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Distributed file sharing

• Benefits

– Ability to access files from many locations

• E.g., home directories

– Consolidate storage management

• Makes it possible to share files

– Often concurrent readers or single writer

– Less often, concurrent writers

• Exclusive access to non-overlapping parts of file

• Several data producers, concurrent append to shared file

• Infrequent in engineering/office type workloads
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File sharing in a single system
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File-access APIs and semantics

Concurrent append, implicit serialization
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Concurrent append in a single system
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File-access APIs and semantics

• Hard links: multiple names can be linked to an inode

• In Unix, when files are unlinked they are not removed 
unless all open references to them are closed

• File system semantics imply state

Image © https://medium.com/@meghamohan/hard-link-and-symbolic-link-3cad74e5b5dc
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Extend to a distributed setting
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Extend to a distributed setting
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Network File System (NFS)

• History

– UNIX United

– SUN Network Disk

– RFS

– Andrew File System (AFS)

• Overview of NFS

– Stateless

– Aims to offer UNIX semantics

– Transport independent

– UNIX security and access control

– Client caching and consistency



NFS division between clients and server



NFS structure and operation

• Based on Remote Procedure Calls (RPCs)

– Handle problems that may occur due to crashes

• Files identified by NFS handle

– Comprises inode id, file system id, generation number

• VFS/Vnode layer



RPC behavior under failures
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Server crashes

A server in client-server communication  
(a) The normal case
(b) Crash after execution
(c) Crash before execution



RPC semantics

• At-least-once

– Retry after an exception/timeout until successful

– Good choice with idempotent operations (e.g., reads)

– How about non-idempotent operations (e.g., writes)?

• At-most-once

– Do not retry an operation or try to avoid duplicates


