NFS Version 2 RPC requests

RPC request Action Idempotent
GETATTR get file attributes yes
SETATTR set file attributes yes
LOOKUP look up file name yes
READLINK read from symbolic link yes
READ read from file yes
WRITE write to file yes
CREATE create file yes
REMOVE remove file no
RENAME rename file no
LINK create link to file no
SYMLINK create symbolic link yes
MKDIR create directory no
RMDIR remove directory no
READDIR read from directory yes

STATFS get filesystem attributes yes

Stable-store requirement (NFS v2)
All procedures in NFS v2 are synchronous

When a procedure returns to the client, it assumes
that the operation has completed and any data
associated with the request is now on stable storage

A WRITE may cause the server to update data
blocks, indirect blocks, and attribute information
(size, modify times)

When the WRITE returns to the client, it can assume
that the write is safe, even in case of a server crash

Statelessness

e Server has no information about clients, open files
— Not entirely true in practice (e.g., retransmission cache)

e Pros
— Recovery

e Cons
— Local file system semantics imply state

— Performance (due to stable store requirement)
o Addressed by NFS specs following v2

NFS Implementation

e Daemons
e Mounting a file system

e Performing I/O

Daemon interaction for mounting

@

client server
mount user portmap mountd
“LF | TRCRS NI Sl M
keme] @ @
{ \o r @
- Y,
- >,

Daemon interaction for I/O

client

write()

@H@

nfsiod

SCrver

— — -y — —_— — 4

nfsd

user

kernel

1@

Yje

disk

Transport issues

e UDP implementation
— RPC must fit in datagram (early versions restricted to 8KB)
— Timeout, retransmission handled by RPC layer
— Difficult to estimate RTT
— RPC request broken down into IP fragments/Ethernet MTUs

e Or, run over TCP

Techniques for improving performance:
Client caching and write buffering

Delayed writes are allowed but cause problems
— Other clients may see old versions of data

Solution: close-to-open consistency

— Clients flush on close(), so other clients will see the latest
version on a later open()

A write to server won't be reflected on clients’ caches
— No updates or invalidations (due to stateless server)

Clients occasionally validate their caches

— Send a GETATTR every 3 seconds and check the file's
modification time and see if it has been updated

Existing solutions

e NFS version 3
— Leverage asynchronous writes
— Writes back at 30" intervals, flushes (commit) on close
— Read consistency by checking with server on read (every 3")

e Sprite [Nelson88]
— File locks
— Disable caching when detecting concurrent writes

o AFS [Howard88]

— File locks
— Callback-based invalidations

Leases: Fault-tolerant locks

e Pros
— Quick recovery without requiring hard state
— Can tolerate partitions
— Require moderate amount of soft state

e Important constants
— maximum_lease_term (normally ~30")
- clock_skew
- write_slack

Read-caching leases

client A

read syscall

read syscalls
(from cache)

lease times out

read syscall
modification time

match, cache valid

read syscalls
(from cache)

lease times out

server client B
Mi lease request : ' TIME
< reply read-caching lease \L
read request for client A
(cache miss) -
. lease expires
' __get lease request
) §iepl)' with same read + lease request . read syscall
modification time i :
reply, client B .
read request added to lease : read syscalls
(cache miss) iz (from cache)
= reply read request
Eﬁ (cache miss)
reply —= lease times out

Write-caching lease

server
|

. get write lease

write-caching lease lLe—

for client B reply

(write-caching lease)

get write lease

i

<
lease renewed

reply
(write-caching lease)

—

lease times out write
6—
9y reply
expiration delayed - e
due to write activity reply

expires write_slack seconds
after most recent write ,

vl

client B

: write syscall

write syscall
(delayed writes
being cached)

lease-renewal request
before expiration

close syscall

lease expires

TIME

'

Write-sharing leases

client A

read syscall

read syscalls
(from cache)

gase times out

read syscall

read data
(not cached)

read + lease request

server
|
J

lf reply
read request

I
|
I
!
read-caching lease I
|
|
|
|
|

for client A
(cache miss) <
I o lease expires
: | get write lease !
: B I
: reply =
: (write-caching lease)
| get lease request
i — eviction notice
1
: write o
: reply
: wrile
! reply
| vacated message >
: repl :
Py - get write lease ____J
(noncaching lease) ——— I
3 ! reply i
e (noncaching lease)
reply data write
6—

reply

client B

TIME

¢

write syscall

write syscall
(delayed writes
being cached)

delayed writes
being flushed
to server

write syscall

synchronous writes
(not cached)

