistic regression with sigmoids a.k.a. binary classification.

Dataset: D = {(z1,91),. .., (Tn,yn)} with z; € R? and y; € {0, 1},

Model family: po(yi = 1|2:) = o(6"x:), po(ys = Olzs) =1 —po(ys = 1|zs),
0 c R* and o(z) = be the sigmoid function.

1+ —=

Compact form: pg(yi|xi) = po(ys = 1]w4)Ype(ys = Oa)' e

G—GTa:z-

= 1
LO.D) =S 4l 1 — )1
(6,D) z::y 0g T =gz, + (1= y:) log T——r

Unfortunately, 5 L(9 D) = 0 is a non-linear system of equations.



MLE Example #4

e Solution: Iteratively solve for the root of the system of equations.

e Gradient ascent.

1. Randomly initialize 6° = ((9(1), Cee 92).
2. Compute VyL(0;D).
3. Update 0°7" = 0° + ;Yo L(6; D).

4. Repeat 2 & 3 until convergence.

— Learning rate

e Caution: MLE results in a non-convex optimization problem
= stack to a local maximum.



Maximum Likelihood Estimator

e We could obtain a histogram (i.e., empirical or sampling
distribution) for the estimator as

{0(D) : D' ~ pa()}

— The variance of the sampling distribution is a measure of uncertianty
about 6(D).

— One standard approach to approximate the sampling distribution is the
bootstrap algorithm.



Kullback-Leibler Divergence (KLD)

e (Geometric interpretation:
MLE is equivalent to minimizing the KLD of py(x) w.r.t. pg(x).

0 €O

Model family



Maximum Likelihood Estimator

e MLLE asymptotics:

e MLE is equivalent to minimizing the cross entropy!

arg max L(6;pys) = argmin H™ (pg||pe).
Z %

where the cross entropy of probability P with PDF p(z) with respect to proba-
bility @@ with PDF ¢(x) is defined as

H*(P|[Q) i~ [ log —pla)dr = - [ 1oz ate)p(w)da



Kullback-Leibler Divergence

e MLE is also equivalent to minimizing the KLD of pg(x) w.r.t. pg(x).

argé’nax L(0;pg) = arg@min D1 (pal|pe)

e The Kullback-Leibler divergence (KLD) of P w.r.t. @ is defined as:

Dx1(Pl|Q) := / log p(aj)p(w)dr = / log p(x)p(z)dx — / log q(z)p(x)dx

q()
—_————
e Thus, —H(P) H*(P|Q)

Dk, (P‘ ‘Q) — _H(P) + H” (P’ ’Q) \ Entropy Cross Entropy




Kullback-Leibler Divergence

e KLD satisfies the divergence property:

P7°00f Jensen’s inequality

o vt oo 1) ] )

e KLD is asymmetric, i.e., D(P||Q) # D(Q||P).

e Nevertheless, it offers a notion of a (pseudo-)distance.



Maximum A Posteriori Estimator

éMAP = arg;nax p(0|D) = p(i‘é)pl)?(@.

1. p(D|0) = pe(D): likelihood.
2. p(0): prior probability (prior knowledge).

3. p(D) = [ p(0")p(D|6)do’: evidence (usually intractable but with tractable
approx1mat10ns)



Maximum A Posteriori Estimator

Oriap = arg max {log po(D) + log p(6)}.

e 1d Gaussian: D = {z1,...,x,}, po(x) = N(0,0%), p(0) = N(0q,07).

d 1 — 1
— L 0) = —— i —0)— —=(60—-60) =0
7 MAP (0) 5 i:1($ ) ‘78( 0)
n o 2
— Oyiap = 2z T ,0(90’ ,0:0_2'

— What happens as n increases”



Maximum A Posteriori Estimator

e Often, the prior probability acts as regularization.

Oniap = arg max {log pg (D) + log p(6)}

e Linear model: D = {(z1,y1),...,(Tn,yn)}, v; € RY vy, € R, model:
Y; — 6’T337; -+ €;, € NN(O, 1)

— p(0) = N(0,\"'I;) = rigde regression a.k.a. (Tikhonov) regularized
Least Squares.

