ey >
HEN\E2| TANEMIZTHMIO KPHTHE
B30 /5| UNIVERSITY OF CRETE

HY590.45
Modern Topics in
Scalable Storage Systems

Kostas Magoutis
magoutis@csd.uoc.gr
http://www.csd.uoc.gr/~hy590-45

Refresher

e Storage devices: SSDs, Disk drives
e File system data structures and disk layout

e File system consistency

Flash-based SSD

Flash SSD
Flash Storage Media

Flash Channel

Embedded Flash

Processor Controller I |
' : m m
SSD DRAM Flash Flash Channel

Controller Controller Controller H:“:'""" ":":'"""

DRAM

[¢B]

OL
S o
‘a—_):'
273
C s
H c
-:7;0
OO
I

SSD Micron MTFDDAK480TDN 480GB @200%
HDD (SAS) Toshiba MGO4SCA20ENY 2TB @190$ (4.5x cheaper/GB vs. SSD)

HDD (SATA) Toshiba MGO4ACA200E 2TB @125% (6.7x cheaper/GB vs. SSD)

Diagram © Do et al., “Programmable Solid-State Storage in Future Cloud Datacenters”, CACM 62(6):56, June 2019

Internal architecture of NAND flash

T i ./”——_"‘\\\\\\

I 1 1Block0 !

e ! Block
1

| R |
A pllellep|]lp]|P P
| O | |B|0Ck1 A A A A A A
- ellea||e||le]|ec|_ ___|a
E E E E E E
| R PR | |
: : :Blockz: 1 2 3 4 N-1

| Typically a block has 32-128 pages
I
: Page layout

—1 ' Da;aAna(Sﬂ-Mby(n) 16-64 bytes
| 1 1Block N-1! i

Data area Metadata area

Reads/writes are performed by page
Block (“erase unit”) must be erased before being programmed (written)
Logical I/O units should be mapped to physical NAND pages

Flash-based SSD

Flash SSD
Flash Storage Media

Flash Channel

Embedded Flash

Processor Controller I |

SSD DRAM Flash Flash Channel

Controller Controller Controller I]

DRAM

[¢B]

OL
S o
‘a—_):'
273
]
H C
-:7;0
OO
I

« Typical flash memory performance
« Sequentially reading at up to 400-500MB/sec
» Sequentially writing at 100-200MB/sec due to complexity of programming

« Latency is a major benefit

« 50-100 psec for reads/writes
« Random I/O (4KB) at ~2,000-40,000 IOPS (varies with op-type, device)

* Erasure time: several milliseconds

« With HDDs, random reads and writes typically in the order of 10msec
Diagram © Do et al., “Programmable Solid-State Storage in Future Cloud Datacenters”, CACM 62(6):56, June 2019

Page mapping scheme in
Flash Translation Layer (FTL)

NAND Flash Memory
Host System
e Invalid Page Physical Block 1 PPN
[5 1 Page Mapping Table \M Page 2
e P EE—— ke Page 3
Logical Page Address Physical Page Address |
(LPA) (PPA) : Page N | 4
—— e s v L L |
- = : Physical Block 2
2 Je— 6 | ; Page 1 | 6
3)(»‘ 65 . R kR g Page 2 66
[4]‘ ,ll 11 Pagez &7
- — 3368 ppoot | %
N — 266 | " :
| ey Page N 128
[I}(. » 5 __Physical Block N
= =. Page 1 IN-64
{_!'_’_ > 9 J Page 2 |N-63
N [s Page3 |ue
Page N N

« Example: Consider consecutive writes to LPAs 5, 3, 5, 2
« FTL tasks: Mapping, garbage collection, wear leveling

Diagrams on this and previous slide © Mir et al., “A High Performance Reconfigurable Architecture for Flash File Systems”, Communicating Process Architectures 2012

Hard-disk drives (HDDs)

HEAD ARM

READ/WRITE HEAD f _" =

WOICE COIL
ACTUATOR

Inner Track Sector
Outer Track \! f;
- — — = .

Platter :“k> “ %

\
N

- — Actuator

|
(B [
! |
II |
I
L1 II
N
!
I'llll_ II| II'.
Vi
A .
f _>>7L
b

|
|||
(B
Y
I
L

b
M

\
F.A.

| [| ||
!
II
|
vl
1
4
1
LY
e
I

-
.flf s
£
[
N
Tk
T
]
1
‘u:x
rd

|
|| (!
)

