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Abstract

We describe highly efficient constructions, XE and XEX, that turn a blockcipher E: K ×
{0, 1}n → {0, 1}n into a tweakable blockcipher Ẽ: K×T ×{0, 1}n → {0, 1}n having tweak space
T = {0, 1}n × I where I is a set of tuples of integers such as I = [1 .. 2n/2] × [0 .. 10]. When
tweak T is obtained from tweak S by incrementing one if its numerical components, the cost to
compute ẼT

K(M) having already computed some ẼS
K(M ′) is one blockcipher call plus a small

and constant number of elementary machine operations. Our constructions work by associating
to the ith coordinate of I an element αi ∈ F∗

2n and multiplying by αi when one increments that
component of the tweak. We illustrate the use of this approach by refining the authenticated-
encryption scheme OCB and the message authentication code PMAC, yielding variants of these
algorithms that are simpler and faster than the original schemes, and yet have simpler proofs.
Our results bolster the thesis of Liskov, Rivest, and Wagner [11] that a desirable approach for
designing modes of operation is to start from a tweakable blockcipher. We elaborate on their
idea, suggesting the kind of tweak space, usage-discipline, and blockcipher-based instantiations
that give rise to simple and efficient modes.
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1 Introduction

Liskov, Rivest and Wagner [11] defined the notion of a tweakable blockcipher and put forward the
thesis that these objects make a good starting point for doing blockcipher-based cryptographic
design. In this paper we describe a good way to build a tweakable blockcipher Ẽ out of an ordi-
nary blockcipher E. Used as intended, our constructions, XE and XEX, add just a few machine
instructions to the cost of computing E. We illustrate the use of these constructions by improving
on the authenticated-encryption scheme OCB [16] and the message authentication code PMAC [4].

Tweakable blockciphers. Schroeppel [17] designed a blockcipher, Hasty Pudding, wherein the
user supplies a non-secret spice and changing this spice produces a completely different permutation.
Liskov, Rivest, and Wagner [11] formally defined the syntax and security measures for such a
tweakable blockcipher, and they suggested that this abstraction makes a desirable starting point
to design modes of operation and prove them secure. They suggested ways to build a tweakable
blockcipher Ẽ out of a standard blockcipher E, as well as ways to modify existing blockcipher
designs to incorporate a tweak. They illustrated the use of these objects. Formally, a tweakable
blockcipher is a map Ẽ: K×T ×{0, 1}n → {0, 1}n where each ẼT

K(·) = Ẽ(K, T, ·) is a permutation
and T is the set of tweaks.

Our contributions. We propose efficient ways to turn a blockcipher E: K × {0, 1}n → {0, 1}n

into a tweakable blockcipher Ẽ: K × T × {0, 1}n → {0, 1}n. (See Appendix A for the best con-
structions formerly known.) Our powering-up constructions, XE and XEX, preserve the key space
and blocksize of E but endow Ẽ with a tweak space T = {0, 1}n × I where I is a set of tuples of
integers, like I = [1 .. 2n/2] × [0 .. 10]. The XE construction turns a CPA-secure blockcipher into a
CPA-secure tweakable blockcipher, while XEX turns a CCA-secure blockcipher into a CCA-secure
tweakable blockcipher. (CPA stands for chosen-plaintext attack and CCA for chosen-ciphertext
attack.) The methods are highly efficient when tweaks arise in sequence, with most tweaks (N, i)
being identical to the prior tweak (N, i′) except for incrementing a component of i.

As an illustrative and useful example, consider turning a conventional blockcipher E: K ×
{0, 1}n → {0, 1}n into a tweakable blockcipher Ẽ: K×T ×{0, 1}n → {0, 1}n by defining ẼN i j

K (M) =
EK(M ⊕Δ)⊕Δ where offset Δ = 2i3j N and N = EK(N). Arithmetic is done in the finite field F2n .
For concreteness, assume n = 128 and a tweak space of T = {0, 1}n × [1 .. 264] × [0 .. 10]. We show
that Ẽ is secure (as a strong, tweakable PRP) as long as E is secure (as a strong, untweakable
PRP). Computing Ẽ N i j

K (X) will usually cost about 1 shift, 1 conditional, and 3–4 xors more than
computing EK(X).

We illustrate how the use of tweakable blockciphers during mode design, followed by the instan-
tiation of the tweakable blockcipher with an ordinary blockcipher using one of our constructions, can
give rise to modes that are simpler, faster, and easier to prove correct than what designing directly
from a blockcipher has delivered. We do this by refining two already-optimized modes, OCB [16]
and PMAC [4], yielding new modes, OCB1 and PMAC1, that are are easier to understand, easier
to implement, and faster. Computing offsets in the new modes does not involve Gray-code sequence
or counting the number of trailing zero bits in successive integers. OCB1 eliminates the utility of
preprocessing, saving a blockcipher call.

Intuition. The idea behind the powering-up constructions can be explained like this. Apart
from Gray-code reordering, PMAC authenticates an m-block message using a sequence of offsets
L, 2L, 3L, . . . , (m− 1)L, where multiplication is in the finite field F2n and L = EK(0n) is a variant
of the underlying key K. When a special kind of offset is needed, a value huge ·L is added (xored)
into the current offset, where huge is so large that it could never be among {1, 2, . . . , m−1}. What
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we now do instead is to use the easier-to-compute sequence of offsets 21L, 22L, . . . , 2m−1L. We
insist that our field be represented using a primitive polynomial instead of merely an irreducible
one, which ensures that 21, 22, 23, . . . , 22n−1 will all be distinct. When a special offset is needed
we can no longer add to the current offset some huge constant times L and expect this never to
land on a point in 21L, 22L, . . . , 2m−1L. Instead, we multiply the current offset by 3 instead of 2.
If the index of 3 (in F∗

2n) is enormous relative to the base 2 then multiplying by 3 is equivalent
to multiplying by 2huge and 2i3 L won’t be among of 21L, 22L, . . . , 2m−1L for any reasonable value
of m. The current paper will make all of the ideas of this paragraph precise.

Further related work. Halevi and Rogaway [8] used the sequence of offsets 2L, 22L, 23L, . . . ,
in their EME mode. They give no general results about this construction, and EME did not use
tweakable blockciphers, yet this offset ordering was our starting point.

2 Preliminaries

The field with 2n
points. Let F2n denote the field with 2n points and let F∗

2n denote the
multiplicative subgroup of this field (which contains 2n − 1 points). We interchangeably think of
a point a in F2n in any of the following ways: (i) as an abstract point in the field; (ii) as an n-bit
string an−1 . . . a1a0 ∈ {0, 1}n; (iii) as a formal polynomial a(x) = an−1xn−1 + · · · + a1x + a0 with
binary coefficients; (iv) as an integer between 0 and 2n−1, where the string a ∈ {0, 1}n corresponds
to the number

∑n−1
i=0 ai2i. For example, one can regard the string a = 0125101 as a 128-bit string,

as the number 5, as the polynomial x2 + 1, or as an abstract point in F2128 .
To add two points in F2n , take their bitwise xor. We denote this operation by a⊕b. To multiply

two points, fix a primitive polynomial pn having binary coefficients and degree n; for concreteness,
select the lexicographically first primitive polynomial among the primitive degree n polynomials
having a minimum number of nonzero coefficients. For n = 128, the indicated polynomial is
p128(x) = x128 + x7 + x2 + x + 1. For n = 64 we have p64 = x64 + x4 + x3 + x + 1. Saying that
pn(x) is primitive means that it is irreducible over F2 and x = 2 generates all of F∗

2n (so the point 2
has order 2n − 1). To multiply a, b ∈ F2n , which we denote ab, regard a and b as polynomials
a(x) = an−1xn−1 + · · ·+a1x+a0 and b(x) = bn−1xn−1 + · · ·+ b1x+ b0, form their product c(x) over
F2, and take the remainder one gets when dividing c(x) by pn(x).

It is computationally simple to multiply a ∈ {0, 1}n by 2 (to “double” a). We illustrate the
method for n = 128, in which case multiplying a = an−1 · · · a1a0 by x = 2 yields an−1xn+an−2xn−1+
a1x2 + a0x. Thus, if the first bit of a is 0, then 2a = a<<1, the left-shift of a by one bit. If the first
bit of a is 1 then we must add x128 to a<<1. Since p128 = x128 + x7 + x2 + x + 1 = 0 we know that
x128 = x7 + x2 + x + 1, so adding x128 means to xor by 012010413. In summary, when n = 128 we
have that 2a = a<<1 if firstbit(a) = 0 and 2a = (a<<1) ⊕ 012010413 if firstbit(a) = 1.

One can easily multiply by other small constants as well: 3a = 2a ⊕ a and 5a = 2(2a) ⊕ a and
7a = 2(2a) ⊕ 2a ⊕ a and so forth.

Blockciphers and tweakable blockciphers. We review the standard definitions for block-
ciphers and their security [2] and the extension of these notions to tweakable blockciphers [11].
A blockcipher is a function E: K × {0, 1}n → {0, 1}n where n ≥ 1 is a number and K is a finite
nonempty set and E(K, ·) = EK(·) is a permutation for all K ∈ K. A tweakable blockcipher is a
function Ẽ: K × T × {0, 1}n → {0, 1}n where n and K are as above and T is a nonempty set and
Ẽ(K, T, ·) = ẼT

K(·) is a permutation for all K ∈ K and T ∈ T . For blockciphers and tweakable
blockciphers we call n the blocksize and K the key space. For tweakable blockciphers we call T the
tweak space.
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Let Perm(n) be the set of all permutations on n bits. Let Perm(T , n) be the set of all mappings
from T to permutations on n bits. In writing π

$← Perm(n) we are choosing a random permutation
π(·) on {0, 1}n. In writing π

$← Perm(T , n) we are choosing a random permutation π(T, ·) = πT (·)
on {0, 1}n for each T ∈ T . If E: K × {0, 1}n → {0, 1}n is a blockcipher then its inverse is the
blockcipher D = E−1 where D: K × {0, 1}n → {0, 1}n is defined by D(K, Y ) = DK(Y ) being the
unique point X such that EK(X) = Y . If Ẽ: K×T ×{0, 1}n → {0, 1}n is a tweakable blockcipher
then its inverse is the tweakable blockcipher D̃ = Ẽ−1 where D̃: K × T × {0, 1}n → {0, 1}n is
defined by D̃(K, T, Y ) = D̃T

K(Y ) being the unique point X such that ẼT
K(X) = Y .

An adversary is a probabilistic algorithm with access to zero or more oracles. Without loss of
generality, adversaries never ask a query for which the answer is trivially known: an adversary does
not repeat a query, does not ask DK(Y ) after receiving Y in response to a query EK(X), and so
forth. Oracles will have an implicit domain of valid queries and, for convenience, we assume that all
adversarial queries lie within that domain. This is not a significant restriction because membership
can be easily tested for all domains of interest to us.

