
HY590.45
Modern Topics in

Scalable Storage Systems

Kostas Magoutis

magoutis@csd.uoc.gr 

http://www.csd.uoc.gr/~hy590-45



Petal: Client view



Goals of Petal

• Tolerate and recover from any component failure

• Geographically distribute to tolerate site failures

• Transparently reconfigure to expand, balance load

• Dynamically balance load

• Fast and efficient support for backups and recovery



Physical structure



Server modules



Virtual to physical mapping



Support for backup

• Snapshots

– Petal can quickly create an exact copy of a virtual disk at a 
specified point in time by using copy-on-write techniques

– A snapshot is like any other vdisk, but cannot be modified

– VDir: vdiskID → <global-map-identifier, epoch-number>

• Crash-consistent snapshot

– Similar to disk image left after an application crash



Reconfiguration

• Dynamic change in vdisk # of servers, redundancy

• How is it performed

– Create new GMap with desired redundancy, server mapping

– Change VDir entries that refer to old GMap to new one

– Redistribute data to the servers according to new GMap, 
requiring substantial amounts of network and disk traffic

– Read requests will be tried on new GMap first, then the old 
GMap if the translation has not yet been transferred

– Writes are always performed on the new GMap

• Improve efficiency via fencing



Chained de-clustering



Data access and recovery

• How are reads performed

• How are writes performed



Data access and recovery
Block (64KB)

Secondary

Log

Primary

Log

Read protocol

1. Try primary; if live, get read lock

2. If down, try secondary; if live, get read lock

3. Return block contents, release read lock

Write protocol

1. Contact primary

2. If alive, mark block busy in stable storage

3. Primary apply request locally and 
simultaneously send write to secondary

4. When both complete, clear busy bit, 
respond to client

5. If primary crashes during request, busy bit 
is used to recover later on

6. If primary dead, start from secondary

7. (Secondary checks primary indeed crashed)

If primary or secondary is down, on live node:

1. Mark data as stale before writing to disk

2. During recovery, make replicas consistent by 
exchanging dirty-region log

Client



read

read

Failure-free operation

write(b,5)

c2c1

set busy bit

read(b)

Primary

a read will see a state at least as recent as that produced by the most 

recently completed write that completed before the read started

Secondary

write

ack

ack

write

ack

write

read(b)

ack
5

1

clear busy bit



block

read

read

Failure-free operation

write(b,5)

c2c1

set busy bit

read(b)

Primary

if some reader sees the results of a particular write, then any reader that 

starts after that reader finishes will also see a result at least that recent.

Secondary

write

ack

ack

write

ack

read(b)

ack
5

5

clear busy bit

write



replay write

reconcile

Recovery from primary crash
c2c1 Primary Secondary

write(b,6) write

ack

busy

write

write

check status

write

ack

busy

crash

restart

clear busy bit



replay write

reconcile

Recovery from primary crash

write(b,5)

c2c1

set stale

Primary Secondary

ack

write

write(b,6) write

ack

busy

write

write

get dirty-region log

write

ack

primary dead??

busy

write

crash

restart

clear busy bit



replay write
reconcile

Recovery from secondary crash

write(b,5)

c2c1 Primary Secondary

ack

write

write(b,6) write

ack

busy

write

crash

write

busy

get dirty-region log

write

ack

backup dead??

restart

clear busy bit

clear busy bit

set stale



write
primary dead??

Petal cannot handle partitions

write(b,5)

c2c1

set stale

Primary Secondary

ack

write

write(b,6)

ack

partition

set busy

write

backup dead?? write

clear busy bit

set stale



Prototype



Latency, throughput results



Scaling


