
HY590.45
Modern Topics in

Scalable Storage Systems

Kostas Magoutis

magoutis@csd.uoc.gr 

http://www.csd.uoc.gr/~hy590-45



Scalability requirements

• Manageability

– Ability to self-configure, self-heal

– System manager just adds or replaces machines

• Availability

– Despite component failures, deliver good service to all users

– Some users may be prevented from accessing some mail

• Performance

– Single-node performance as good as single-node systems

– Aggregate performance scale linearly with number of nodes



Key principle and techniques behind Porcupine



Why E-Mail

• Need systems that can scale to billions messages/day

• Frequent writes present a challenge

• Weak consistency



Semantics of Internet E-Mail

• May arrive out of order

• May arrive more than once

• May reappear after being deleted

• SMTP, POP, IMAP



Mailbox management and storage

Hard stateVariable size, contains message objects

/spool/13/bob
/spool/13/bob.idx

hash(“Bob”) = 13



Mail delivery to “Bob”



System architecture

Protocol handling

User lookup

Load balancing

Manage store
(retrieve/update)

deliver mail get/erase/update mail



Replication properties

• Update anywhere / Retrieve from anywhere

• Eventual consistency (weaker than “single-copy”)

• Total update

• Lock free

• Ordering by loosely synchronized clocks



Update protocol

Delivery or Retrieval Agent

Coordinator

Peer

Peer
Peer

Update log

Update log
Update log

Update log

<user, msg ID>

Timestamp,
<user, msg ID>,
Target-nodes,
Remaining-nodes

What if

• Coordinator crashes

• Peer crashes

• Simultaneous update

• Network partitions

network partition

Delivery or Retrieval Agent

5pm

5pm

6pm

6pm

<user, msg ID>



Membership
Coordinator



User profile, mail-map reconstruction

• Identify buckets with new manager assignments

– Compare Epoch IDs

• Send relevant soft state to new managers

– Update their mail map with mailbox fragments

– Update their user profile soft state with user profiles

• Replica with highest IP does the transfer

• Hard state bucketed into directories for quick search



Mail-map consistency

• Mail-map pointers lead to valid fragments

• Valid fragments reachable from mail-map pointers

• Example: {Bob, *} : {{A, B}, {A, B, C}, {A, C}}



Mail-map consistency



Dynamic load balancing

• Decentralized

• Fine grained

• Support heterogeneous clusters

• Automatic; minimize manual tuning

• Maximize throughput

• Resolve tension between load and affinity



Load balancing information

• Load characterization

– Whether or not disk is full

– Number of pending RPC that are disk-bound

• Load dissemination

– Piggybacked on RPCs

– Exchanged on virtual ring



Affinity-based scheduling

• Prefer adding email to nodes that already have a 
fragment, unless too busy

– Decreases number of inter-node RPCs

– Increases sequentiality of disk accesses

– Reduces mail-map memory requirements

• Define “spread”

– Soft limit, can be exceeded



Scalability