Definition 1 [Blockcipher and tweakable-blockcipher security] Let E: K×{0, 1}n → {0, 1}n

be a blockcipher and let Ẽ: K × T × {0, 1}n → {0, 1}n be a tweakable blockcipher. Let A be an
adversary. Then:

Advprp
E (A) = Pr[K $←K : AEK(·) ⇒ 1] − Pr[π $← Perm(n) : Aπ(·) ⇒ 1]

Adv±prp
E (A) = Pr[K $←K : AEK(·) DK(·) ⇒ 1] − Pr[π $← Perm(n) : Aπ(·) π−1(·) ⇒ 1]

Advp̃rp

Ẽ
(A) = Pr[K $←K : AẼK(·,·) ⇒ 1] − Pr[π $← Perm(T , n) : Aπ(·,·) ⇒ 1]

Adv±p̃rp

Ẽ
(A) = Pr[K $←K : AẼK(·,·) D̃K(·,·) ⇒ 1] − Pr[π $← Perm(T , n) : Aπ(·,·) π−1(·,·) ⇒ 1] �

Of course D and D̃ denote the inverses of blockciphers E and Ẽ. By Pr[experiment : event] we
mean the probability of the specified event after performing the specified experiment. In writing
A ⇒ 1 we are referring to the event that the adversary A outputs the bit 1.

In the usual way we lift advantage measures that depend on an adversary to advantage measures
that depend on named resources: Advxxx

Π (R) = maxA{Advxxx
Π (A)} over all adversaries A that use

resources at most R. The resources of interest to us are the total number of oracle queries q and the
total length of those queries σ and the running time t. For convenience, the total length of queries
will be measured in n-bit blocks, for some understood value of n, so a query X contributes |X|n to
the total, where |X|n means max{|X|/n, 1}. Running time, by convention, includes the description
size of the algorithm relative to some standard encoding. When we speak of authenticity, the block
length of the adversary’s output is included in σ.

3 The XE and XEX Constructions

Goals. We want to support tweak sets that look like T = {0, 1}n × I where I is a set of tuples of
integers. In particular, we want to be able to make I the cross product of a large subrange of integers,
like [1 .. 2n/2], by the cross product of small ranges of integers, like [0 .. 10]×[0 .. 10]. Thus an example
tweak space is T = {0, 1}n × [1 .. 2n/2]× [0 .. 10]× [0 .. 10]. Tweaks arise in some sequence T1, T2, . . .
and we will obtain impressive efficiency only to the extent that most tweaks are an increment of
the immediately prior one. When we say that tweak T = (N, i1, . . . , ik) is an increment of another
tweak we mean that one of i1, . . . , ik got incremented and everything else stayed the same. The
second component of tweak (N, i1, . . . , ik), meaning i1, is the component that we expect to get
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incremented most often. We want there to be a simple, constant-time procedure to increment a
tweak at any given component of I. To increment a tweak it shouldn’t be necessary to go to memory,
consult a table, or examine which number tweak this in in sequence. Incrementing tweaks should
be endian-independent and avoid extended-precision arithmetic. Efficiently incrementing tweaks
shouldn’t require precomputation. Tweaks that are not the increment of a prior tweak will also
arise, and they will typically look like (N, 1, 0 . . . , 0). Constructions should be reasonably efficient
in dealing with such tweaks.

We emphasize that the efficiency measure we are focusing on is not the cost of computing
ẼT

K(X) from scratch—by that measure our constructions will not be particularly good. Instead,
we are interested in the cost of computing ẼT

K(X) given that one has just computed ẼS
K(X ′) and T

is obtained by incrementing S at some component. Most often that component will have been the
second component of S. It is a thesis underlying our work, supported by the design of OCB1 and
PMAC1, that one will often be able to arrange that most tweaks are an increment to the prior one.

Tweaking with Δ = 2i N. Recall that we have chosen to represent points in F2n using a
primitive polynomial, not just an irreducible one. This means that the point 2 is a generator of
F2n : the points 1, 2, 22, 23, . . . , 22n−2 are all distinct. This property turns out to be the crucial
one that lets us construct from a blockcipher E: K × {0, 1}n → {0, 1}n a tweakable blockcipher
Ẽ: K × ({0, 1}n × [1 .. 2n − 2]) × {0, 1}n → {0, 1}n by way of

ẼN i
K (M) = EK(M ⊕ Δ) ⊕ Δ where Δ = 2i N and N = EK(N).

The tweak set is T = {0, 1}n×I where I = [1 .. 2n−2] and the tweakable blockcipher just described is
denoted Ẽ = XEX[E, 2I] . When computing the sequence of values ẼN 1

K (M1), . . . , ẼN m−1
K (Mm−1)

each ẼN i
K (Mi) computation but the first uses one blockcipher call and one doubling operation.

Doubling takes a shift followed by a conditional xor. We call the construction above, and all the
subsequent constructions of this section, powering-up constructions.

Tweaking by Δ = 2i3j N. To facilitate mode design we may want tweaks that look like (N, i, j)
where N ∈ {0, 1}n and i is an integer from a large set I, like I = [1 .. 2n/2], and j is an integer from
some small set J, like J = {0, 1}. To get the “diversity” associated to the various j-values we just
multiply by 3 instead of 2. That is, we construct from a blockcipher E: K × {0, 1}n → {0, 1}n a
tweakable blockcipher Ẽ: K × ({0, 1}n × I × J) × {0, 1}n → {0, 1}n by way of

ẼN i j
K (M) = EK(M ⊕ Δ) ⊕ Δ where Δ = 2i3j N and N = EK(N).

The tweakable blockcipher just described is denoted Ẽ = XEX[E, 2I3J]. Incrementing the tweak at
component i is done by doubling, while incrementing the tweak at component j is done by tripling.

The XEX construction. Generalizing the two examples above, we have the following definition.
See Figure 1.

Definition 2 [XEX construction] Let E: K×{0, 1}n → {0, 1}n be a blockcipher, let α1, . . . , αk ∈
F∗

2n , and let I1, . . . , Ik ⊆ Z. Then Ẽ = XEX[E, αI1
1 · · ·αIk

k ] is the tweakable blockcipher Ẽ: K ×
({0, 1}n × I1 × · · · × Ik) × {0, 1}n → {0, 1}n defined by ẼNi1...ik

K (M) = EK(M ⊕ Δ) ⊕ Δ where

Δ = αi1
1 αi2

2 · · ·αik
k N and N = EK(N). �

The XE construction. As made clear in the work of Liskov, Rivest, and Wagner [11], construc-
tions of the form ẼT

K(M) = EK(M ⊕ Δ) ⊕ Δ aim for chosen-ciphertext attack (CCA) security,
while for chosen-plaintext attack (CPA) security one can omit the outer xor. Thus we consider
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Δ = αi1
1 αi2

2 · · ·αik

k N
EKEK

CC

M

Δ

Δ

Δ

M

N = EK(N)

Figure 1: The XE and XEX constructions. Starting with a blockcipher E: K × {0, 1}n → {0, 1}n and points

α1, . . . , αk ∈ F∗
2n and sets I1, . . . , Ik ⊆ Z we construct the blockcipher Ẽ = XE[E, αI1

1 · · ·αIk

k ] (shown on the

left) and Ẽ = XEX[E, αI1
1 · · ·αIk

k ] (shown on the right). Multiplication (to form Δ) is in F2n .

the construction EK(M ⊕ Δ). This is slightly more efficient than XEX, saving one xor. Again see
Figure 1.

Definition 3 [XE construction] Let E: K×{0, 1}n → {0, 1}n be a blockcipher, α1, . . . , αk ∈ F∗
2n ,

and I1, . . . , Ik ⊆ Z. Then Ẽ = XE[E, αI1
1 · · ·αIk

k ] is the tweakable blockcipher Ẽ: K× ({0, 1}n × I1 ×
· · · × Ik)×{0, 1}n → {0, 1}n defined by ẼNi1...ik

K (M) = EK(M ⊕Δ) where Δ = αi1
1 αi2

2 · · ·αik
k N and

N = EK(N). �

4 Parameter Sets Yielding Unique Representations

It is easy to see that the XE and XEX constructions can only “work” if αi1
1 · · ·αik

k are distinct
throughout (i1, . . . , ik) ∈ I1 × · · · × Ik. This motivates the following definition.

Definition 4 [Unique representations] Fix a group G. A choice of parameters is a list
α1, . . . , αk ∈ G of bases and a set I1 ×· · ·× Ik ⊆ Zk of allowed indices. We say that the choice of
parameters provides unique representations if for every (i1, . . . , ik), (j1, . . . , jk) ∈ I1 × · · · × Ik

we have that αi1
1 · · ·αik

k = αj1
1 · · ·αjk

k implies (i1, . . . , ik) = (j1, . . . , jk). �

In other words, representable points are uniquely representable: any group element αi1
1 · · ·αik

k that
can be represented using allowed indices can be represented in only one way (using allowed indices).

For tweak spaces of practical interest, discrete-log calculations within F∗
2n can be used to help

choose and verify that a given choice of parameters provides unique representations. The following
result gives examples for F∗

2128 .

Proposition 5 [Can use 2, 3, 7 when n = 128] In the group F∗
2128 the following choices for

parameters provide unique representations:

(1) α1 = 2 and I1 = [−2126 .. 2126].
(2) α1, α2 = 2, 3 and I1 × I2 = [−2115 .. 2115] × [−210 .. 210].
(3) α1, α2, α3 = 2, 3, 7 and I1 × It × I3 = [−2108 .. 2108] × [−27 .. 27] × [−27 .. 27]. �
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We comment that the above result does depend on the choice of representations for the group;
recall that we fixed a representation of F∗

2n using the lexicographically first primitive polynomial.

Proof: For statement (1) recall that 2 is a generator of the group (by our choice of irreducible
polynomial) and the order of the group F∗

2128 is 2128 − 1 and so 2i = 2j iff i = j (mod 2128 − 1)
and so any contiguous range of 2128 − 1 or fewer integers will provide unique representations with
respect to base 2.

To prove statement (2) we need to compute log2 3 in the group F∗
2128 :

log2 3 = 338793687469689340204974836150077311399 (decimal)

This and subsequent discrete logs were computed using a Maple-implementation combining the
Pohlig-Hellman [12] and Pollard-rho [13] algorithms. (A naive implementation computes discrete
logs in F∗

2128 in a few hours.) Now note that 2a3b = 2a′
3b′ iff 2a2b log2 3 = 2a′

2b′ log2 3 iff 2a+b log2 3 =
2a′+b′ log2 3 iff a + b log2 3 = a′ + b′ log2 3 (mod 2128 − 1) because 2 is a generator of the group
F∗

2128 . Thus 2a3b = 2a′
3b′ iff a− a′ = (b′ − b) log2 3 (mod 2128 − 1). If b, b′ ∈ [−210 .. 210] then Δb =

b′−b ∈ [−211 .. 211] and computer-assisted calculation then shows that the smallest value of Δb log2 3
(mod 2128−1) for Δb ∈ [−211..211] and Δb 	= 0 is 1600 log2 3 = 00113a0ce508326c006763c0b80c59f9
(in hexadecimal) which is about 2116.1. (By “smallest” we refer to the distance from 0, modulo
2128 − 1, so 2100 and (2128 − 1) − 2100 are equally small, for example.) Thus if a, a′ are restricted
to [−2115 .. 2115] and b, b′ are restricted to [−210 .. 210] then Δa = a − a′ ≤ 2116 can never equal
Δb log2 3 (mod 2128 − 1) > 2116 unless Δb = 0. This means that the only solution to 2a3b = 2a′

3b′

within the specified range is a = a′ and b = b′.

