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Scalability requirements

e Manageability
— Ability to self-configure, self-heal
— System manager just adds or replaces machines

o Availability
— Despite component failures, deliver good service to all users
— Some users may be prevented from accessing some mail

e Performance
— Single-node performance as good as single-node systems
— Aggregate performance scale linearly with number of nodes



Key principle and techniques behind Porcupine

Functional Homogeneity
“‘any node can perform any task’

M\,

Replication . Automatic Dynamic

Wu”ng

Availability Manageability Performance

Principle

Techniques

Goals




Why E-Mail
e Need systems that can scale to billions messages/day

e Frequent writes present a challenge

e Weak consistency



Semantics of Internet E-Mail

May arrive out of order
May arrive more than once
May reappear after being deleted

SMTP, POP, IMAP



Mailbox management and storage
hash("Bob") = 13

/spool/13/bob
“Alice” “Bob” “Chuck” /spool/13/bob.idx
."IIII \\ //
I 7\ ( ‘\
A|B|BJ|A A|B|B|A User map
Alice:* | {B} Chuck:* | {A} User profile :
Bob:* | {A.B} soft state Mail map
Chuck’s | | Bob’s Alice’s Bob’s Mailbox
mbox mbox mbox mbox | fragm ents
fragment | | fragment(1 fragment | | fragment(2 | ghe
T User profile
Alice:*: 1k |
| Eﬂlgi: Chuck_*j database
A I O o | _ :
Node A Node B \
. AN J

Variable size, contains message objects Hard state



Mail delivery to “"Bob”
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System architecture
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Replication properties
Update anywhere / Retrieve from anywhere
Eventual consistency (weaker than “single-copy”)
Total update
Lock free

Ordering by loosely synchronized clocks



Update protocol

network partition
Delivery or Retrieval Agent ! Delivery or Retrieval Agent

<user, msg ID>

What if Coordinator /

<user, msg ID>

e Coordinator crashes
e Peer crashes

e Simultaneous update
e Network partitions
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Membership
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User profile, mail-map reconstruction

Identify buckets with new manager assignments
— Compare Epoch IDs

Send relevant soft state to new managers
— Update their mail map with mailbox fragments
— Update their user profile soft state with user profiles

Replica with highest IP does the transfer

Hard state bucketed into directories for quick search



Mail-map consistency

e Mail-map pointers lead to valid fragments
e Valid fragments reachable from mail-map pointers

 Example: {Bob, *} : {{A, B}, {A, B, C}, {A, C}}
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Mail-map consistency

A node fails just after a message 1s stored in a new mailbox fragment on its disk, but
betore the corresponding mail map 1s updated. This case causes no problem because
this copy of the message becomes non-retrievable after the node failure. The replica-
tion service (Section 4) ensures that another copy of the message is still available.

A node fails just after the last message in a mailbox fragment on its disk 1s deleted, but
betore the corresponding mail map 1s updated. Each node periodically scans the mail
maps 1t manages and removes all “dangling” links to nodes not in the membership.
The links will be restored when the failed nodes rejoin the cluster.

A node stores a message in a new mailbox fragment on its disk, but the corresponding
user manager node fails before the mail map 1s updated. The message will be discov-
ered by the disk scan algorithm that runs after membership reconfiguration and will be
added to the mail map on a new user manager node.

A node deletes the last message in a mailbox fragment on its disk, but the correspond-
ing user manager node fails before the mail map 1s updated. The same argument as



Dynamic load balancing

Decentralized

Fine grained

Support heterogeneous clusters
Automatic; minimize manual tuning
Maximize throughput

Resolve tension between load and affinity



Load balancing information

e |Load characterization
— Whether or not disk is full
— Number of pending RPC that are disk-bound

e Load dissemination
— Piggybacked on RPCs
— Exchanged on virtual ring



Affinity-based scheduling

e Prefer adding email to nodes that already have a
fragment, unless too busy
— Decreases number of inter-node RPCs
— Increases sequentiality of disk accesses
— Reduces mail-map memory requirements

e Define “spread”
— Soft limit, can be exceeded
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