— p(f) = Laplace(0, \™!) = lasso regression (least absolute shrinkage and
selection operator).



Estimator Assessment

e Basic toolkit to assess an estimator:

1. Unbiasedness.
2. Consistency.

. Bias-Variance Trade-Off.
. Efficiency.

Fisher Information.
. Cramér-Rao Lower Bound (CRLB).

S U A W



Estimator Assessment

1. Unbiasedness:

e An unbiased estimator is an estimator whose expected values (w.r.t. the
data generation distribution) is equal to the parameter:

A

Bias(f) = 0* — E,,[A].

e The sample mean 6 = L3 @ with z; ~ pg«(z) = N(0*,07), 1.1.d., is
an unbiased estimator.
Proof:

Epol0] = 2 S0 By, 2] = L0, 0% = 1nge = 0~




Estimator Assessment

1. Unbiasedness:

e An asymptotically unbiased estimator is the least requirement for an es-
timator:

lim Bias(6,,) = 0.

n—oo

—Example: Let 0 = E,,_[g(z)] and 6, = = 3" 1 g(x;) its estimator.
— én i1s unbiased and the basic idea of Monte Carlo methods.

—Example: Let § = g(E,,|z]) and 0., = g (£ >°% | x;) its estimator.

A

— 0, is biased, but asymptotically it is an unbiased estimator.



Estimator Assessment

Lecture #3

2. Consistency:

e An unbiased estimator is said to be consistent if the difference between the
estimator and the true value becomes smaller as we increase the sample
size. Formally:

lim P, (|6, —0*| >€¢) =0, Ye>D0.

n— 00
—Example (consistent): Sample mean 0,, = =3 @ with @, ~ N (0%, 02), 1.1.d.

Chebyshev’s inequality
2

Var,, (0,) = & = P, (|0, — 6% > €) < 2.

ne?

—Example (not consistent): 619 = = Z,}il
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Estimator Assessment

2. Consistency and (asymptotic) unbiasedness:

e Proposition: If Var,, (én) is finite, then, consistency implies asymptotic

unbiasness.

A

e Proposition: If Var, (6, ) tends to 0 as n — oo , then, asymptotic unbias-

ness implies consistency.

e Proposition: If the Mean Squared Error MSE(d,) := E,, [(én — 9*)2}

tends to 0 as n — oo , then, the estimator én 1S consistent.




Estimator Assessment

3. Bias-variance trade-off in estimation theory:

MSE(f) := E,, [(é _ 9*)2} Bias? (0) + Var,, (6).

Bias-variance trade-off in machine learning:

A q%: High variance { High bias { Low bias, low variance
a ‘.". L . *
§ / ,‘""‘."". g ".‘. - / N % -, '_ R Yy
T - N
g =
= ; S
§ — >
'g' § ariance
i :
overfitting underfitting Good balance

Model Complexity



Estimator Assessment

4. Efficiency:

° Let «91 and 6’2 be two unbiased estimators of 6*. 6’1 1s more efficient than
05 if and only if Var(6;) < Var(6s).

e An estimator 0 is efficient if the variance of the estimator, Var(é), equals
the Cramér-Rao lower bound.



Estimator Assessment

5. Fisher Information:_

1(6) = B, (d% 1ogpe<x>)2: |

— I(0) = Var,, (d% logpg(x)) = —p, [fw logpe(a:‘)},
since —IE,, [% 1nge(ll?)} = 0.

—Example: pg(x) = Bernoulli(6), 6 € |0, 1] : success probability.

[(0)="---= 6(1—06) "




Estimator Assessment

6. Cramér-Rao Lower Bound (CRLB):

e The variance of any unbiased estimator f,, of 6* is bounded by the recip-
rocal of the Fisher information:

1
(0<)  nI(6%)’

n: # i.i.d. samples drawn from pg- (x).

Var,,. (6,) > T

e MLE is asymptotically efficient!
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