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Refresher

e Storage devices: SSDs, Disk drives
e File system data structures and disk layout

e File system consistency



Flash-based SSD
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SSD Micron MTFDDAK480TDN 480GB @200%
HDD (SAS)  Toshiba MGO4SCA20ENY 2TB @190$ (4.5x cheaper/GB vs. SSD)

HDD (SATA) Toshiba MGO4ACA200E 2TB @125% (6.7x cheaper/GB vs. SSD)

Diagram © Do et al., “Programmable Solid-State Storage in Future Cloud Datacenters”, CACM 62(6):56, June 2019



Internal architecture of NAND flash
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Reads/writes are performed by page
Block (“erase unit”) must be erased before being programmed (written)
Logical I/O units should be mapped to physical NAND pages
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« Typical flash memory performance
« Sequentially reading at up to 400-500MB/sec
» Sequentially writing at 100-200MB/sec due to complexity of programming

« Latency is a major benefit

« 50-100 psec for reads/writes
« Random I/O (4KB) at ~2,000-40,000 IOPS (varies with op-type, device)

* Erasure time: several milliseconds

« With HDDs, random reads and writes typically in the order of 10msec
Diagram © Do et al., “Programmable Solid-State Storage in Future Cloud Datacenters”, CACM 62(6):56, June 2019



Page mapping scheme in
Flash Translation Layer (FTL)
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Host System
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« Example: Consider consecutive writes to LPAs 5, 3, 5, 2
« FTL tasks: Mapping, garbage collection, wear leveling

Diagrams on this and previous slide © Mir et al., “A High Performance Reconfigurable Architecture for Flash File Systems”, Communicating Process Architectures 2012



Hard-disk drives (HDDs)
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Characteristics

Seek time
— Move across cylinder boundary/ies

Head switch time
— Move across track boundary

Write settle time
— Position head onto right sector for a write

Skew

— Sector arrangement to avoid unnecessary rotational latency



Sequential LBN space vs. physical cylinder

Serpentine Ordering of Tracks

tracks
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Image © D. Anderson “You don't know jack about disks”, ACM Queue, June 2003



Addressing in modern disks

e |BN address space simplifies things for the OS
— Highest bandwidth achieved for sequential access

e (Caveat: OS must present I/Os to disk at right time

— Sequential I/Os should have small inter-arrival times at the
disk to avoid rotational latency

e Disk throughput typically measured in
— IOPS for random I/Os
— MB/s for sequential I/Os



Disks are better in scheduling I/Os

1.
Operation Starting LBA Length 7§ e 4
Read 724 8 e M0SC-OrGETEd QUELK
Read 100 16 Bl 3}
Read 9987 1 b 3
Read 26 128 BN\E
The host might reorder this to: ,./ N i -
Operation Starting LBA Length P AET VAN
Read 26 128
Read 100 16
Read 724 8
Read 9987 1

Image © D. Anderson “You don't know jack about disks”, ACM Queue, June 2003



Evolution towards fewer platters

enterprise drives

desktop drives
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Image © D. Anderson “You don't know jack about disks”, ACM Queue, June 2003



Drive technology comparison

o Serial ATA (SATA)
— High capacity, best $/GB
— 7200RPM, slow seeks
— Multiple (4-5) wide platters

e Serially-attached SCSI (SAS)

— Best performance
— 15000RPM, fast seeks
— Single narrow platter



Refresher

e Disk drive
e File system data structures and disk layout

e File system consistency



File system data structures

e Metadata
— Directories
— inodes
— Indirect blocks
— Free lists
— Superblock

e Metadata operations involve several steps
— E.g., rm <file>, truncate file to zero length

e Updates should preserve metadata consistency



Examples

e System call : rm <file>
1. remove directory entry directory
2. free inode
3. free disk blocks used by file

inode

disk block

e System call : truncate <file>
1. modify inode
2. free disk blocks used by file 11000101011 10 1] free list

e Consistency requirement (weak): No stale pointers
left in stable store after a crash



Achieving consistency by ordering writes

Older FSes ensure order via synchronous writes
— Significant impact on performance (critical path)

— Recovery requires scavenging, which can take hours (or
days!) for large file systems

Recovery through UNIX fsck

— Check inodes, build bitmap of used data blocks

— Record inode numbers, block addrs of all directories
— Validate structure of directory tree

— Validate directory contents to account for all files

— Handle errors
e Orphan directories and files in lost+found
e Check bitmaps and summary counts



File system consistency

e How to achieve efficiently
— Logging (or journaling) on disk or NVRAM

e Logging is general method for achieving atomic
updates — the “all or nothing” property

— Write “intentions” to an append-only log before issuing the
actual (in-place) I/Os

— Atomicity based on atomic primitive (sector write) supported
by (or constructed over) stable store (disk)

e General transactions ensure ACID properties
— Atomicity, consistency, isolation, durability



Logging (or Journaling)

Redo vs. undo records
— Log new value, old value (or both)

Rapid recovery
— Only the tail of the log needs to be examined, replayed

Good performance
— Sequential writes (appends), saves I/Os
— However, need to consider interference with other activity

Other issues
— Group commit

— Garbage collection
— Indexing for data retrieval



Metadata logging implementation

Physical memory Disk partition
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e Each metadata update is written to disk twice
e However, in-place updates can be batched or eliminated
e Batching can be applied to log writes as well (group commit)



txn start

Redo logging
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Undo logging
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Undo vs. Redo logging

e Undo

— Can steal dirty bufs but must force in-place I/O before commit

— Undo records are logged (WAL) then updates written in-place
e Thus, dirty buffers can be cleaned up (stolen) before commitment

— In-place updates must be forced before commit time
e Without force, it would not be possible to apply changes after commitment

e Redo
— (Cannot steal dirty buffers but need not force in-place 1/0
— Redo records logged before commitment
— In-place updates permitted only after commitment (no-steal)
— Need not force in-place updates at commit time (no force)

e Redo-undo: Best of both worlds
— At the expense of some space and complexity




Log consistency between concurrent
operations on same set of objects

« Suppose p1 modifies A & concurrently p2 reads A and based on its contents modifies B

« Example: p1 deletes a file from block A of a directory; p2 finds that the directory does
not have name A, then creates a directory entry in block B of the directory

Do not read a modified object,

modifies object A unless committed to log
I e
: reads object A :
modifies object B
writes B to log
R CRASH
writes A to log -
l writes B to disk
writes A to disk




