= N
(e A<\ TTANEIIZTHMIO KPHTHE
h UNIVERSITY OF CRETE

HY590.45
Modern Topics in
Scalable Storage Systems

Kostas Magoutis
magoutis@csd.uoc.gr
http://www.csd.uoc.gr/~hy590-45



Raft

e Consensus algorithm for log replication

e Easier to understand compared to Multi-Paxos



Replicated state machine architecture

@ i \
4\36 fudiad (State Machine ) ||
Client Consensus X5
y:9
z:0

\ J
®

Raft



Server states

times out,
starts election

starts up

Follower

discovers current
leader or new term

Raft uses the voting process to prevent a candidate from
winning an election unless its log contains all committed
entries. A candidate must contact a majority of the cluster
in order to be elected, which means that every committed
entry must be present in at least one of those servers. If the
candidate’s log is at least as up-to-date as any other log
in that majority (where “up-to-date” is defined precisely
below), then it will hold all the committed entries.

times out,
new election

Candidate

receives votes from
majority of servers

discovers server
with higher term

Raft determines which of two logs is more up-to-date
by comparing the index and term of the last entries in the
logs. If the logs have last entries with different terms, then
the log with the later term 1s more up-to-date. If the logs
end with the same term, then whichever log is longer is
more up-to-date.

Raft



Terms (epochs)

term 1 term 2 term 4

5 'F VEE
A A A
\ \ { term:

election normal no emerging
operation leader

Raft



Log entries

1 2 3 4 5 6 7 8
il 1 1 2 3 3 3 3
X3 lyel|lye9 I xe2| X0y« 7| x<5]x<4

1 1 1 2 3
Xe3|lye<1l|lye9|x<2|x<0
1 1 1 2 3 3 3 3
X3 lyel|lye9|xe2|x«0|y«7|x<5]|x<4
1 1
xe3|y«<1
1 1 1 2 3 2 3
X3 lye<1l|lye9|xe2|x<0|y«7|x<5

Y

committed entries

Raft

- -

log index

leader

} followers




Possible states of followers

(a)
(b)
(c)
(d)
(e)
(f)

7 8 9 101112

5

6

6

6

6

6

=l =] =] [—] =] [~

=l =] =] (=] =] |~

=l =] =] (=] =] |-
NI &) &) &) 1R] e
N &) |+ &
Nl & U] [

Wl & U |

Raft

log index

leader for
term 8

possible
followers




When is an entry committed?

X -d -3
Leader S1, term 4 @[3} Leader S5, term 5

Leader S1, term 2

\
\
i
\
lJ L (1 \
I H ]
U (] \
===
- L L
<
1 1 ”2 S - o
Pt A " 1
H 1
- TS i
: 1,
7
’

1 2
s1 112] [ET=I4:
s2 [1]2] [1]2 1[3
se [ | [@ 1
ss @ A3l O3 L
(a) \(t_ux (c)
1
1
Leader S5, term 3 1|3 Leader S1, term 4
(e)

Raft



Properties

Election Safety: at most one leader can be elected in a
given term. §5.2

Leader Append-Only: a leader never overwrites or deletes
entries in its log; it only appends new entries. §5.3

Log Matching: if two logs contain an entry with the same
index and term, then the logs are identical in all entries
up through the given index. §5.3

Leader Completeness: if a log entry is committed in a
given term, then that entry will be present in the logs
of the leaders for all higher-numbered terms. §5.4

State Machine Safety: if a server has applied a log entry
at a given index to its state machine, no other server

will ever apply a different log entry for the same index.
§5.4.3

Raft




Reconfiguration

Cod Crew

Server 1 _
Server 2 E—
Server 3 o
seners DI
seers D
T time

problem: two
disjoint majorities

Raft



Joint consensus

Coig can make C.ew Can make
decisions alone | : decisions alone
|

Crew & ===1
CoId,new =———— | :
C eader not in Coy
o steps down here
_ >
Cold.new entry Cnew entry time

committed committed

Raft



Log compaction - snapshots

1 2 3 4 D 6 7 log index

1 1 1 2 3 3 3
Xe3|lyel|lye9xe2|x<0|y«T7|x<5 before
snapshot 3 3 )
last included index: 5 ||ly«7|x«5
last included term: 3
state machine state: > S0y
xe0
yeu y
ll= . |

committed entries

Raft



Time to detect and replace crashed leader

100% F~

= i fr
=) o / |
3 80% | y
8 /
Q. 680% ; |
g [ 1 Sg- 150mMS  eesesssassses
@ 40% 150-151ms === |
pe - 150-155ms == === = |
S 20% 150-175ms ----eee !
© : #150-200ms _
0% k3 ot 180:300M8 ——== |
10000 100000
100% = o o e e T —
= : G
8 80% I
[0}
S 60% 1
= [ & 12-24M8 == s =n =
% 40% i 25-50ms ----eee- }
[ &4 50-100ms === ]
£ 2%y, 100-200ms T
0% E* - : : | 150-309ms -----I-- i
0 100 200 300 400 500 600

