
HY590.45
Modern Topics in

Scalable Storage Systems

Kostas Magoutis

magoutis@csd.uoc.gr

http://www.csd.uoc.gr/~hy590-45

Distributed file sharing

• Benefits

– Ability to access files from many locations

• E.g., home directories

– Consolidate storage management

• Makes it possible to share files

– Often concurrent readers or single writer

– Less often, concurrent writers

• Exclusive access to non-overlapping parts of file

• Several data producers, concurrent append to shared file

• Infrequent in engineering/office type workloads

Server

Client Client

File sharing in a single system

App1 App2

Cache
Open file

state Locks

App3

Single system

Crash recovery?

write(f, .. read(f, .. write(f, ..

Data + metadata

• File lock

• Range lock

• Byte range

• Type of lock (op)

• R/W

File-access APIs and semantics

Concurrent append, implicit serialization

fd=open(f, O_APPEND

write(fd, …

write(fd, …

write(fd, …

write(fd, …

…

close(fd, …

fd=open(f, O_APPEND

write(fd, …

write(fd, …

write(fd, …

write(fd, …

…

close(fd, …

P1 P2

Concurrent append in a single system

App1 App2

Cache
Open file

state Locks

App3

Single system

write(f, .. write(f, .. write(f, ..

Data + metadata

open(O_APPEND

File-access APIs and semantics

• Hard links: multiple names can be linked to an inode

• In Unix, when files are unlinked they are not removed
unless all open references to them are closed

• File system semantics imply state

Image © https://medium.com/@meghamohan/hard-link-and-symbolic-link-3cad74e5b5dc

Unlink both names

Extend to a distributed setting

App1

Cache
data+meta

Open

file state
Lock

state

App2

Cache
data+meta

Open

file state

Client 1 Client 2

Server

Cache
data+meta

Open

file state

Data + metadata

• Locks held

• Files open

• Byte ranges

• Blocks cached

Server

knows

about

clients?

Crash recovery?

Lock

state

Lock

state

fd=open(f

write(fd, ..
fd=open(f

read(fd, ..

Extend to a distributed setting

App1

Cache
data+meta

Open

file state
Lock

state

App2

Cache
data+meta

Open

file state

Client 1 Client 2

Server 1

Cache
data+meta

Open

file state

Data + metadata

Lock

state

Lock

state

fd=open(f

write(fd, ..
fd=open(f

read(fd, ..

Server 2

Cache
data+meta

Open

file state

Data + metadata

Lock

state

Network File System (NFS)

• History

– UNIX United

– SUN Network Disk

– RFS

– Andrew File System (AFS)

• Overview of NFS

– Stateless

– Aims to offer UNIX semantics

– Transport independent

– UNIX security and access control

– Client caching and consistency

NFS division between clients and server

NFS structure and operation

• Based on Remote Procedure Calls (RPCs)

– Handle problems that may occur due to crashes

• Files identified by NFS handle

– Comprises inode id, file system id, generation number

• VFS/Vnode layer

RPC behavior under failures

Server process
crash

Message / packet omission failures handled by TCP

Server machine
crash

Link failure

State
update

Client crash

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Server crashes

A server in client-server communication
(a) The normal case
(b) Crash after execution
(c) Crash before execution

RPC semantics

• At-least-once

– Retry after an exception/timeout until successful

– Good choice with idempotent operations (e.g., reads)

– How about non-idempotent operations (e.g., writes)?

• At-most-once

– Do not retry an operation or try to avoid duplicates

NFS Version 2 RPC requests

Stable-store requirement (NFS v2)

• All procedures in NFS v2 are synchronous

• When a procedure returns to the client, it assumes
that the operation has completed and any data
associated with the request is now on stable storage

• A WRITE may cause the server to update data
blocks, indirect blocks, and attribute information
(size, modify times)

• When the WRITE returns to the client, it can assume
that the write is safe, even in case of a server crash

Statelessness

• Server has no information about clients, open files

– Not entirely true in practice (e.g., retransmission cache)

• Pros

– Recovery

• Cons

– Local file system semantics imply state

– Performance (due to stable store requirement)

• Addressed by NFS specs following v2

NFS Implementation

• Daemons

• Mounting a file system

• Performing I/O

Daemon interaction for mounting

Daemon interaction for I/O

Transport issues

• UDP implementation

– RPC must fit in datagram (early versions restricted to 8KB)

– Timeout, retransmission handled by RPC layer

– Difficult to estimate RTT

– RPC request broken down into IP fragments/Ethernet MTUs

• Or, run over TCP

Techniques for improving performance:
Client caching and write buffering

• Delayed writes are allowed but cause problems

– Other clients may see old versions of data

• Solution: close-to-open consistency

– Clients flush on close(), so other clients will see the latest
version on a later open()

• A write to server won’t be reflected on clients’ caches

– No updates or invalidations (due to stateless server)

• Clients occasionally validate their caches

– Send a GETATTR every 3 seconds and check the file's
modification time and see if it has been updated

Existing solutions

• NFS version 3
– Leverage asynchronous writes

– Writes back at 30’ intervals, flushes (commit) on close

– Read consistency by checking with server on read (every 3’’)

• Sprite [Nelson88]
– File locks

– Disable caching when detecting concurrent writes

• AFS [Howard88]
– File locks

– Callback-based invalidations

Leases: Fault-tolerant locks

• Pros

– Quick recovery without requiring hard state

– Can tolerate partitions

– Require moderate amount of soft state

• Important constants
– maximum_lease_term (normally ~30’’)

– clock_skew

– write_slack

Read-caching leases

Write-caching lease

Write-sharing leases

Recovery

• maximum_lease_term seconds after the server

stops issuing leases, there should be no leases left

• After rebooting, server accepts writes for up to
write_slack seconds after final lease expired

• Server that do not know when they crashed estimate
final-lease expiration time by adding up
– boot_time

– maximum_lease_term

– write_slack

– clock_skew