To prove statement (3) is similar. First we need the value

log2 7 = 305046802472688182329780655685899195396 (decimal)

Now 2a3b7c = 2a′
3b′7c′ iff a− a′ = (b′ − b) log2 3 + (c′ − c) log2 7 (mod 2128 − 1). The smallest value

for Δb log2 3 + Δc log2 7 (mod 2128 − 1) when Δb, Δc ∈ [−28 .. 28] and at least one of these is non-
zero is −48 log2 3 + 31 log2 7 (mod 2128 − 1) = 00003bfabac91e02b278b7e69a379d18 (hexadecimal)
which is about 2109.9. So restricting the index for base-2 to [−2108 .. 2108] ensures that a− a′ ≤ 2109

while (b′ − b) log2 3 + (c′ − c) log2 7 > 2109 unless b = b′ and c = c′ and a = a′.

We emphasize that not just any list of bases will work. Notice, for example, that 32 = 5 in F∗
2n

(because 32 = (x+1)2 = x2 +1 = 5) so the list of bases 2, 3, 5 does not give unique representations,
even for a tiny list of allowed indices like I1 × I2 × I3 = {0, 1, 2}3.

Similar calculations can be done in other groups; here we state the analogous result for F∗
264 .

Proposition 6 [Can use 2, 3, 11 when n = 64] In the group F∗
264 the following choices for

parameters provide unique representations:

(1) α1 = 2 and [−262 .. 262].
(2) α1, α2 = 2, 3 and [−251 .. 251] × [−210 .. 210].
(3) α1, α2, α3 = 2, 3, 11 and [−244 .. 244] × [−27 .. 27] × [−27 .. 27]. �

This time 2, 3, 7 does not work as a list of bases, even with a small set of allowed indices like
[1 .. 64] × {0, 1, 2} × {0, 1, 2}, due to the fact that 264 = 32 · 7 in this group. Machine-assisted
verification seems essential here; a relation like that just given is found immediately when computing
the possible values for Δb log2 3+Δc log2 7 (mod 264−1) but it might not otherwise be anticipated.

We comment that one has the freedom to switch the irreducible polynomial used to represent the
field if one is dissatisfied with the associated parameter choices that provide unique representations.
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5 Security of XE

The following result quantifies the security of the XE construction.

Theorem 7 [Security of XE] Fix n ≥ 1 and let α1, . . . , αk ∈ F∗
2n be base elements and let

I1 × · · · × Ik be allowed indices such that these parameters provide unique representations. Fix a
blockcipher E: K × {0, 1}n → {0, 1}n and let Ẽ = XE[E, αI1

1 · · ·αIk
k ]. Then

Advp̃rp

Ẽ
(t, q) ≤ Advprp

E (t′, 2q) +
4.5 q2

2n

where t′ = t + ckn(q + 1) for some absolute constant c. �

In English, the XE construction promotes a CPA-secure blockcipher to a CPA-secure tweakable
blockcipher, assuming that the chosen base elements and range of allowed indices provide unique
representations. The proof of Theorem 7 is given in Appendix B.

6 Security of XEX

Some added care is needed to address the security of XEX. Suppose, to be concrete, that we are
looking at XEX[E, 2I] and I = [0 .. 2n−2]. Let the adversary ask a deciphering query with ciphertext
C = 0n and tweak (0n, 0). If the adversary has a construction-based deciphering oracle then
it will get a response of M = D̃0n 0

K (0n) = DK(Δ) ⊕ Δ = DK(N) ⊕ N = 0n ⊕ N = N, where
N = EK(0n) = Δ. This allows the adversary to defeat the CCA-security. For example, enciphering
2M = 2N with a tweak of (0n, 1) and enciphering 4M = 4N with a tweak of (0n, 2) will give
identical results (if the adversary has the construction-based enciphering oracle). Corresponding to
this attack we exclude any tweak (N, i1, . . . , ik) for which (i1, . . . , ik) is a representative of 1—that
is, any tweak (N, i1, . . . , ik) for which αi1

1 . . . αik
k = 1. In particular, this condition excludes any

tweak (N, 0, . . . , 0). The proof of the following is omitted, as Theorem 11 will be more general.

Theorem 8 [Security of XEX] Fix n ≥ 1 and let α1, . . . , αk ∈ F∗
2n be base elements and let

I1 ×· · ·× Ik be allowed indices such that these parameters provide unique representations. Assume
αi1

1 · · ·αik
k 	= 1 for all (i1, . . . , ik) ∈ I1 × · · · × Ik. Fix a blockcipher E: K×{0, 1}n → {0, 1}n and let

Ẽ = XEX[E, αI1
1 · · ·αIk

k ]. Then

Adv±p̃rp

Ẽ
(t, q) ≤ Adv±prp

E (t′, 2q) +
9.5 q2

2n

where t′ = t + ckn(q + 1) for some absolute constant c. �

7 An Almost-Free Alternative to Key Separation

When combining two blockcipher-based cryptographic mechanisms into a composite mechanism,
it is, in general, essential to use two different keys. Either these two keys together comprise
the key for the joint mechanism, or else each key is obtained from an underlying one by a key-
derivation technique. The first possibility increases the key length in the composite mechanism
while the second involves extra computation at key setup. Both possibilities incur the inefficiency of
blockcipher re-keying when the combined mode runs. For all of these reasons, some new “composite”
modes of operation have gone to considerable trouble in order to make do (for their particular
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context) with a single blockcipher key. Examples include EAX, CCM, and OĊB [3, 14, 18]. Using
a single key complicates proofs—when the mechanism works at all—because one can no longer
reason about generically combining lower-level mechanisms.

Tweakable blockciphers open up a different possibility: the same underlying key is used across
the different mechanisms that are being combined, but one arranges that the tweaks are disjoint
across different mechanisms. In this way one retains the modularity of design and analysis associated
to using separate keys—one reasons in terms of generic composition—yet one can instantiate in
a way that avoids having extra key material or doing extra key setups. Because the tweak space
for XE and XEX is a Cartesian product of ranges of integers, it is easy, for these constructions, to
separate the different tweaks.

8 Combining XE and XEX

Some blockcipher-based constructions need CCA-security in some places and CPA-security in other
places. One could assume CCA-security throughout, later instantiating all blockcipher calls with a
CCA-secure construction, but it might be better to use a CPA-secure construction where sufficient
and a CCA-secure one where necessary. Regardless of subsequent instantiation, it is good to be
able to talk, formally, about where in a construction one needs what assumption.

To formalize where in a construction one is demanding what, we tag each blockcipher call with
an extra bit. We say that a tweakable blockcipher Ẽ: K × T × {0, 1}n → {0, 1}n is tagged if
T = {0, 1} × T ∗ for some nonempty set T ∗. Think of T ∗, the effective tweak space, as the tweak
space actually used by the mode. The extra bit indicates what is demanded for each tweak. A first
bit of 0 indicates a demand of CPA security, and 1 indicates a demand for CCA security. For a
given T ∈ T one should be asking for one or the other.

An adversary A launching an attack on a tagged blockcipher is given two oracles, e(·, ·) and
d(·, ·), where the second oracle computes the inverse of the first (meaning d(T, Y ) is the unique X
such that e(T, X) = Y ). The adversary must respect the semantics of the tags, meaning that the
adversary may not make any query d(T, Y ) where the first component of T is 0, and if the adversary
makes an oracle query with a tweak (b, T ∗) then it may make no subsequent query with a tweak
(1 − b, T ∗). As always, we insist that there be no pointless queries: an adversary may not repeat
an e(T, X) query or a d(T, Y ) query, and it may not ask d(T, Y ) after having learned Y = e(T, X),
nor ask e(T, X) after having learned X = d(T, Y ). The definition for security is now as follows.

Definition 9 [Security of a tagged, tweakable blockcipher] Let Ẽ: K×T ×{0, 1}n → {0, 1}n

be a tagged, tweakable blockcipher and let A be an adversary. Then Adv[±]p̃rp

Ẽ
(A) is defined as

Pr[K $←K : AẼK(·,·) D̃K(·,·) ⇒ 1] − Pr[π $← Perm(T , n) : Aπ(·,·) π−1(·,·) ⇒ 1] �

Naturally D̃, above, is the inverse of Ẽ. Security in the p̃rp-sense and security in the ±p̃rp-sense
are special cases of security in the [±]p̃rp sense (but for the enlarged tweak space).

If we combine XE and XEX using our tagging convention we get the tagged, tweakable block-
cipher XEX∗.

Definition 10 [XEX∗ construction] Let E: K×{0, 1}n → {0, 1}n be a blockcipher, let α1, . . . , αk ∈
F∗

2n , and let I1, . . . , Ik ⊆ Z. Then Ẽ = XEX∗[E, αI1
1 · · ·αIk

k ] is the tweakable blockcipher Ẽ: K ×
({0, 1} × {0, 1}n × I1 · · · × Ik) × {0, 1}n → {0, 1}n defined by Ẽ0 N i1...ik

K (M) = EK(M ⊕ Δ) and

Ẽ1 N i1...ik
K (M) = EK(M ⊕ Δ) ⊕ Δ where Δ = αi1

1 αi2
2 · · ·αik

k N and N = EK(N). �
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9 Security of the Combined Construction

We now specify the security of the XEX∗ construction. The result encompasses that XE is p̃rp-
secure and XEX is ±p̃rp-secure. But the theorem says more, facilitating designs where one in-
termixes XE-modified blockciphers and XEX-modified blockciphers, both with the same key. The
proof is given in Appendix C.

Theorem 11 [Security of XEX∗] Fix n ≥ 1 and let α1, . . . , αk ∈ F∗
2n be base elements and let

I1 ×· · ·× Ik be allowed indices such that these parameters provide unique representations and such
that αi1

1 · · ·αik
k 	= 1 for all (i1, . . . , ik) ∈ I1 × · · · × Ik. Fix a blockcipher E: K × {0, 1}n → {0, 1}n

and let Ẽ = XEX∗[E, αI1
1 · · ·αIk

k ]. Then

Adv[±]p̃rp

Ẽ
(t, q) ≤ Adv±prp

E (t′, 2q) +
9.5 q2

2n

where t′ = t + ckn(q + 1) for some absolute constant c. �

10 The OCB1 Authenticated-Encryption Scheme

We recast OCB [16] to use a tweakable blockcipher instead of a conventional blockcipher. Liskov,
Rivest, and Wagner first did this [11], but our formulation is different from theirs. First, guided
by what we have done so far, we choose a tweak space of T = {0, 1} × {0, 1}n × [1 .. 2n/2] × {0, 1}.
The first bit of the tweak is the tag; the effective tweak space is T ∗ = {0, 1}n × [1 .. 2n/2] × {0, 1}.
Second, we want tweaks to increase monotonically, and so we switch the “special” processing done in
OCB from the penultimate block to the final block. The resulting algorithm is shown in Figure 2.
Algorithm OCB1 is parameterized by a tweakable blockcipher Ẽ: K × T × {0, 1}n → {0, 1}n

and a number τ ∈ [0 .. n]. For clarity, we write πN
i for Ẽ 1 N i 0

K and πN
i for Ẽ 0 N i 0

K and π̄N
i for

Ẽ 0 N i 1
K . By “Partition M into M [1] · · ·M [m]” we mean to set m ← max{�|M |/n�, 1} and define

M [1], . . . , M [m] such that M [1] · · ·M [m] = M and |M [1]| = · · · = |M [m−1]| = n. By “Partition C

into C[1] · · ·C[m]T” we mean to return Invalid if |C| ≤ τ . Otherwise, we let C be the first |C| − τ
bits of C and we let T be the last τ bits of C. Then we set m ← max{�|C|/n�, 1} and define
C[1], . . . , C[m] such that C[1] · · ·C[m] = C and |C[1]| = · · · = |C[m− 1]| = n. By C[m]0∗ we mean
to append to C[m] enough 0-bits so as to make the resulting string n-bits long. By X ⊕ Pad we
mean X[1 .. |Pad|] ⊕ Pad, the xor of Pad with the matching-length prefix of X.

