

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ UNIVERSITY OF CRETE

HY590.45 Modern Topics in Scalable Storage Systems

Kostas Magoutis magoutis@csd.uoc.gr http://www.csd.uoc.gr/~hy590-45

Raft

- Consensus algorithm for log replication
- Easier to understand compared to Multi-Paxos

Replicated state machine architecture

Server states

Terms (epochs)

Log entries

Possible states of followers

When is an entry committed?

Properties

Election Safety: at most one leader can be elected in a given term. §5.2
Leader Append-Only: a leader never overwrites or deletes entries in its log; it only appends new entries. §5.3
Log Matching: if two logs contain an entry with the same index and term, then the logs are identical in all entries up through the given index. §5.3
Leader Completeness: if a log entry is committed in a given term, then that entry will be present in the logs of the leaders for all higher-numbered terms. §5.4
State Machine Safety: if a server has applied a log entry at a given index to its state machine, no other server will ever apply a different log entry for the same index. §5.4.3

Reconfiguration

Joint consensus

Log compaction - snapshots

Time to detect and replace crashed leader

 $broadcastTime \ll electionTimeout \ll MTBF$

Raft