
NFS Version 2 RPC requests



Stable-store requirement (NFS v2)

• All procedures in NFS v2 are synchronous

• When a procedure returns to the client, it assumes 
that the operation has completed and any data 
associated with the request is now on stable storage

• A WRITE may cause the server to update data 
blocks, indirect blocks, and attribute information 
(size, modify times)

• When the WRITE returns to the client, it can assume 
that the write is safe, even in case of a server crash



Statelessness

• Server has no information about clients, open files

– Not entirely true in practice (e.g., retransmission cache)

• Pros

– Recovery

• Cons

– Local file system semantics imply state

– Performance (due to stable store requirement)

• Addressed by NFS specs following v2



NFS Implementation

• Daemons

• Mounting a file system

• Performing I/O



Daemon interaction for mounting



Daemon interaction for I/O



Transport issues

• UDP implementation

– RPC must fit in datagram (early versions restricted to 8KB)

– Timeout, retransmission handled by RPC layer

– Difficult to estimate RTT

– RPC request broken down into IP fragments/Ethernet MTUs

• Or, run over TCP



Techniques for improving performance: 
Client caching and write buffering

• Delayed writes are allowed but cause problems

– Other clients may see old versions of data

• Solution: close-to-open consistency

– Clients flush on close(), so other clients will see the latest 
version on a later open()

• A write to server won’t be reflected on clients’ caches 

– No updates or invalidations (due to stateless server)

• Clients occasionally validate their caches

– Send a GETATTR every 3 seconds and check the file's 
modification time and see if it has been updated



Existing solutions

• NFS version 3
– Leverage asynchronous writes

– Writes back at 30’ intervals, flushes (commit) on close

– Read consistency by checking with server on read (every 3’’)

• Sprite [Nelson88]
– File locks

– Disable caching when detecting concurrent writes

• AFS [Howard88]
– File locks

– Callback-based invalidations



Leases: Fault-tolerant locks

• Pros

– Quick recovery without requiring hard state

– Can tolerate partitions

– Require moderate amount of soft state

• Important constants
– maximum_lease_term (normally ~30’’)

– clock_skew

– write_slack



Read-caching leases



Write-caching lease



Write-sharing leases