The security of OCB1[Perm(T , n)] is much simpler to prove than the security of OCB[Perm(n)].
(Liskov, Rivest, and Wagner [11] had made the same point for their tweakable-blockcipher variant
of OCB.) To state the result we give a couple of definitions from [16]. For privacy of a nonce-based
encryption scheme Π = (K, E ,D) we use the notion of indistinguishability-from-random-strings,
which defines Advpriv

Π (A) as Pr[K $←K : AEK(·,·) ⇒ 1] − Pr[A$(·,·) ⇒ 1]. Here $(·, ·) is an oracle
that, on input (N, M), returns |M | random bits. The adversary is not allowed to repeat a nonce N .
For authenticity we use the nonce-based notion of integrity of ciphertexts: the adversary is given
an encryption oracle EK(·, ·) and is said to forge if it outputs an (N, C) that is valid and C was not
the result of any prior (N, M) query. The adversary is not allowed to repeat a nonce N while it
queries its encryption oracle. We write Advauth

Π (A) for Pr[K $←K : AEK(·,·) forges ]. We have the
following theorem for the information-theoretic security of OCB1. The proof is in Appendix D.

9



M1

πN
3πN

2πN
1

ΣM2 M3

C1 C2 C3 Tag

len

πN
4 π̄N

4

Pad

C4

M4

Algorithm OCB1.EncryptN
K (M)

Partition M into M [1] · · ·M [m]
for i ∈ [1 .. m − 1] do C[i] ← πN

i (M [i])
Pad ← πN

m(len(M [m]))
C[m] ← M [m] ⊕ Pad
C ← C[1] · · ·C[m]
Σ ← M [1] ⊕ · · · ⊕ M [m − 1] ⊕ C[m]0∗ ⊕ Pad
Tag ← π̄N

m(Σ)
T ← Tag [first τ bits]
return C ← C ‖ T

Algorithm OCB1.DecryptN
K (C)

Partition C into C[1] · · ·C[m] T

for i ∈ [1 .. m − 1] do M [i] ←
(
πN

i

)−1 (C[i])
Pad ← πN

m(len(C[m]))
M [m] ← C[m] ⊕ Pad
M ← M [1] · · ·M [m]
Σ ← M [1] ⊕ · · · ⊕ M [m − 1] ⊕ C[m]0∗ ⊕ Pad
Tag ← πN

m(Σ)
T ′ ← Tag [first τ bits]
if T = T ′ then return M else return Invalid

Figure 2: OCB1[Ẽ, τ ] with a tweakable blockcipher Ẽ: K × T × {0, 1}n → {0, 1}n and tweak space T =
{0, 1} × {0, 1}n × [1 .. 2n/2] × {0, 1} and tag length τ ∈ [0 .. n]. We write πN

i and πN
i and π̄N

i for Ẽ1 N i 0
K and

Ẽ0 N i 0
K and Ẽ0 N i 1

K .

Theorem 12 [OCB1 with an ideal tweakable blockcipher] Fix n ≥ 1, τ ∈ [0 .. n], and
T = {0, 1} × {0, 1}n × [1 .. 2n/2] × {0, 1}. Let A be an adversary. Then

Advpriv
OCB1[Perm(T ,n),τ ](A) = 0 and

Advauth
OCB1[Perm(T ,n),τ ](A) ≤ 2n−τ

2n − 1
.

�

Note that the authenticity bound is close to 2−τ ; in particular, 2n−τ/(2n − 1) ≤ 1/(2τ − 1) for all
τ ≥ 2. The bounds do not degrade with the number of queries asked by the adversary, the length
of these queries, or the time the adversary runs. For the complexity-theoretic analog we have the
following.

Corollary 13 [Security of OCB1 with a tweakable blockcipher] Fix n ≥ 1, τ ∈ [0 .. n], T =
{0, 1}×{0, 1}n×[1 .. 2n/2]×{0, 1}, and Ẽ: K×T ×{0, 1}n → {0, 1}n a tagged, tweakable blockcipher.

Then Advpriv

OCB1[Ẽ,τ ]
(t, σ) ≤ Advp̃rp

Ẽ
(t′, σ) and Advauth

OCB1[Ẽ,τ ]
(t, σ) ≤ Adv[±]p̃rp

Ẽ
(t′, σ)+2n−τ/(2n−1),

where t′ = t + cnσ for some absolute constant c. �

The proof requires CPA-security for privacy but authenticity uses the notion that combines CPA-
and CCA-security (Definition 9). It is here that one has formalized the intuition that the first m−1
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Algorithm OCB1.EncryptN
K (M)

Partition M into M [1] · · ·M [m]
Δ ← 2EK(N)
Σ ← 0n

for i ∈ [1 .. m − 1] do
C[i] ← EK(M [i] ⊕ Δ) ⊕ Δ
Δ ← 2Δ
Σ ← Σ ⊕ M [i]

Pad ← EK(len(M [m]) ⊕ Δ)
C[m] ← M [m] ⊕ Pad
C ← C[1] · · ·C[m]
Σ ← Σ ⊕ C[m]0∗ ⊕ Pad
Δ ← 3Δ
Tag ← EK(Σ ⊕ Δ)
T ← Tag [first τ bits]
return C ← C ‖ T

Algorithm OCB1.DecryptN
K (C)

Partition C into C[1] · · ·C[m] T
Δ ← 2EK(N)
Σ ← 0n

for i ∈ [1 .. m − 1] do
M [i] ← E−1

K (C[i] ⊕ Δ) ⊕ Δ
Δ ← 2Δ
Σ ← Σ ⊕ M [i]

Pad ← EK(len(C[m]) ⊕ Δ)
M [m] ← C[m] ⊕ Pad
M ← M [1] · · ·M [m]
Σ ← Σ ⊕ C[m]0∗ ⊕ Pad
Δ ← 3Δ
Tag ← EK(Σ ⊕ Δ)
T ′ ← Tag [first τ bits]
if T = T ′ then return M else return Invalid

Figure 3: OCB1[E, τ ] with a conventional blockcipher E: K × {0, 1}n → {0, 1}n and a tag length τ ∈ [0 .. n].
This coincides with OCB1[Ẽ, τ ] where Ẽ = XEX[E, 2[1 .. 2n/2]3{0,1}].

tweakable-blockcipher calls to OCB1 need to be CCA-secure but the last two calls need only be
CPA-secure.

To realize OCB1 with a conventional blockcipher E: K × {0, 1}n → {0, 1}n, use XEX∗, instan-
tiating OCB1[Ẽ, τ ] by way of Ẽ = XEX∗[E, 2I3J] where I = [1 .. 2n/2] and J = {0, 1}. Overloading
the notation, we write this scheme as OCB1[E, τ ]. The method is rewritten in Figure 3. Security
of the blockcipher-based OCB1 follows from Theorem 11 and Corollary 13.

Corollary 14 [OCB1 with a blockcipher] Fix n ≥ 1 and τ ∈ [0 .. n]. Assume that 2, 3 provide
unique representations on [1 .. 2n/2] × {0, 1} and 2i3j 	= 1 for all (i, j) ∈ [1 .. 2n/2] × {0, 1}. Let
E: K × {0, 1}n → {0, 1}n be a blockcipher. Then

Advpriv
OCB1[E,τ ](t, σ) ≤ Advprp

E (t′, 2σ) +
4.5σ2

2n
and

Advauth
OCB1[E,τ ](t, σ) ≤ Adv±prp

E (t′, 2σ) +
9.5σ2

2n
+

2n−τ

2n − 1
where t′ = t + cnσ for some absolute constant c. �

Propositions 5 and 6 establish that n = 128 and n = 64 satisfy the requirement for unique repre-
sentations. They also guarantee that there is no representative of 1 within [1 .. 2n/2] × {0, 1}. To
see this, note that the propositions imply that (0, 0) is the only representative for 1 within a space
I1× I2 that includes [1 .. 2n/2]×{0, 1}, and so there can be no representative of 1 within a subspace
of I1 × I2 that excludes (0, 0).

Blockcipher-based OCB1 is more efficient than OCB. With OCB one expects to use prepro-
cessing to compute a value L = EK(0n) and a collection of 2iL-values. This is gone in OCB1;
preprocessing is not useful there beyond setting up the underlying blockcipher key. Beyond this,
with OCB processing the jth block involved xoring into the current offset a value L(i) = 2iL
where i = ntz(j) was the number of trailing zero-bits in the index j. In the absence of preprocess-
ing, offset-calculations were not constant time. This too is gone.

The previous paragraph notwithstanding, the time difference or chip-area difference between
optimized implementations of OCB and OCB1 will be small, since the overhead of OCB over a
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π̄4 ¯̄π4

π1 π2 π3 π1 π2 π3

M1 M2 M3 10∗M1 M2 M3 M4

Tag Tag

M4

Algorithm PMAC1K (M) //Based on a tweakable blockcipher

Partition M into M [1] · · ·M [m]
for i ∈ [1 .. m − 1] do Y [i] ← πi(M [i])
if |M [m]| = n then Tag ← π̄m(Y [1] ⊕ · · · ⊕ Y [m − 1] ⊕ Mm)

else Tag ← ¯̄πm(Y [1] ⊕ · · · ⊕ Y [m − 1] ⊕ Mm10∗)
T ← Tag [first τ bits]
return T

Figure 4: PMAC1[Ẽ, τ ] using a tweakable blockcipher Ẽ and a tag length τ ∈ [0 .. n] where Ẽ: K×T ×{0, 1}n →
{0, 1}n and T = {0, 1}n × [1 .. 2n/2] × [2 .. 4]. We write πi and π̄i and ¯̄πi for Ẽ 0n i 2

K and Ẽ 0n i 3
K and Ẽ 0n i 4

K .

mode like CBC was already small. The larger gain is that the mode is simpler to understand,
implement, and prove correct.

11 The PMAC1 Message Authentication Code

As with OCB, we recast PMAC [4] to use a tweakable blockcipher. The resulting algorithm is shown
in Figure 4. Algorithm PMAC1[Ẽ, τ ] depends on a tweakable blockcipher Ẽ: K × T × {0, 1}n →
{0, 1}n where T = {0, 1}n × [1 .. 2n/2] × [2 .. 4], and on a number τ ∈ [1 .. n]. Letting K be implicit
in the notation, we write πi for Ẽ 0n i 2

K and π̄i for Ẽ 0n i 3
K and ¯̄πi for Ẽ 0n i 4

K in our description of
PMAC1. By “Partition M into M [1] · · ·M [m]” we mean to set m ← max{�|M |/n�, 1} and define
M [1], . . . , M [m] such that M [1] · · ·M [m] = M and |M [1]| = · · · = |M [m − 1]| = n. By X10∗ we
mean X10i where i is the smallest number such that |X10i| = n.

We have been intentionally unfaithful in abstracting the original PMAC algorithm. In par-
ticular, in PMAC1 the tweak for the final blockcipher call depends on the message length m.
This is because, when using the powering-up constructions, it is desirable for tweaks to increase
monotonically.

