
HY590.45
Modern Topics in

Scalable Storage Systems

Kostas Magoutis

magoutis@csd.uoc.gr 

http://www.csd.uoc.gr/~hy590-45



Assumptions

• Inexpensive commodity components

• Modest number of large files (multi-GB)

• Large streaming reads, small random reads

• Large sequential writes (appends)

• Need well-defined semantics for concurrent appends

• Bandwidth more important than latency



Interface

• Familiar but non-standard API

• Hierarchical, directory-based file namespace

• Create, delete, open, close, read, write

• Snapshot, record append



Google FS : Architecture

No data caching 

Metadata caching (to
timeout or next open)

Heartbeats

Closest chunk replica

Version number



Metadata

• Types of metadata

– File and chunk namespaces

– Mapping from files to chunks

– Location of chunk replicas

• Operation log

– Persistent record of metadata; defines order

• Management activities

– Chunk garbage collection

– Chunk re-replication in case of chunkserver failures

– Chunk migration to balance load



Write control and data flow

Caches metadata 

Holds lease on chunk

• Handling of appends

• What happens on failure

• What if client fails

Assign serial number

Break write request into chunks



Consistency model (1)

• File region is defined as

– “Consistent”: Same on all replicas

– “Defined”: Consistent and clients will see what the mutation 
wrote in its entirety (implies serializability)

• POSIX semantics are identical to “defined”

• Namespace mutations are atomic

– Handled exclusively by the master



Consistency model (2)

• Data mutations depend on

– Type of mutation: Write | Record append

– Concurrency

– Failures



Implication for applications

• Rely on appends rather than overwrites

– More efficient and resilient to failures than regular writes

• Write self-validating, self-identifying records

• Checkpointing

– Allows writers to restart incrementally

• Readers

– Read only up to last checkpoint

– Identify and discard padding using checksums

– Tolerate duplicates through record version numbers



Snapshot

• On snapshot request, revoke leases on all chunks

• Log the operation to disk

• Duplicate metadata for source file or directory

• On write request to chunk C, clone to C’



Locking

• Acquire read locks on path names

• Acquire write lock on file or directory to operate on

• Example

– /home/user is snapshotted to /save/user

– Application tries to create /home/user/foo

• Allows concurrent mutations on same directory

• Avoids deadlock



Chunk creation

• Factors to consider in placing new replicas

– Choose chunk servers with below-average disk utilization

– Limit the number of new creations on each server

– Spread replicas of a chunk across racks

• Re-replicate if # replicas < threshold

– Prioritize chunks based on how many replicas lost 