Timing requirement

\

broadcastTime < electionTimeout < MTBF

time without leader (ms)

Raft



Server behavior
C state

Persistent state on all servers:
(Updated on stable storage before responding to RPCs)

currentTerm latest term server has seen (imitialized to O
on first boot, increases monotonically)

votedFor candidateld that received vote in current
term (or null if none)

log|] log entries; each entry contains command

for state machine, and term when entry
was received by leader (first index is 1)

Volatile state on all servers:

commitIndex index of highest log entry known to be
committed (initialized to 0, increases
monotonically)

lastApplied index of highest log entry applied to state
machine (initialized to 0, increases
monotonically)

Volatile state on leaders:

(Renitialized after election)

nextIndex|] for each server, index of the next log entry
to send to that server (initialized to leader
last log index + 1)

matchIndex[] for each server, index of highest log entry

known to be replicated on server
(initialized to O, increases monotonically)

Raft



Electing a leader

RequestVote RPC

Invoked by candidates to gather votes (§5.2).

Arguments:
term candidate’s term
candidateld candidate requesting vote

lastLogIndex index of candidate’s last log entry (§5.4)
lastLogTerm term of candidate’s last log entry (§5.4)

Results:
term currentTerm, for candidate to update itself
voteGranted true means candidate received vote

Receiver implementation:

1. Reply false if term < currentTerm (§5.1)

2. If votedFor 1s null or candidateld, and candidate’s log 1s at
least as up-to-date as receiver’s log, grant vote (§5.2, §5.4)

Raft



Servers

All Servers:

¢+ If commitIndex > lastApplied: increment lastApplied, apply
log[last Applied] to state machine (§5.3)

« If RPC request or response contains term T > currentTerm:
set currentTerm = T, convert to follower (§5.1)

Followers (§5.2):

* Respond to RPCs from candidates and leaders

* If election timeout elapses without receiving AppendEntries
RPC from current leader or granting vote to candidate:
convert to candidate

Candidates (§5.2):
+ On conversion to candidate, start election:
* Increment currentTerm
* Vote for self
+ Reset election timer
+ Send RequestVote RPCs to all other servers
» If votes received from majority of servers: become leader
* If AppendEntries RPC received from new leader: convert to
follower
+ If election timeout elapses: start new election

Leaders:

+ Upon election: send initial empty AppendEntries RPCs
(heartbeat) to each server; repeat during idle periods to
prevent election timeouts (§5.2)

¢ If command received from client: append entry to local log,
respond after entry applied to state machine (§5.3)

+ If last log index > nextindex for a follower: send
AppendEntries RPC with log entries starting at nextIndex
» If successful: update nextIndex and matchlndex for

follower (§5.3)
+ If AppendEntries fails because of log inconsistency:
decrement nextIndex and retry (§5.3)

+ If there exists an N such that N > commuitIndex, a majority
of matchIndex[i] = N, and log[N].term == currentTerm:
set commitindex = N (§5.3, §5.4).




Replicate log entries and heartbeat

AppendEntries RPC

Invoked by leader to replicate log entries (§5.3); also used as
heartbeat (§5.2).

Arguments:

term leader’s term

leaderld so follower can redirect clients

prevLoglndex  index of log entry immediately preceding
new ones

prevLogTerm term of prevLoglIndex entry

entries]] log entries to store (empty for heartbeat;

may send more than one for efficiency)
leaderCommit  leader’s commitIndex

Results:
term currentTerm, for leader to update itself
success true if follower contained entry matching

prevLogIndex and prevLogTerm

Receiver implementation:

1. Reply false if term < currentTerm (§5.1)

2. Reply false if log doesn’t contain an entry at prevLogIndex
whose term matches prevLogTerm (§5.3)

3. If an existing entry conflicts with a new one (same index
but different terms), delete the existing entry and all that
follow it (§5.3)

4. Append any new entries not already in the log

5. If leaderCommit > commitIndex, set commitlndex =
min(leaderCommit, index of last new entry)

Raft