We have selected the final component of PMAC1’s tweak as being in [2 .. 4], rather than the
more natural range of [0 .. 2]. This is done to separate the tweakable-blockcipher calls used by
PMAC1 from those used by OCB1. Arranging that the tweaks be non-overlapping across these

12



Algorithm PMAC1K (M) //Based on a conventional blockcipher

Partition M into M [1] · · ·M [m]
Θ ← 10 EK(0n)
Σ ← 0n

for i ← 1 to m − 1 do
Y ← EK(M [i] ⊕ Θ)
Σ ← Σ ⊕ Y
Θ ← 2Θ

if |M [m]| = n then Θ ← 3Θ, Σ ← Σ ⊕ M [m]
else Θ ← 5Θ, Σ ← Σ ⊕ M [m]10∗

Tag ← EK(Σ ⊕ Θ)
T ← Tag [first τ bits]
return T

Figure 5: PMAC1[E, τ ] using a conventional blockcipher E: K × {0, 1}n → {0, 1}n and a number τ ∈ [0 .. n].
The algorithm coincides with PMAC1[Ẽ, τ ] where Ẽ = XE[E, 2[1 .. 2n/2]3[2 .. 4]].

two modes facilitates the specification of an authenticated-encryption scheme, AEM, that combines
OCB1 and PMAC1 in order to handle associated-data. AEM encryption is defined in Section 12.

PMAC1 is not only secure as a MAC, but as a pseudorandom function (PRF) from {0, 1}∗

to {0, 1}τ . For a PRF with such a signature recall that Advprf
F (A) = Pr[K $←K : AFK(·) ⇒ 1] −

Pr[ρ $← Rand({0, 1}∗, τ) : Aρ(·) ⇒ 1] where Rand({0, 1}∗, τ) denotes the set of all functions from
{0, 1}∗ to {0, 1}τ . The definition is extended in the usual way to give resource-parameterized
advantage measures, with σ measuring the total number of n-bit blocks asked in all adversary
queries.

Theorem 15 [Security of PMAC1 with an ideal tweakable blockcipher] Fix n ≥ 1 and
τ ∈ [1 .. τ ]. Let T = {0, 1}n × [1 .. 2n/2] × [2 .. 4]. Then

Advp̃rf
PMAC1[Perm(T ,n),τ ](σ) ≤ σ2

2n
.

�

The proof for the theorem above is given in Appendix E. The following corollary is then obtained
in the customary way.

Corollary 16 [Security of PMAC1 with a tweakable blockcipher] Fix n ≥ 1 and τ ∈ [1 .. n].
Let T = {0, 1}n×[1 .. 2n/2]×[2 .. 4] and let Ẽ: K×T ×{0, 1}n → {0, 1}n be a tweakable blockcipher.

Then Advp̃rf

PMAC1[Ẽ,τ ]
(t, σ + 1) ≤ Advp̃rp

Ẽ
(t′, σ) + σ2/2n where t′ = t + cnσ for some absolute

constant c. �

To realize PMAC1 starting from a conventional blockcipher, use the XE construction, defining Ẽ =
XE[E, 2I3J] with I = [1 .. 2n/2] and J = [2 .. 4]. Overloading the notation, when E is an n-bit
blockcipher we write PMAC1[E, τ ]. The algorithm is shown in Figure 5. The constant 10 used in
the initialization of offset Θ is 10 = 2 · 32 (in F2n). Security is given below, obtained by combining
Corollary 16 and Theorem 7.

Corollary 17 [Security of PMAC1 with a blockcipher] Fix n ≥ 1 and τ ∈ [1 .. n]. Assume
that 2, 3 provide unique representations on [1 .. 2n/2] × [2 .. 4]. Let E: K × {0, 1}n → {0, 1}n be a
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blockcipher. Then Advp̃rf
PMAC1[E,τ ](t, σ) ≤ Advprp

E (t′, σ + 1) + 5.5 σ2

2n where t′ = t + cnσ for some
absolute constant c. �

Algorithm PMAC1 has advantages over PMAC. With PMAC one had to xor into the current offset
a value L(i) = 2iL where i was the number of trailing zero-bits in the current block index j.
Nothing like this exists in PMAC, simplifying offset calculations. Writing an optimized PMAC1
implementation is easier than writing an optimized PMAC implementation because one is freed
from worrying about Gray codes, precomputing L(i)-values, or finding the most efficient way to
bring in the right L(i) value. Finally, PMAC1 enjoys a simpler proof.

12 Comments

To make an authenticated encryption scheme that handles associated-data, combine OCB1 and
PMAC1 [14]. Encryption of message M under key K, nonce N , and header H is defined as
OCB1.EncryptNK(M) ⊕ PMAC1K(H) where the ⊕ xors into the end. Omit the ⊕ PMAC1K(H) if
H = ε. We call this scheme AEM.

Under the approach suggested by this paper, to get good efficiency for a design that uses a
tweakable-blockcipher, the designer must accept certain design rules. In particular, the tweak
space needs to look like {0, 1}n × BIG × SMALL for appropriate sets BIG and SMALL, and one
needs to arrange that most tweaks be obtained by incrementing the prior one. It is a thesis implicit
in this work that these restrictions are not overly severe.

Besides simplifying the design and proof for OCB and PMAC, we have improved their efficiency.
The improvement are not large (the modes were already highly efficient), but performance improve-
ments, of any size, was not a benefit formerly envisaged as flowing from the tweakable-blockcipher
abstraction.

Somewhat strangely, our constructions depend on the relative easiness of computing discrete
logarithms. I know of no other example where one needs to compute discrete logs in order to design
or verify a mode of operation.

I end this paper by acknowledging that everyone writes block cipher, not blockcipher. Still, the
time has come to spell this word solid. I invite you to join me.
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A Tweakable Blockciphers Implicit in Prior Work

When tweaks increase in sequence, the most efficient constructions formerly known for a tweakable
blockcipher are those implicit in earlier modes [4, 6, 10, 16], recast in view of Liskov, Rivest, and
Wagner [11]. In particular:

Jutla [10] might be seen as suggesting a construction (among others) of Ẽ: (K×K′)×({0, 1}n×
Z+

p ) × {0, 1}n → {0, 1}n by way of ẼN,i
KK′(X) = EK(X ⊕ Δ) ⊕ Δ where Δ = i	 mod p and

	 = EK′(N) and p is the largest prime less than 2n.
Gligor and Donescu [6] might be seen as suggesting constructions like Ẽ: (K × {0, 1}n) ×
[1 .. 2n − 1] → {0, 1}n by Ẽi

K,r(X) = EK(X + δ) where δ = ir and addition is done modulo 2n.
Rogaway, Bellare, and Black [16] might be seen as implicitly suggesting making a tweakable
blockcipher Ẽ: K × ({0, 1}n × [0 .. 2n−2]) × {0, 1}n → {0, 1}n from an ordinary blockcipher
E: K × {0, 1}n → {0, 1}n by way of ẼN,i

K (X) = EK(X ⊕ Δ) ⊕ Δ where Δ = γiL ⊕ R and
L = EK(0n) and R = EK(N ⊕ L) and γi is the i-th Gray-code coefficient.
Black and Rogaway [4] might be seen as making Ẽ: K × [0 .. 2n−2] × {0, 1}n → {0, 1}n out of
E: K × {0, 1}n → {0, 1}n by Ẽi

K(X) = EK(X ⊕ Δ) where Δ = γiL and L = EK(0n) and γi

is as before.
The last two definitions ignore the “special” treatment afforded to blocks modified by xoring
in 2−1L. The implicit intent [4, 16] was to use this mechanism to enlarge the tweak space by
one bit, effectively taking the cross product with {0, 1}.

B Proof of Theorem 7 — Security of XE

Let A be an adversary trying to distinguish Ẽ from the family all tweakable permutations with
the same tweak space. Say that A runs in time t and makes exactly q queries. Without loss of
generality assume that A is deterministic. We give a hybrid argument. In particular, we introduce
the following hybrids:

(1) p1 = Pr[K $←K : AẼK(·,·) ⇒ 1]

(2) p2 = Pr[π $← Perm(n) : Aπ̃(·,·) ⇒ 1]

(3) p3 = Pr[ρ $← Rand(n) : Aρ̃(·,·) ⇒ 1]

(4) p4 = Pr[ρ $← Rand(T , n) : Aρ(·,·) ⇒ 1]

(5) p5 = Pr[π $← Perm(T , n) : Aπ(·,·) ⇒ 1]
Let us explain the notation. In the experiment associated to (1) a query (N, i1, . . . , ik), M is
answered with EK(M ⊕ Δ) where Δ = αi1

1 · · ·αik
k N and N = EK(N). Here K is a random key for

the tweakable blockcipher. In the experiment associated to (2) a query (N, i1, . . . , ik), M is answered
with π(M ⊕Δ) where Δ = αi1

1 · · ·αik
k N and N = π(N). Here π is a random permutation on n bits.

In the experiment associated to (3) a query (N, i1, . . . , ik), M is answered with ρ(M ⊕ Δ) where
Δ = αi1

1 · · ·αik
k N and N = ρ(N). Here ρ is a random function from n bits to n bits. In the experiment

associated to (4) a query (N, i1, . . . , ik), M is answered with ρ((N, i1, . . . , ik), M). Here ρ is a
random function that takes a tweak (N, i1, . . . , ik) and an n-bit string M and returns n bits. In
the experiment associated to (5) a query (N, i1, . . . , ik), M is answered with π((N, i1, . . . , ik), M).
Here π(T, ·) is a random function permutation on n bits for each tweak T = (N, i1, . . . , ik).

The value we must bound is p1 − p5 = (p1 − p2) + (p2 − p3) + (p3 − p4) + (p4 − p5). Three of
these four addends are easy to bound:
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Initialization:
000 bad ← false; for all X ∈ {0, 1}n do ρ(X) ← undefined

Respond to the jth query, (N j , ij1 · · · i
j
k), M j, as follows:

100 if N j = N i for some i < j then Nj ← Ni

101 else Nj $←{0, 1}n

102 if N j ∈ Domain(ρ) then bad ← true , Nj ← ρ(N j)
103 ρ(N j) ← Nj

104 Y j $←{0, 1}n

105 Xj ← M j ⊕ α
ij
1

1 · · ·αij
k

k Nj

106 if Xj ∈ Domain(ρ) then bad ← true , Y j ← ρ(Xj)
107 ρ(Xj) ← Y j

108 return Y j

Figure 6: Game P3 (as written) and Game P4 (with the shaded statements omitted). The former accurately
simulates the environment defining p3, while the latter accurately simulates the environment defining p4.

p1−p2 ≤ Advprp
E (t′, 2q) where t′ = t+ckn(q+1) for some constant c depending on details of the

model of computation. This is because one strategy for distinguishing an oracle f = EK(·)
(for a random key K) from an oracle f = π(·) (where π is a random permutation on n
bits) is to run A, answering each query according to the construction f̃ , namely, answering
((N, i1, · · · , ik), M) by f(M + Δ) where Δ = αi1

1 · · ·αik
k f(N). The time to do this is cq + c′

beyond the time that the adversary A runs, while the number of queries asked to the f -oracle
is 2q.
p2 − p3 ≤ 2q2/2n. This is the standard replacement of a random permutation by a random
function (see, for example, [2]). The number of queries is at most 2q, so the discrepancy
between what the permutation gives and what the function gives is at most 0.5·2q(2q−1)/2n ≤
2q2/2n.
p5 − p4 ≤ 0.5q2/2n. This is again the standard switching of a random function and a random
permutation (the tweak that indexes the function makes no difference).

