
HY590.45
Modern Topics in

Scalable Storage Systems

Kostas Magoutis

magoutis@csd.uoc.gr

http://www.csd.uoc.gr/~hy590-45

Distributed file sharing

• Benefits

– Ability to access files from many locations

• E.g., home directories

– Consolidate storage management

• Makes it possible to share files

– Often concurrent readers or single writer

– Less often, concurrent writers

• Exclusive access to non-overlapping parts of file

• Several data producers, concurrent append to shared file

• Infrequent in engineering/office type workloads

Server

Client Client

File sharing in a single system

App1 App2

Cache
Open file

state Locks

App3

Single system

Crash recovery?

write(f, .. read(f, .. write(f, ..

Data + metadata

• File lock

• Range lock

• Byte range

• Type of lock (op)

• R/W

File-access APIs and semantics

Concurrent append, implicit serialization

fd=open(f, O_APPEND

write(fd, …

write(fd, …

write(fd, …

write(fd, …

…

close(fd, …

fd=open(f, O_APPEND

write(fd, …

write(fd, …

write(fd, …

write(fd, …

…

close(fd, …

P1 P2

Concurrent append in a single system

App1 App2

Cache
Open file

state Locks

App3

Single system

write(f, .. write(f, .. write(f, ..

Data + metadata

open(O_APPEND

File-access APIs and semantics

• Hard links: multiple names can be linked to an inode

• In Unix, when files are unlinked they are not removed
unless all open references to them are closed

• File system semantics imply state

Image © https://medium.com/@meghamohan/hard-link-and-symbolic-link-3cad74e5b5dc

Unlink both names

Extend to a distributed setting

App1

Cache
data+meta

Open

file state
Lock

state

App2

Cache
data+meta

Open

file state

Client 1 Client 2

Server

Cache
data+meta

Open

file state

Data + metadata

• Locks held

• Files open

• Byte ranges

• Blocks cached

Server

knows

about

clients?

Crash recovery?

Lock

state

Lock

state

fd=open(f

write(fd, ..
fd=open(f

read(fd, ..

Extend to a distributed setting

App1

Cache
data+meta

Open

file state
Lock

state

App2

Cache
data+meta

Open

file state

Client 1 Client 2

Server 1

Cache
data+meta

Open

file state

Data + metadata

Lock

state

Lock

state

fd=open(f

write(fd, ..
fd=open(f

read(fd, ..

Server 2

Cache
data+meta

Open

file state

Data + metadata

Lock

state

Network File System (NFS)

• History

– UNIX United

– SUN Network Disk

– RFS

– Andrew File System (AFS)

• Overview of NFS

– Stateless

– Aims to offer UNIX semantics

– Transport independent

– UNIX security and access control

– Client caching and consistency

NFS division between clients and server

NFS structure and operation

• Based on Remote Procedure Calls (RPCs)

– Handle problems that may occur due to crashes

• Files identified by NFS handle

– Comprises inode id, file system id, generation number

• VFS/Vnode layer

RPC behavior under failures

Server process
crash

Message / packet omission failures handled by TCP

Server machine
crash

Link failure

State
update

Client crash

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Server crashes

A server in client-server communication
(a) The normal case
(b) Crash after execution
(c) Crash before execution

RPC semantics

• At-least-once

– Retry after an exception/timeout until successful

– Good choice with idempotent operations (e.g., reads)

– How about non-idempotent operations (e.g., writes)?

• At-most-once

– Do not retry an operation or try to avoid duplicates

