ey >
HEN\E2| TANEMIZTHMIO KPHTHE
B30 /5| UNIVERSITY OF CRETE

HY590.45
Modern Topics in
Scalable Storage Systems

Kostas Magoutis
magoutis@csd.uoc.gr
http://www.csd.uoc.gr/~hy590-45

Assumptions
Inexpensive commodity components
Modest number of large files (multi-GB)
Large streaming reads, small random reads
Large sequential writes (appends)

Need well-defined semantics for concurrent appends

Bandwidth more important than latency

Interface

Familiar but non-standard API
Hierarchical, directory-based file namespace
Create, delete, open, close, read, write

Snapshot, record append

Google FS : Architecture

No data caching Version number

Application (file name, chunk index) _ GFS master e ftoo/bar

GFS client | File namespace chunk2Zef0

(chunk handle, v
chunk locations)

Metadata caching (to

.] . |
timeout or next open) Instructions to chunkserver Heartbeats
(chunk handle, byte range) | ¥ Chunkserver state | §
GFS chunkserver GFS chunkserver
chunk data Linux file system Linux file system o

Closest chunk replica

Metadata

e Types of metadata
— File and chunk namespaces
— Mapping from files to chunks
— Location of chunk replicas

e QOperation log
— Persistent record of metadata; defines order

e Management activities
— Chunk garbage collection
— Chunk re-replication in case of chunkserver failures
— Chunk migration to balance load

Write control and data flow

Caches metadata
T/

Assign serial number

7

Client

step 1

Break write request into chunks

_—
=i

-

13

Secondary

Replica A

']

-

Holds lease on chunk

o

Primary
Replica

|

Secondary
Replica B

2

Master

e Handling of appends
e What happens on failure

e What if client fails

Legend:

Control

e
—) Data

Consistency model (1)

e File region is defined as
— “Consistent”; Same on all replicas

— “Defined”: Consistent and clients will see what the mutation
wrote in its entirety (implies serializability)

e POSIX semantics are identical to “defined”

e Namespace mutations are atomic
— Handled exclusively by the master

Consistency model (2)

e Data mutations depend on
— Type of mutation: Write | Record append

— Concurrency
— Failures
Write Record Append

Serial defined defined
success interspersed with
Concurrent | consistent imconsistent
sUCCesses but undefined
Failure inconsistent

Implication for applications

Rely on appends rather than overwrites
— More efficient and resilient to failures than regular writes

Write self-validating, self-identifying records

Checkpointing

— Allows writers to restart incrementally

Readers

— Read only up to last checkpoint

— Identify and discard padding using checksums

— Tolerate duplicates through record version numbers

Snapshot

On snapshot request, revoke leases on all chunks
Log the operation to disk
Duplicate metadata for source file or directory

On write request to chunk C, clone to C'’

Locking
Acquire read locks on path names
Acquire write lock on file or directory to operate on

Example
— /home/user is snapshotted to /save/user
— Application tries to create /home/user/foo

Allows concurrent mutations on same directory

Avoids deadlock

Chunk creation

e Factors to consider in placing new replicas
— Choose chunk servers with below-average disk utilization
— Limit the number of new creations on each server
— Spread replicas of a chunk across racks

e Re-replicate if # replicas < threshold
— Prioritize chunks based on how many replicas lost