We are left with the task of bounding p4 − p3. This is done with a game-playing argument, as used
in works like [9].

Refer to Figure 6, which defines Games P3 and P4. The former is an accurate simulation of
the experiment defining p3 (the CPA powering-up construction applied to a random function ρ).
Thus p3 = Pr[AGameP3 ⇒ 1]. The latter is an accurate simulation of the experiment defining p4

(every value returned to the adversary is a random n-bit string). (Recall that, by convention, an
adversary may not repeat a query.) Thus p4 = Pr[AGameP4 ⇒ 1]. Since Games P3 and P4 are
syntactically identical until the flag bad gets set to true, the usual game-playing argument ensures
that p3 − p4 ≤ Pr[A sets bad in Game P4]. Our task is to bound that probability.

The flag bad gets set to true in Game P4 if there is ever a collision among: the distinct N j-
values together with all of the Xj-values. The N j-values cannot collide among themselves because
of the if statement at line 100. But N i-values can collide with Xj-values (for any i, j ∈ [1 .. q]) and
Xi-values can collide with Xj-values (for distinct i, j ∈ [1 .. q]).

We observe that the Y i-values returned to the adversary are independent of the Xj-values
placed into Domain(ρ). (Observe that Y j is selected at random on line 104 and then returned to
the adversary at line 108. It never has an impact in determining Domain(ρ) and its being placed
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in the range at line 108 is irrelevant, as range-values are never consulted in Game P4.) Since the
values that the adversary is learning have nothing to do with the adversary’s task at hand (to
set bad) we may assume that the adversary is non-adaptive. Thus it asks some fixed sequence
((N1, i11 · · · i1k), M1), . . . , ((N q, iq1 · · · i

q
k), M

q) hoping that a resulting N i and Xj collide, or that a
resulting Xi and Xj that collide.

Fix i, j ∈ [1 .. q]. We claim that the chance that N i = Xj is exactly 2−n. For Pr[N i = Xj ] =

Pr[N i = M j ⊕ α
ij1
1 · · ·αijk

k Nj ]. The Nj value was selected at random and its multiplier is nonzero,
so this probability is just 2−n.

Fix distinct i, j ∈ [1 .. q]. We claim that the chance that Xi = Xj is exactly 2−n. We are

considering Pr[Xi = Xj ] = Pr[M i ⊕ α
ii1
1 · · ·αiik

k Ni = M j ⊕ α
ij1
1 · · ·αijk

k Nj ]. Now if N i 	= N j

then Ni and Nj are independent random n-bit strings, the multiplier in front of them is nonzero,
and so this probability is certainly 2−n. If N i = N j then Ni = Nj is a random n-bit string

and we are looking at Pr[M i ⊕ M j = (αii1
1 · · ·αiik

k − α
ij1
1 · · ·αijk

k ) Ni]. Since N i = N j and queries
are distinct, if (ii1, . . . , i

i
k) = (ij1, . . . , i

j
k) then M i 	= M j and the probability above is 0. If, instead,

(ii1, . . . , i
i
k) 	= (ij1, . . . , i

j
k) then α

ii1
1 · · ·αiik

k 	= α
ij1
1 · · ·αijk

k because of the unique-representation condition
and so the multiplier in front of Ni is nonzero and the the probability in question is 2−n.

We have shown that for every pair of values added into the domain of ρ the probability that
they collide is at most 2−n. Since there are at most

(
2q2≤2q2

)
such values the sum bound tells us

that p3 − p4 ≤ 2q2/2n. Adding this to (p1 − p2) + (p2 − p3) + (p5 − p4) ≤ 2.5q2/2n + Advprp
E (t′, 2q)

gives the desired result.

C Proof of Theorem 11 — Security of XEX∗

Let A be an adversary that attacks Ẽ. Say that A runs in time at most t and makes exactly q
queries (if it makes fewer oracle queries on a given run then have it ask additional, valid queries
until it has made q calls). Without loss of generality assume that A is deterministic.

We start off with a hybrid argument. In particular, we introduce the following hybrids:

(1) p1 = Pr[K $←K : AẼK(·,·) D̃K(·,·) ⇒ 1]

(2) p2 = Pr[π $← Perm(n) : Aπ̃(·,·) π̃−1(·,·) ⇒ 1]
(3) p3 = Pr[A$(·,·) $(·,·) ⇒ 1]

(4) p4 = Pr[π $← Perm(T , n) : Aπ(·,·) π−1(·,·) ⇒ 1]
Let us explain the notation above. In the experiment associated to (1) a query (b, N, i1, . . . , ik), M
to the adversary’s left oracle is answered with EK(M ⊕ Δ) if b = 0 and with EK(M ⊕ Δ) ⊕ Δ
if b = 1, where Δ = αi1

1 · · ·αik
k N and N = EK(N). A query to the adversary’s right oracle is

answered with DK(M ⊕Δ) if b = 0 and DK(M ⊕Δ)⊕Δ if b = 1. Here K is a random key for the
blockcipher E. In the experiment associated to (2) a query (b, N, i1, . . . , ik), M to the adversary’s
left oracle is answered with π(M ⊕Δ) if b = 0 and π(M ⊕Δ)⊕Δ if b = 1, where Δ = αi1

1 · · ·αik
k N

and N = π(N). A query to the adversary’s right oracle is answered with DK(M ⊕ Δ) if b = 0
and DK(M ⊕ Δ) ⊕ Δ if b = 1. Here π is a random permutation on n bits. In the experiment
associated to (3) a query (b, N, i1, . . . , ik), M to either oracle is answered with n random bits. In
the experiment associated to (4) a left query of (b, N, i1, . . . , ik), M is answered by πN,i1,...,ik(M)
and a right query of (b, N, i1, . . . , ik), M is answered with π−1

N,i1,...,ik
(M) where each πT is a random

permutation on n bits.
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The value we must bound is p1 − p4 = (p1 − p2) + (p2 − p3) + (p3 − p4). Two of these three
addends are easy to bound:

p1 − p2 ≤ Adv±prp
E (t′, 2q) where t′ = t + ckn(q + 1) for some constant c depending only

on details of the model of computation. This is because one strategy for distinguishing ora-
cles (F (·), G(·)) = (EK(·), DK(·)) from (F, G) = (π(·), π−1(·)) is embodied by the following
adversary BF (·) G(·): run Af g, answering each query f((b, N, α1, . . . , αk), M) by F (M ⊕ Δ)
if b = 0 and F (M ⊕ Δ) ⊕ Δ if b = 1, and answering each query g((b, N, α1, . . . , αk), M) by
G(M ⊕ Δ) if b = 0 and G(M ⊕ Δ) ⊕ Δ if b = 1, where Δ = αi1

1 · · ·αik
k N and N = F (N).

When A halts with output β have B halt with output β. The time for this adversary is
ckn(q + 1) beyond the time that the adversary A runs, for some constant c; the total number
of queries asked by B is 2q; and Adv±prp

E (B) = p1 − p2.
p3 − p4 ≤ 2q2/2n. This is just the standard replacement of a random permutation and
its inverse by a pair of random functions. The number of queries is at most 2q, so the
discrepancy between what the permutation gives and what the function gives is at most
0.5 · 2q(2q − 1)/2n ≤ 2q2/2n. Recall that we have forbidden the types of queries that trivially
allow the distinguishing of these two kinds of oracles, such as repeating an oracle query.

We are left with the task of bounding p2 − p3. This is done with a game-playing argument, as
used in works like [9]. We begin with a game, call it Game 2, that accurately simulates the pair of
oracles (π̃, π̃−1) that we have defined. See Figure 7. Also defined in Figure 7 is Game 3, which is
obtained by omitting the eight shaded statements.

An inspection of Game 2 will make clear that it provides to the adversary an identical view as
that which is obtained by giving the adversary a random (π̃(·, ·), π̃−1(·, ·)) oracle. As such,

p2 = Pr[π $← Perm(n) : Aπ̃(·,·) π̃−1(·,·) ⇒ 1] = Pr[AGame 2 ⇒ 1] . (1)

On the other hand, it is easy to see that Game 3 simply returns n random bits in response to each
query, and so

p3 = Pr[A$(·,·) $(·,·) ⇒ 1] = Pr[AGame 3 ⇒ 1] . (2)

The quantity that we must bound is p2 − p3, and so

p2 − p3 = Pr[AGame 2 ⇒ 1] − Pr[AGame 3 ⇒ 1] . (3)

Since Games 2 and 3 have been setup to be syntactically identical apart from that which happens
following the setting of the flag bad to true, the usual game-playing method informs us that

p2 − p3 ≤ Pr[AGame 3 sets bad ] . (4)

To understand Game 3 we will make some modifications to it. Begin by eliminating lines 24,
30, 44, and 50. For clarity, we have rewritten Game 3A as Figure 8 This results in a different
game, call it Game 3A. In eliminating these lines we may decrease the probability that bad gets
set to true, but it is easy to see by how much we have lessened this probability: by at most
(1 + 2 + · · · + 2q − 1)/2n ≤ 2q2/2n. We record this for future reference:

Pr[AGame 3 sets bad ] ≤ Pr[AGame 3A sets bad ] +
2q2

2n
(5)

We now make some changes to Game 3A, changes that have no adversarially-visible effect. See
Figure 9. (1) We start of by indexing the calls, numbering them from 1 to q. This lets us to drop the
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Initialization:
10 Let π[·] be everywhere undefined
11 Let haveSeen[·] be everywhere false
12 bad ← true

On a left query of (T,M):
20 Parse T into (b,N, i1, . . . , ik)
21 if haveSeen[N ] then N ← π[N ] else
22 haveSeen[N ] ← true

23 N
$←{0, 1}n

24 if N ∈ Range(π) then bad ← true , N
$← Range(π)

25 if π[N ] 	= undefined then bad ← true , N ← π[N ]
26 π[N ] ← N

27 Δ ← αi1
1 · · ·αik

k N
28 X ← M ⊕ Δ
29 Y

$←{0, 1}n

30 if Y ∈ Range(π) then bad ← true , Y
$← Range(π)

31 if X ∈ Domain(π) then bad ← true , Y ← π[X]
32 π[X] ← Y
33 if b = 0 then C ← Y
34 if b = 1 then C ← Y ⊕ Δ
35 return C

On a right query of (T,C):
40 Parse T into (N, i1, . . . , ik)
41 if haveSeen[N ] then N ← π[N ] else
42 haveSeen[N ] ← true

43 N
$←{0, 1}n

44 if N ∈ Range(π) then bad ← true , N
$← Range(π)

45 if π[N ] 	= undefined then bad ← true , N ← π[N ]
46 π[N ] ← N

47 Δ ← αi1
1 · · ·αik

k N
48 Y ← C ⊕ Δ
49 X

$←{0, 1}n

50 if X ∈ Domain(π) then bad ← true , X
$← Domain(π)

51 if Y ∈ Range(π) then bad ← true , X ← π−1[Y ]
52 π[X] ← Y
53 M ← X ⊕ Δ
54 return M

Figure 7: Definition of Game 2, as written, and Game 3, which is obtained by omitting the eight shaded
statements.

haveSeen predicate, replacing it by something equivalent. (2) We move the choice of return values
up to the initialization step. (3) On a left oracle-query we define the internal value Y from the
return value Z = C, as as opposed to defining the return value from Y . (4) On a right oracle-query
we define the internal value X from the return value Z = M , as opposed to defining the return
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Initialization:
10 Let π[·] be everywhere undefined
11 Let haveSeen[·] be everywhere false
12 bad ← true

