IMANEITIZETHMIO KPHTHX
UNIVERSITY OF CRETE

HY590.45
Modern Topics in
Scalable Storage Systems

Kostas Magoutis
magoutis@csd.uoc.gr
http://www.csd.uoc.gr/~hy590-45

Scalability requirements

e Manageability
— Ability to self-configure, self-heal
— System manager just adds or replaces machines

o Availability
— Despite component failures, deliver good service to all users
— Some users may be prevented from accessing some mail

e Performance
— Single-node performance as good as single-node systems
— Aggregate performance scale linearly with number of nodes

Key principle and techniques behind Porcupine

Functional Homogeneity
“‘any node can perform any task’

M\,

Replication . Automatic Dynamic

Wu”ng

Availability Manageability Performance

Principle

Techniques

Goals

Why E-Mail
e Need systems that can scale to billions messages/day

e Frequent writes present a challenge

e Weak consistency

Semantics of Internet E-Mail

May arrive out of order
May arrive more than once
May reappear after being deleted

SMTP, POP, IMAP

Mailbox management and storage
hash("Bob") = 13

/spool/13/bob
“Alice” “Bob” “Chuck” /spool/13/bob.idx
."IIII \\ //
I 7\ (‘\
A|B|BJ|A A|B|B|A User map
Alice:* | {B} Chuck:* | {A} User profile :
Bob:* | {A.B} soft state Mail map
Chuck’s | | Bob’s Alice’s Bob’s Mailbox
mbox mbox mbox mbox | fragm ents
fragment | | fragment(1 fragment | | fragment(2 | ghe
T User profile
Alice:*: 1k |
| Eﬂlgi: Chuck_*j database
A I O o | _ :
Node A Node B \
. AN J

Variable size, contains message objects Hard state

Mail delivery to “"Bob”

Protocol : User D Load | D Message
handling |—> lookup Balancing store
~ Internet *

5. "OK,

1. DNS-RR\ = “fi’i“d Bob has ﬁ; g‘ggf
. Iail 1o N
selection. ;1111-‘11?-‘%’?"1 A fragment

list

6. Pick the best node to
Bob? = A store new msg = C.

3. Who manages

System architecture

deliver mail

Network
sessions

Protocol handling \

POP

IMAP
proxy
Find Retrieve Update iRetrieve
d user email email : user profile
manager message messagef | &mail map

oad
balancer

User lookup 7

User map

$

u — ;i

candidate : -

set Membersh , e
managér '

; SR | U

Load balancing

; E + Maintain *»
r replica

Replication
manager

ANAN

Manage store
(retrieve/update)

Mailbox =™~
manager

« consistency
! Update Update
' N

manager

ker

Q

-

: User‘profile
aslle soft state
-E- "'

T -~ Fill
User DB
manager

get/erase/update mail

Front-end
modules

Middle-tier
modules

Backend
Modules

Replication properties
Update anywhere / Retrieve from anywhere
Eventual consistency (weaker than “single-copy”)
Total update
Lock free

Ordering by loosely synchronized clocks

Update protocol

network partition
Delivery or Retrieval Agent ! Delivery or Retrieval Agent

<user, msg ID>

What if Coordinator /

<user, msg ID>

e Coordinator crashes
e Peer crashes

e Simultaneous update
e Network partitions

5pm) ;
Update log |-

Update log

Timestamp,

™| <user, msg ID>,
Target-nodes,
Remaining-nodes

Peer(5pm

Update log

Update log

Membership

Coordinator
\ --------- \--\‘.\ Join: 2:A [Join:3:A
A i \\ Accept, alelelc| = Y
! |A|B|B|C| Newgroup: A1BIBIAL als|s|a]| Newgroup: [0,1:B], lalalslcl
A oy o et 1B[LB[LBR:A] - - 3A [B,E:AL ik i i L :
L e > » | |UB|LB|IB2A] > »15/1:818[1cC|
o T\ Accept, f i g
S ¥ A A
AlJB|B|C A[B|B|C lals|B|c]
IE{1-B(L:B[1.B a4 B|1:B|1:B|1:B iehialislic
...... B/ % B.
|A|B|B|C| _ lclc|c|c B|B|C
|1Bl1Bl1B1B| |1:c|1:crcic| 1B[1:B|1B|1¢
| A : f
Ccrashes. 4 4 and Breply .4 broadcaststhe Crecovers. 4 4. B andC A broadcasts Nodes finally
detects the with the new membership detects the reply with the the new agree on the
crash and epoch IDs of and the user map, recoveryand epoch IDs of the membership membership
starts TRM. the buckets but B misses the starts TRM. buckets they and the user and the user

they manage. packet. manage. map. map.

User profile, mail-map reconstruction

Identify buckets with new manager assignments
— Compare Epoch IDs

Send relevant soft state to new managers
— Update their mail map with mailbox fragments
— Update their user profile soft state with user profiles

Replica with highest IP does the transfer

Hard state bucketed into directories for quick search

Mail-map consistency

e Mail-map pointers lead to valid fragments
e Valid fragments reachable from mail-map pointers

 Example: {Bob, *} : {{A, B}, {A, B, C}, {A, C}}

(1)

(2)

(4)

Mail-map consistency

A node fails just after a message 1s stored in a new mailbox fragment on its disk, but
betore the corresponding mail map 1s updated. This case causes no problem because
this copy of the message becomes non-retrievable after the node failure. The replica-
tion service (Section 4) ensures that another copy of the message is still available.

A node fails just after the last message in a mailbox fragment on its disk 1s deleted, but
betore the corresponding mail map 1s updated. Each node periodically scans the mail
maps 1t manages and removes all “dangling” links to nodes not in the membership.
The links will be restored when the failed nodes rejoin the cluster.

A node stores a message in a new mailbox fragment on its disk, but the corresponding
user manager node fails before the mail map 1s updated. The message will be discov-
ered by the disk scan algorithm that runs after membership reconfiguration and will be
added to the mail map on a new user manager node.

A node deletes the last message in a mailbox fragment on its disk, but the correspond-
ing user manager node fails before the mail map 1s updated. The same argument as

Dynamic load balancing

Decentralized

Fine grained

Support heterogeneous clusters
Automatic; minimize manual tuning
Maximize throughput

Resolve tension between load and affinity

Load balancing information

e |Load characterization
— Whether or not disk is full
— Number of pending RPC that are disk-bound

e Load dissemination
— Piggybacked on RPCs
— Exchanged on virtual ring

Affinity-based scheduling

e Prefer adding email to nodes that already have a
fragment, unless too busy
— Decreases number of inter-node RPCs
— Increases sequentiality of disk accesses
— Reduces mail-map memory requirements

e Define “spread”
— Soft limit, can be exceeded

300

600

400

200

Messages/second

Scalability

Cluster size

=c=Porcupine no replication
-~=Porcupine with
replication, NVRAM
—=Porcupine with replication
=o=Sendmail+popd

