
HY590.45
Modern Topics in

Scalable Storage Systems

Kostas Magoutis

magoutis@csd.uoc.gr

http://www.csd.uoc.gr/~hy590-45

Refresher

• Storage devices: SSDs, Disk drives

• File system data structures and disk layout

• File system consistency

Flash-based SSD

Diagram © Do et al., “Programmable Solid-State Storage in Future Cloud Datacenters”, CACM 62(6):56, June 2019

Micron MTFDDAK480TDN 480GB @200$

Toshiba MG04SCA20ENY 2TB @190$ (4.5x cheaper/GB vs. SSD)

Toshiba MG04ACA200E 2TB @125$ (6.7x cheaper/GB vs. SSD)

SSD

HDD (SAS)

HDD (SATA)

Internal architecture of NAND flash

• Reads/writes are performed by page

• Logical I/O units should be mapped to physical NAND pages

• Block (“erase unit”) must be erased before being programmed (written)

Flash-based SSD

Diagram © Do et al., “Programmable Solid-State Storage in Future Cloud Datacenters”, CACM 62(6):56, June 2019

• Typical flash memory performance
• Sequentially reading at up to 400-500MB/sec
• Sequentially writing at 100-200MB/sec due to complexity of programming

• Latency is a major benefit
• 50-100 μsec for reads/writes
• Random I/O (4KB) at ~2,000-40,000 IOPS (varies with op-type, device)
• Erasure time: several milliseconds

• With HDDs, random reads and writes typically in the order of 10msec

Page mapping scheme in
Flash Translation Layer (FTL)

Diagrams on this and previous slide © Mir et al., “A High Performance Reconfigurable Architecture for Flash File Systems”, Communicating Process Architectures 2012

• Example: Consider consecutive writes to LPAs 5, 3, 5, 2

• FTL tasks: Mapping, garbage collection, wear leveling

Hard-disk drives (HDDs)

Characteristics

• Seek time

– Move across cylinder boundary/ies

• Head switch time

– Move across track boundary

• Write settle time

– Position head onto right sector for a write

• Skew

– Sector arrangement to avoid unnecessary rotational latency

Sequential LBN space vs. physical cylinder

Image © D. Anderson “You don’t know jack about disks”, ACM Queue, June 2003

Addressing in modern disks

• LBN address space simplifies things for the OS

– Highest bandwidth achieved for sequential access

• Caveat: OS must present I/Os to disk at right time

– Sequential I/Os should have small inter-arrival times at the
disk to avoid rotational latency

• Disk throughput typically measured in

– IOPS for random I/Os

– MB/s for sequential I/Os

Disks are better in scheduling I/Os

Image © D. Anderson “You don’t know jack about disks”, ACM Queue, June 2003

Evolution towards fewer platters

Image © D. Anderson “You don’t know jack about disks”, ACM Queue, June 2003

Drive technology comparison

• Serial ATA (SATA)

– High capacity, best $/GB

– 7200RPM, slow seeks

– Multiple (4-5) wide platters

• Serially-attached SCSI (SAS)

– Best performance

– 15000RPM, fast seeks

– Single narrow platter

Refresher

• Disk drive

• File system data structures and disk layout

• File system consistency

File system data structures

• Metadata

– Directories

– inodes

– Indirect blocks

– Free lists

– Superblock

• Metadata operations involve several steps
– E.g., rm <file>, truncate file to zero length

• Updates should preserve metadata consistency

Examples

• System call : rm <file>

1. remove directory entry

2. free inode

3. free disk blocks used by file

• System call : truncate <file>

1. modify inode

2. free disk blocks used by file

• Consistency requirement (weak): No stale pointers
left in stable store after a crash

Achieving consistency by ordering writes

• Older FSes ensure order via synchronous writes

– Significant impact on performance (critical path)

– Recovery requires scavenging, which can take hours (or
days!) for large file systems

• Recovery through UNIX fsck

– Check inodes, build bitmap of used data blocks

– Record inode numbers, block addrs of all directories

– Validate structure of directory tree

– Validate directory contents to account for all files

– Handle errors

• Orphan directories and files in lost+found

• Check bitmaps and summary counts

File system consistency

• How to achieve efficiently
– Logging (or journaling) on disk or NVRAM

• Logging is general method for achieving atomic
updates – the ”all or nothing” property
– Write “intentions” to an append-only log before issuing the

actual (in-place) I/Os

– Atomicity based on atomic primitive (sector write) supported
by (or constructed over) stable store (disk)

• General transactions ensure ACID properties
– Atomicity, consistency, isolation, durability

Logging (or Journaling)

• Redo vs. undo records

– Log new value, old value (or both)

• Rapid recovery

– Only the tail of the log needs to be examined, replayed

• Good performance

– Sequential writes (appends), saves I/Os

– However, need to consider interference with other activity

• Other issues

– Group commit

– Garbage collection

– Indexing for data retrieval

Metadata logging implementation

• Each metadata update is written to disk twice

• However, in-place updates can be batched or eliminated

• Batching can be applied to log writes as well (group commit)

Redo logging

txn start txn commit

redo logging

In-place

redo rec redo rec

No in-place updates

allowed before commit

in-place

Undo logging

txn start

undo logging

In-place

undo rec

in-place

Undo rec must precede

in-place update

undo rec

in-place

txn commit

All in-place updates must

be done before commit

Undo vs. Redo logging

• Undo

– Can steal dirty bufs but must force in-place I/O before commit

– Undo records are logged (WAL) then updates written in-place
• Thus, dirty buffers can be cleaned up (stolen) before commitment

– In-place updates must be forced before commit time
• Without force, it would not be possible to apply changes after commitment

• Redo

– Cannot steal dirty buffers but need not force in-place I/O

– Redo records logged before commitment

– In-place updates permitted only after commitment (no-steal)

– Need not force in-place updates at commit time (no force)

• Redo-undo: Best of both worlds

– At the expense of some space and complexity

Log consistency between concurrent
operations on same set of objects

• Suppose p1 modifies A & concurrently p2 reads A and based on its contents modifies B

• Example: p1 deletes a file from block A of a directory; p2 finds that the directory does
not have name A, then creates a directory entry in block B of the directory

Do not read a modified object,
unless committed to log