On a left query of (T,M):
20 Parse T into (b,N, i1, . . . , ik)
21 if haveSeen[N ] then N ← π[N ] else
22 haveSeen[N ] ← true

23 N
$←{0, 1}n

24 if π[N ] 	= undefined then bad ← true
25 π[N ] ← N

26 Δ ← αi1
1 · · ·αik

k N
27 X ← M ⊕ Δ
28 Y

$←{0, 1}n

29 if X ∈ Domain(π) then bad ← true
30 π[X] ← Y
31 if b = 0 then C ← Y
32 if b = 1 then C ← Y ⊕ Δ
33 return C

On a right query of (T,C):
40 Parse T into (N, i1, . . . , ik)
41 if haveSeen[N ] then N ← π[N ] else
42 haveSeen[N ] ← true

43 N
$←{0, 1}n

44 if π[N ] 	= undefined then bad ← true
45 π[N ] ← N

46 Δ ← αi1
1 · · ·αik

k N
47 Y ← C ⊕ Δ
48 X

$←{0, 1}n

49 if Y ∈ Range(π) then bad ← true
50 π[X] ← Y
51 M ← X ⊕ Δ
52 return M

Figure 8: Game 3A, obtained by dropping four statements from Game 3. The probability that bad is set to true
may be lessened compared to Game 3, but not by more than by 2q2/2n.

value from X. (5) We delay the computation of bad until a finalization step that runs after the
adversary has asked its queries. The choices above do not impact the probability that bad gets set
to true and, in particular,

Pr[AGame 3A sets bad ] = Pr[AGame 3B sets bad ] (6)

and our task has been reduced to bounding the probability that bad gets set to true at in Game 3B.
At this point we make the observation that, in Game 3B, the association of domain points to

range points that is maintained by π is of no significance beyond the “bookkeeping” that π does
for recording which values are in the domain of π and which values are in the range of π and what
random value is associated to each π[N r]. We could just as well have collected up all the domain
points which get added to π in a multiset X , and looked for collision, and gathered up all the range
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Initialization:
10 Let π[·] be everywhere undefined

11 Z1, . . . , Zq $←{0, 1}n

12 bad ← true

If the r-th query is a left query (T r,Mr):
20 return Zr

If the r-th query is a right query (T r, Cr):
30 return Zr

Finalization:
40 for r ← 1 to q do

50 if the r-th query was a left query (T r,Mr) then
51 Parse T r into (br, Nr, ir1, . . . , i

r
k)

52 if Nr = Np for some p < r then Nr ← π[Nr] else
53 Nr $←{0, 1}n

54 if π[Nr] 	= undefined then bad ← true
55 π[Nr] ← Nr

56 Δr ← α
ir
1

1 · · ·αir
k

k Nr

57 Xr ← Mr ⊕ Δr

58 if Xr ∈ Domain(π) then bad ← true
59 if br = 0 then Y r ← Zr

60 if br = 1 then Y r ← Zr ⊕ Δr

61 π[Xr] ← Y r

70 if the r-th query was a right query (T r, Cr) then
71 Parse T r into (br, Nr, ir1, . . . , i

r
k)

72 if Nr = Np for some p < r then Nr ← π[Nr] else
73 Nr $←{0, 1}n

74 if π[Nr] 	= undefined then bad ← true
75 π[Nr] ← Nr

76 Δr ← α
ir
1

1 · · ·αir
k

k Nr

77 Y r ← Cr ⊕ Δr

78 if Y r ∈ Range(π) then bad ← true
79 Xr ← Zr ⊕ Δr

80 π[Xr] ← Y r

Figure 9: Definition of Game 3B, which sets flag bad with the same probability as in Game 3A.

points which get added to π in a multiset Y, and looked for collisions. As such, we can eliminate π,
accomplish the bookkeeping differently, and check for what would have been collision in the domain
or range of π at the very end. All of this is done in Game 3C, show in in Figure 10. Though it
looks quite different from Game 3B it sets bad under exactly the same circumstances, so

Pr[AGameB sets bad ] = Pr[AGameC sets bad ] (7)

and our task is to evaluate the probability that bad gets set in Game 3C.
In Game 3C the adversary asks a sequence of questions and gets back a sequence of random

answers. It can only help the adversary if we were to give it all of the answers in advance. The
adversary is then at liberty to choose its questions in a way that depends on knowledge of future
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Initialization:
10 Z1, . . . , Zq $←{0, 1}n

If the r-th query is a left query (T r,Mr):
20 return Zr

If the r-th query is a right query (T r, Cr):
30 return Zr

Finalization:
40 for r ∈ [1 .. q] do parse T r into (br, Nr, ir1, . . . , i

r
k)

41 Let N1, . . . , Np be the distinct strings from N1, . . . , Nq

42 for i ∈ [1 .. p] do NNi

$←{0, 1}n

50 for r ∈ [1 .. q] do

60 Δr ← α
ir
1

1 · · ·αir
k

k NNr

70 if the r-th query was a left query (T r,Mr) then
71 Xr ← Mr ⊕ Δr

72 if br = 0 then Y r ← Zr

73 if br = 1 then Y r ← Zr ⊕ Δr

80 if the r-th query was a right query (T r, Cr) then
81 Xr ← Zr ⊕ Δr

82 Y r ← Cr ⊕ Δr

90 X ← [N1, . . . , Np, X1, . . . , Xq]
91 Y ← [NN1 , . . . ,NNp

, Y 1, . . . , Y q]

92 bad ← (there is a repetition in X ) or (there is a repetition in Y)

Figure 10: Definition of Game 3C, which is adversarially indistinguishable from Game 3B.

answers. Since our adversary is deterministic the probability that it sets bad to true is over the
random values Z1, . . . , Zq returned to the adversary and the random values N1, . . . ,Np selected as
the game runs. We now make the stronger claim that for any sequence of responses Z1, . . . , Zq to
the adversary’s queries, the probability that bad gets set to true is small (the probability now being
over only the N1, . . . ,Np values). Once we have fixed Z1, . . . , Zq the adversary’s own queries are all
fixed, as is whether each query is a left oracle query or a right oracle query. What we aim to show,
then, is that for any sequence of valid queries and responses (b1, N1, i11, . . . , i

1
k, M

1, C1, Z1, lr1), . . . ,
(bq, N q, iq1, . . . , i

q
k, M

q, Cq, Zq, lr q) the probability that bad will get set to true is small. Here lr r

is an indication if the r-th query was a left oracle query (to encipher, coded as 0) or a right
oracle query (to decipher, coded as 1). Thus we fix constants b1, N1, i11, . . . , i

1
k, M

1, C1, Z1, lr1, . . . ,
bq, Nq, iq1, . . . , i

q
k, M

q, Cq, Zq, lrq) and look at the probability that bad gets set to true for this vector
of constants. The vector of constants must be valid, in the sense that the assumptions that we have
made about adversarial behaviors are reflected in the constants: no repeated queries; no deciphering
when the resulting plaintext is known because of a prior enciphering; and no enciphering when
the resulting ciphertext is known because of a prior deciphering. In addition, we insist that the
adversary select constants Z1, . . . ,Zq that are all distinct and that each Zs differs from Mr and Cr

for all r < s. This assumption entails a possible decrease in the probability that bad gets set to
true by at most 1.5 q2/2n. Call a collection of constants as above valid. Now fix a vector of valid
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10 Let N1, . . . ,Np be the distinct strings from N1, . . . ,Nq

11 for i ∈ [1 .. p] do NNi

$←{0, 1}n

12 for r ∈ [1 .. q] do

20 if lrr = 0 then
21 Xr ← Mr ⊕ α

ir1
1 · · ·αirk

k NNr

22 Y r ← Zr ⊕ brα
ir1
1 · · ·αirk

k NNr

30 if lrr = 1 then
31 Xr ← Zr ⊕ α

ir1
1 · · ·αirk

k NNr

32 Y r ← Cr ⊕ α
ir1
1 · · ·αirk

k NNr

40 X ← [N1, . . . ,Np, X1, . . . , Xq]
41 Y ← [NN1 , . . . ,NNp

, Y 1, . . . , Y q]

50 bad ← (there is a repetition in X ) or (there is a repetition in Y)

Figure 11: Definition of Game 3D. All interaction and adaptivity has been eliminated, effectively replaced by
universal quantification over the constants (in sans serif font, apart from p, q, α1, . . . , αk).

constants that maximizes the probability that bad will get set to true in Game 3C and regard those
constants as fixed. The resulting game, which we call Game 3D, is shown in Figure 11. We have
then that

Pr[AGame 3C ⇒ 1] ≤ Pr[Game 3D sets bad ] +
1.5q2

2n
(8)

and our job is now to bound Pr[Game 3D sets bad ].
We proceed to analyze the probability that bad gets set in Game 3D Let us first evaluate the

probability of a collision within X ,

X = [N1, . . . ,Np, X1, . . . , Xq] .

There can be no collision among the Nr-values because they are, by definition, all distinct. What
about collision between an Ns and an Xr? If lrr = 0 then we are considering

Pr
[
Ns = Mr ⊕ α

ir1
1 · · ·αirk

k NNr

]

which clearly occurs with probability 2−n. If lrr = 1 then we are considering

Pr
[
Ns = Zr ⊕ α

ir1
1 · · ·αirk

k NNr

]

which likewise occurs with probability 2−n. What about collision between an Xr and an Xs, where
r < s? Then depending on lrr and lrs we are considering one of:

Pr
[
Mr ⊕ α

ir1
1 · · ·αirk

k NNr = Ms ⊕ α
is1
1 · · ·αisk

k NNs

]

Pr
[
Mr ⊕ α

ir1
1 · · ·αirk

k NNr = Zs ⊕ α
is1
1 · · ·αisk

k NNs

]

Pr
[
Zr ⊕ α

ir1
1 · · ·αirk

k NNr = Ms ⊕ α
is1
1 · · ·αisk

k NNs

]

Pr
[
Zr ⊕ α

ir1
1 · · ·αirk

k NNr = Zs ⊕ α
is1
1 · · ·αisk

k NNs

]
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Clearly these are 2−n if Nr 	= Ns. If Nr = Ns, however, we have to look at:

Pr
[
Mr ⊕ Ms =

(
α

ir1
1 · · ·αirk

k ⊕ α
is1
1 · · ·αisk

k

)
NNr

]

Pr
[
Mr ⊕ Zs =

(
α

ir1
1 · · ·αirk

k ⊕ α
is1
1 · · ·αisk

k

)
NNr

]

Pr
[
Zr ⊕ Ms =

(
α

ir1
1 · · ·αirk

k ⊕ α
is1
1 · · ·αisk

k

)
NNr

]

Pr
[
Zr ⊕ Zs =

(
α

ir1
1 · · ·αirk

k ⊕ α
is1
1 · · ·αisk

k

)
NNr

]

For all of these, if (ir1, . . . , i
r
k) 	= (is1, . . . , i

s
k) then, by the uniqueness of representation for α1, . . . , αk

over I1 × · · · × Ik, the value multiplying NNr is nonzero and the indicated probability is 2−n. We
have left to consider the case of (Nr, ir1, . . . , i

r
k) = (Ns, is1, . . . , i

r
k), whence we are looking at

Pr[Mr = Ms]
Pr[Mr = Zs]
Pr[Zr = Ms]
Pr[Zr = Zs]

Enciphering queries may not be repeated, so the first probability is zero. We have insisted in our
choice of valid constants that M r 	= Zs, so the second probability is zero. An adversary that makes
a deciphering query with a given tweak is not allowed to subsequently make an enciphering query of
the resulting answer with the same tweak, so the third probability is zero. And deciphering queries
may not be repeated, so the forth probability is zero. We may conclude that the probability that
there is a collision in X is at most 2q2/2n.

