

HY590.45 Modern Topics in Scalable Storage Systems

Kostas Magoutis magoutis@csd.uoc.gr http://www.csd.uoc.gr/~hy590-45

Google network and infrastructure sites

Spanner schema

```
CREATE TABLE Users {
  uid INT64 NOT NULL, email STRING
} PRIMARY KEY (uid), DIRECTORY;
CREATE TABLE Albums {
  uid INT64 NOT NULL, aid INT64 NOT NULL,
  name STRING
} PRIMARY KEY (uid, aid),
  INTERLEAVE IN PARENT Users ON DELETE CASCADE;
              Users(1)
              Albums(1,1)
                              Directory 3665
             Albums(1,2)
              Users(2)
              Albums(2,1)
                               Directory 453
              Albums(2,2)
              Albums(2,3)
```

Logical data layout

Albums

Photos

user_id	album_id	name	user_id	album_id	photo_id	title
1	1	Maui				
			1	1	2	Beach
			1	1	5	Snorkeling
1	2	St. Louis				
			1	2	3	Gateway Arch

Physical data layout: interleaved tables

Sharding

Cross-shard support for

- Transactions (read/write)
- Consistent (snapshot) reads

Serving structure

Spanner server organization

Replication

Spanner software stack

Directories ("buckets") can be moved across groups

Key techniques

- Paxos for data replication of each tablet across zones
- Two-phase locking (2PL) for serializability
 - Transactions should acquire all locks they need before starting

Lock type	read-lock	write-lock
read-lock		X
write-lock	X	X

- For performance: support read-only transactions without locks
- Multi-value concurrency control (MVCC): timestamps/snapshots
- Timestamps consistent with externally visible order
- Two-phase commit (2PC) for cross-table atomicity

Example: Ad System

Campaigns

campgain_id	keyword	bid
4	strange loop	\$2.00

On US server

On EU server

Impressions

region	time	campaign_id	cost
US	2013/09/20-07	4	\$1.50
US			
EU	2013/09/20-06	4	\$0.50
EU			

What can go wrong if using local timestamps

- Txn 1 creates a new ad on US server
- Ad serving system notified
- Ad server in Europe
- User clicks on ad
- Txn 2 logs click on EU server

Invariant: Any snapshot that contains txn 2 should also contain txn 1

External consistency

- Assume T1 commits before T2 starts according to global wall-clock
- T1 should be serialized before T2
- T2's commit timestamp should be > T1's commit timestamp
- Must apply even if T1 and T2 do not conflict

TrueTime API

Method	Returns	
TT.now()	TTinterval: [earliest, latest]	
TT.after(t)	true if t has definitely passed	
TT.before(t)	true if t has definitely not arrived	

Picking commit timestamps

Source: Wilson Hsieh, Spanner: Google's Globally-Distributed Database, OSDI'12

Commit-wait and replication

Source: Wilson Hsieh, Spanner: Google's Globally-Distributed Database, OSDI'12

Commit-wait and 2PC

Source: Wilson Hsieh, Spanner: Google's Globally-Distributed Database, OSDI'12

Life of a read / write

Source: Andrew Fikes, Spanner Internals Part 1: What Makes Spanner Tick? (Cloud Next '19)

TrueTime servers

TrueTime (Tmin, Tmax)

To GPS Antennas Networking Atomic Oscillator Time Servers Atomic Oscillator

Google Cloud

