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Distributed file sharing

o Benefits
— Ability to access files from many locations
e E.g., home directories Client Client

— Consolidate storage management @ @

e Makes it possible to share files Server
— Often concurrent readers or single writer
— Less often, concurrent writers
e Exclusive access to non-overlapping parts of file

e Several data producers, concurrent append to shared file
e Infrequent in engineering/office type workloads



File sharing in a single system
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write(f, .. read(f, .. { write(f,
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File-access APIs and semantics

Concurrent append, implicit serialization

P1 P2
fd=open(f, O_APPEND fd=open(f, O_APPEND
write(fd, ... write(fd, ...
write(fd, ... write(fd, ...
write(fd, ... write(fd, ...
write(fd, ... write(fd, ...

close(fd, ... close(fd, ...



Concurrent append in a single system

open(O_APPEND
'//\ """"""""""""""""""""""""""""""""""""""
Appl App2 App3

write(f, .. write(f, { write(f,

Open file

state Locks

Cache

..............................................................................................................................

Single system
@ Data + metadata



File-access APIs and semantics

e Hard links: multiple names can be linked to an inode

I am symlink.
d e “d/a” symlink

Unlink both names

inode

data block

RS hard link

e In Unix, when files are unlinked they are not removed
unless all open references to them are closed

e File system semantics imply state

Image © https://medium.com/@meghamohan/hard-link-and-symbolic-link-3cad74e5b5dc



Extend to a distributed setting

______________________________________________________________________________________________

Client 1 ~ Client 2
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Extend to a distributed setting

______________________________________________________________________________________________

Client 1 - iClient 2
’ Appl j - App2
fd=open(f - fd=open(f
—write(fd, .. | —read(fd, ..
Open Lock Open Lock
Eat?fmre'g file state | state || gtircmrgtg file state | state
Open Open Lock
Eﬁfﬂg file state d(a:t?ﬁnfg file state | state

______________________________________________________________________________________________
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Network File System (NFS)

History

— UNIX United

— SUN Network Disk

— RFS

— Andrew File System (AFS)

Overview of NFS

— Stateless

— Aims to offer UNIX semantics

— Transport independent

— UNIX security and access control
— Client caching and consistency



NFS division between clients and server
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network

client client client client client




NFS structure and operation

e Based on Remote Procedure Calls (RPCs)
— Handle problems that may occur due to crashes

o Files identified by NFS handle

— Comprises inode id, file system id, generation number

e VFS/Vnode layer



Client crash

User process

TCP/IP

|
|
|
|
|
|
|
|
|
I Stubs
|
|
|
|
|
|
|
|
|
|

RPC behavior under failures

Link failure

Senver  Server process
(TTTTTTTTTTs '/ crash
I :
: User process :
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I I
| I
| I
I I

\

RPC response

Server machine
crash

Message / packet omission failures handled by TCP



Server crashes

REQ Server REQ Server
> Receive > Receive
Execute Execute
< EP | Reply Nﬂﬁ'::?___ Crash
(a) (b)
A server in client-server communicaton ~ Rpq _ Server
(a) The normal case S .
(b) Crash after execution G
(c) Crash before execution No REP
< _______

()

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5



RPC semantics

e At-least-once
— Retry after an exception/timeout until successful
— Good choice with idempotent operations (e.g., reads)
— How about non-idempotent operations (e.g., writes)?

e At-most-once
— Do not retry an operation or try to avoid duplicates



NFS Version 2 RPC requests

RPC request Action Idempotent
GETATTR get file attributes yes
SETATTR set file attributes yes
LOOKUP look up file name yes
READLINK read from symbolic link yes
READ read from file yes
WRITE write to file yes
CREATE create file yes
REMOVE remove file no
RENAME rename file no
LINK create link to file no
SYMLINK create symbolic link yes
MKDIR create directory no
RMDIR remove directory no
READDIR read from directory yes

STATFS get filesystem attributes yes



Stable-store requirement (NFS v2)
All procedures in NFS v2 are synchronous

When a procedure returns to the client, it assumes
that the operation has completed and any data
associated with the request is now on stable storage

A WRITE may cause the server to update data
blocks, indirect blocks, and attribute information
(size, modify times)

When the WRITE returns to the client, it can assume
that the write is safe, even in case of a server crash



Statelessness

e Server has no information about clients, open files
— Not entirely true in practice (e.g., retransmission cache)

e Pros
— Recovery

e Cons
— Local file system semantics imply state

— Performance (due to stable store requirement)
o Addressed by NFS specs following v2



NFS Implementation

e Daemons
e Mounting a file system

e Performing I/O



Daemon interaction for mounting
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Daemon interaction for I/O

client

write( )
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Transport issues

e UDP implementation
— RPC must fit in datagram (early versions restricted to 8KB)
— Timeout, retransmission handled by RPC layer
— Difficult to estimate RTT
— RPC request broken down into IP fragments/Ethernet MTUs

e Or, run over TCP



Techniques for improving performance:
Client caching and write buffering

Delayed writes are allowed but cause problems
— Other clients may see old versions of data

Solution: close-to-open consistency

— Clients flush on close(), so other clients will see the latest
version on a later open()

A write to server won't be reflected on clients’ caches
— No updates or invalidations (due to stateless server)

Clients occasionally validate their caches

— Send a GETATTR every 3 seconds and check the file's
modification time and see if it has been updated



Existing solutions

e NFS version 3
— Leverage asynchronous writes
— Writes back at 30" intervals, flushes (commit) on close
— Read consistency by checking with server on read (every 3")

e Sprite [Nelson88]
— File locks
— Disable caching when detecting concurrent writes

o AFS [Howard88]

— File locks
— Callback-based invalidations



Leases: Fault-tolerant locks

e Pros
— Quick recovery without requiring hard state
— Can tolerate partitions
— Require moderate amount of soft state

e Important constants
— maximum_lease_term (normally ~30")
- clock_skew
- write_slack



Read-caching leases
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Write-caching lease

server
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Write-sharing leases
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Recovery

e« maximum_]lease_term seconds after the server
stops issuing leases, there should be no leases left

o After rebooting, server accepts writes for up to
write_slack seconds after final lease expired

e Server that do not know when they crashed estimate
final-lease expiration time by adding up
— boot_time
— maximum_lease_term
- write_slack
- clock_skew