We next bound the probability of a collision in the multiset

Y = [NN1 , . . . ,NNp , Y 1, . . . , Y q] .

For r < s the probability of a collision between an NNr and an NNs is 2−n since these are random
and independent n-bit strings. What about a collision between an NNs and a Y r? If lrr = 0 we are
considering

Pr
[
NNs = Zr ⊕ brα

ir1
1 · · ·αirk

k NNr

]
.

If Ns 	= Nr then this probability is 2−n. If Ns = Nr and br = 0 then the probability is 2−n. If
Ns = Nr and br = 1 then the probability we are considering is

Pr
[
Zr =

(
1 ⊕ α

ir1
1 · · ·αirk

k

)
NNr

]
.

By the unique-representation property and the prohibition of the vector of indices (ir1, . . . , i
r
k) =

(0, . . . , 0) the parenthesized quantity is not zero and the indicated probability is 2−n. Continuing,
a collision between an NNs and a Y r can also occur when lrr = 1, in which case we are looking at

Pr
[
NNs = Cr ⊕ α

ir1
1 · · ·αirk

k NNr

]
.

If Ns 	= Nr then the above is 2−n. Otherwise we are looking at

Pr
[
Cr =

(
1 ⊕ α

ir1
1 · · ·αirk

k

)
NNr

]
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and the parenthesized quantity is nonzero for the same reason as before, making the probability 2−n.
Finally, we must look at the probability that Y r = Ys. Then depending on the values of lrr and lrs

we are considering one of:

Pr
[
Zr ⊕ brα

ir1
1 · · ·αirk

k NNr = Zs ⊕ bsα
is1
1 · · ·αisk

k NNs

]

Pr
[
Zr ⊕ brα

ir1
1 · · ·αirk

k NNr = Cs ⊕ α
is1
1 · · ·αisk

k NNs

]

Pr
[
Cr ⊕ α

ir1
1 · · ·αirk

k NNr = Zs ⊕ bsα
is1
1 · · ·αisk

k NNs

]

Pr
[
Cr ⊕ α

ir1
1 · · ·αirk

k NNr = Cs ⊕ α
is1
1 · · ·αisk

k NNs

]

The first of these is 0 if br = bs = 0 because we have arranged that Zi-values are all distinct. It
is 2−n if one of br and bs is zero and the other is 1. Otherwise, br = bs = 1. The probability above
is clearly 2−n if Nr 	= Ns, while if is the same value when Nr = Ns by the unique-representation
property. The remaining three probabilities are all at most 2−n by reasoning exactly analogous to
that which has been given. We conclude that the probability that there is a collision in Y is at
most 2q2/2n. Summing up, we have that

Pr[Game 3D sets bad] ≤ 4q2

2n
(9)

and, combining everything, the advantage of our original adversary A is at most Advp̃rp
E (t′ +2q)+

(2 + 2 + 1.5 + 4)q2/2n, establishing our result.

D Proof of Theorem 12 — Security of OCB1

Consulting Figure 2 may be helpful. In particular, look at the figure on the top and understand that
each πN

i and π̄N
i is a random permutation on n bits. All of these permutations are independent. In

effect, the key is the infinite collection of random permutations πN
i , π̄N

i for i ∈ N and N ∈ {0, 1}n.
The privacy statement is immediate. During the adversary’s attack it asks a sequence of queries

(N1, M1), . . . , (N q, M q) where the N i-values are distinct. Since the N i-values are distinct each πN
i

and π̄N
i that gets used gets used exactly once. We are thus applying a number of independent

random permutations each to a single point. The image of a single point under a random permu-
tation is uniform, so the output is perfectly uniform. That is all that is needed to ensure that an
adversary has no advantage to distinguish the output from random bits.

The authenticity statement is more involved, but still straightforward. Before we launch into
it, consider the following simple game. Suppose that you know that an n-bit string X is not some
particular value X0. All of the 2n − 1 other values are equally likely. Then your chance of correctly
predicting the τ -bit prefix of X is at most 2n−τ/(2n − 1). That’s because the best strategy is to
guess any τ -bit string other than the τ -bit prefix of X0. The probability of being right under this
strategy is 2n−τ/(2n − 1). We will use this fact in the sequel.

Now suppose that the adversary asks a sequence of queries (N1, M1), . . . , (N q, M q) and then
makes its forgery attempt (N, C). Let M i = M i

1 · · ·M i
mi

be the queries and let Ci = C1
1 · · ·Ci

mi

be the responses. Let the tags produced as the adversary asks its queries be Pad1, . . . ,Padq and
let the checksums produced be Σ1, . . . , Σq. Let C = C ‖ T where T is the first τ bits of Tag
and C = C1 . . . Cc. Let the pad and checksum for the forgery attempt be Pad and Σ. We consider
a number of cases.
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(1) Suppose N /∈ {N1, . . . , N q}—the adversary tries to forge using a new nonce. Then the adver-
sary needs to find the correct value of T but has seen no image of the random permutation π̄N

c .
The chance that the adversary can guess the correct value for a random τ -bit string, given no
information about it, is 2−τ .

(2) Suppose N = N i but c 	= mi. As above, the adversary needs to find the correct value of T
but has seen no image of the random permutation π̄N

c . Thus the chance that the adversary
can guess the correct value is 2−τ .

(3) Suppose N = N i and c = mi but |C| 	= |M i|. First, we may ignore the queries other than the
ith since their answers are unrelated to the adversary’s task of producing a valid ciphertext
(N, C) with N = N i. This time the adversary has seen one point of relevance to determining
Pad, namely, the adversary may have seen some or all of Padi. No other values returned
to the adversary are correlated to πN

c . Among the possible values of Pad, all but Padi are
equally likely, so there are 2n−1 equally plausible values for Pad. Thus there are 2n−1 equally
plausible values for Σ even if we make public to the adversary all permutations other than πN

c .
Even then there are 2n − 1 equally likely inputs to π̄N

c so there are at least 2n − 1 equally
plausible outputs as Tag . By the analysis at the beginning of the authenticity analysis, the
adversary’s chance of correctly guessing T is thus at most 2n−τ/(2n − 1).

(4) Suppose N = N i and |C| = |M i| and Cj 	= Ci
j for some j ∈ [1..c−1]. We may again ignore the

queries other than the ith since their answers are unrelated to the adversary’s task of producing
a valid ciphertext (N, C) with N = N i. The adversary has seen the preimage under πN

j of
the point Ci

j , namely M i
j , but the preimage under πN

j of every point other than Ci
j is equally

possible. In particular, the preimage of Cj under πN
j is equally likely to be any of 2n − 1

different strings string. We imagine providing to the adversary all permutations other than
the permutation πN

j . Even then, the value of Σ can be any of 2n − 1 strings, each with equal
probability. By the analysis at the beginning of the authenticity analysis, the adversary’s
chance of correctly guessing T is thus at most 2n−τ/(2n − 1).

(5) Finally, suppose N = N i and |C| = |M i| and Cj = Ci
j for all j ∈ [1..c−1] but Cc 	= Ci

c. In this
case the value Σ is known and differs from Σi by the non-zero value Cc ⊕ Ci

c. The value Tag
can be any of 2n−1 values, each with equal likelihood. By the analysis at the beginning of the
authenticity analysis, the adversary’s chance of correctly guessing T is at most 2n−τ/(2n − 1).

This completes the proof.

E Proof of Theorem 15 — Security of PMAC1

The proof is relatively standard and so we are brief in its exposition. We replace the random
tweakable permutation π ∈ Perm(T , n) by a random tweakable function ρ ∈ Rand(T × {0, 1}n, n)
noting that, by the obvious extension to the standard PRP/PRF switching lemma,

Advp̃rf
PMAC1[Perm(T ,n),τ ](σ) ≤ Advp̃rf

PMAC1[Rand(T ×{0,1}n,n),τ ]
(σ) + 0.5 σ2/2n

≤ Advp̃rf
PMAC1[Rand(T ×{0,1}n,n),n]

(σ) + 0.5 σ2/2n

Next we bound Advp̃rf
PMAC1[Rand(T ×{0,1}n,n),n]

(σ). Let A be an adversary that tries to distinguish
f ∈ PMAC1[Rand(T × {0, 1}n, n), n] from ρ ∈ Rand({0, 1}∗, n) and assume that A’s queries total
at most σ blocks (the empty block counting as one block). Recognizing that we are in the three-key
version of the Carter-Wegman paradigm, a conventional game-playing argument, given in [5], can
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be used to justify that

Advp̃rf
PMAC1[Rand(T ×{0,1}n,n),n]

(A) ≤ max
q,M1,...,Mq

|M1|n+···+|Mq |n≤σ

⎧⎨
⎩

∑
1≤i<j≤q

Pr[M i and M j collide]

⎫⎬
⎭

where M and M ′ are said to collide if they are distinct and either:
Collision between two full-final-block messages. M = M1 · · ·Mm and M ′ = M ′

1 · · ·M ′
m′ are

nonempty and have length is divisible by n and it happens that X = X ′ where X = Y1 ⊕
· · · ⊕ Ym−1 ⊕ Mm is the input to final random function ρ̄m when M is processed and X ′ =
Y ′

1 ⊕ · · · ⊕ Y ′
m′−1 ⊕ Mm′ is the input to final random function ρ̄m′ when M ′ is processed; or

Collision between two partial-final-block messages. M = M1 · · ·Mm and M ′ = M ′
1 · · ·M ′

m′
are either empty or have length not divisible by n and it happens that X = X ′ where X =
Y1 ⊕ · · · ⊕ Ym−1 ⊕ Mm10∗ is the input to final random function ¯̄ρm when M is processed
and X ′ = Y ′

1 ⊕ · · · ⊕ Y ′
m′−1 ⊕ Mm′10∗ is the input to final random function ¯̄ρm′ when M ′ is

processed.
The probability above is over the choice of ρ ∈ Rand(T × {0, 1}n, n). A case analysis is then used
to show that if |M |n = m and |M ′|n = m′ and M 	= M ′ then the probability that they collide is at
most 1/2n. Suppose first that M and M ′ are distinct, nonempty, and have lengths divisible by n.
If m 	= m′ then the probability that M and M ′ collide is clearly 1/2n. If m = m′ and for some
i < m we have that Mi 	= M ′

i then the probability that M and M ′ collide is 1/2n. If m = m′ and
Mi = M ′

i for all i < m then necessarily Mm 	= M ′
m and the probability that M and M ′ collide

is 0. If one supposes instead that M and M ′ are distinct and either empty or have lengths divisible
by n then the argument is analogous. We conclude that in all cases the probability that M and M ′

collide is at most 1/2n and so

Advp̃rf
PMAC1[Rand(T ×{0,1}n,n),n]

(A) ≤ max
q,M1,...,Mq

|M1|n+···+|Mq |n≤σ

⎧⎨
⎩

∑
1≤i<j≤q

1
2n

⎫⎬
⎭

≤ 0.5 q2/2n

≤ 0.5 σ2/2n

Summing with the prior bound of 0.5 σ2/2n completes the proof.
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