Characteristics

Seek time
— Move across cylinder boundary/ies

Head switch time
— Move across track boundary

Write settle time
— Position head onto right sector for a write

Skew

— Sector arrangement to avoid unnecessary rotational latency

Sequential LBN space vs. physical cylinder

Serpentine Ordering of Tracks

tracks
0 - | ————p {

(n+1) - 2n 4_“——-—]
(2n+1) = 3N ——
(3n+1) - 4n i"————_"
(AN+1) = DN e——

(5n+1) - 6n e ——

Image © D. Anderson “You don't know jack about disks”, ACM Queue, June 2003

Addressing in modern disks

e |BN address space simplifies things for the OS
— Highest bandwidth achieved for sequential access

e (Caveat: OS must present I/Os to disk at right time

— Sequential I/Os should have small inter-arrival times at the
disk to avoid rotational latency

e Disk throughput typically measured in
— IOPS for random I/Os
— MB/s for sequential I/Os

Disks are better in scheduling I/Os

1.
Operation Starting LBA Length 7§ e 4
Read 724 8 e M0SC-OrGETEd QUELK
Read 100 16 Bl 3}
Read 9987 1 b 3
Read 26 128 BN\E
The host might reorder this to: ,./ N i -
Operation Starting LBA Length P AET VAN
Read 26 128
Read 100 16
Read 724 8
Read 9987 1

Image © D. Anderson “You don't know jack about disks”, ACM Queue, June 2003

Evolution towards fewer platters

enterprise drives

desktop drives

— e

Image © D. Anderson “You don't know jack about disks”, ACM Queue, June 2003

Drive technology comparison

o Serial ATA (SATA)
— High capacity, best $/GB
— 7200RPM, slow seeks
— Multiple (4-5) wide platters

e Serially-attached SCSI (SAS)

— Best performance
— 15000RPM, fast seeks
— Single narrow platter

Refresher

e Disk drive
e File system data structures and disk layout

e File system consistency

File system data structures

e Metadata
— Directories
— inodes
— Indirect blocks
— Free lists
— Superblock

e Metadata operations involve several steps
— E.g., rm <file>, truncate file to zero length

e Updates should preserve metadata consistency

Examples

e System call : rm <file>
1. remove directory entry directory
2. free inode
3. free disk blocks used by file

inode

disk block

e System call : truncate <file>
1. modify inode
2. free disk blocks used by file 11000101011 10 1] free list

e Consistency requirement (weak): No stale pointers
left in stable store after a crash

Achieving consistency by ordering writes

Older FSes ensure order via synchronous writes
— Significant impact on performance (critical path)

— Recovery requires scavenging, which can take hours (or
days!) for large file systems

Recovery through UNIX fsck

— Check inodes, build bitmap of used data blocks

— Record inode numbers, block addrs of all directories
— Validate structure of directory tree

— Validate directory contents to account for all files

— Handle errors
e Orphan directories and files in lost+found
e Check bitmaps and summary counts

File system consistency

e How to achieve efficiently
— Logging (or journaling) on disk or NVRAM

e Logging is general method for achieving atomic
updates — the “all or nothing” property

— Write “intentions” to an append-only log before issuing the
actual (in-place) I/Os

— Atomicity based on atomic primitive (sector write) supported
by (or constructed over) stable store (disk)

e General transactions ensure ACID properties
— Atomicity, consistency, isolation, durability

Logging (or Journaling)

Redo vs. undo records
— Log new value, old value (or both)

Rapid recovery
— Only the tail of the log needs to be examined, replayed

Good performance
— Sequential writes (appends), saves I/Os
— However, need to consider interference with other activity

Other issues
— Group commit

— Garbage collection
— Indexing for data retrieval

Metadata logging implementation

Physical memory Disk partition
,, \ 3
@ [l ------emeee e e >
Cached copy of Digk copy of
inode / inode /
@ | 7
Lo g Eﬁtry for —— Reserved for log —
k inode /) ~

e Each metadata update is written to disk twice
e However, in-place updates can be batched or eliminated
e Batching can be applied to log writes as well (group commit)

txn start

Redo logging

redo rec redo rec itxn commit

¢

=

redo logging

\

No in-place updates NoO f@g‘ﬁ’:j'
allowed before commit

—

eal'

S

(@)
(0))
(93

In-place

(0 =
*
“
*
*
.
*
.
*
&
Ld
N
.
.
-
*
.
....
...ll

Undo logging

Ko

. . ° . .

o Ce, 0 * R
0 - S

“ “

0’ : -
* *
.

txn start ‘undo rec™ { undo rec - .txn commit

: * = v e
" . - * e
CY = * .
[. » & .
. . - K] .
. . - K .
. . - K .
u % = o .
u o N .
T 0 *
- % - K
- . n . .
- . n & .
. . ¥ .
: - . - .
undao O in s B : .
= LX) » .
- s . .
- L) - .
. s x .

Undo rec must precéﬁe H * Allfin-place updates must
in-place update S H : be done before commit

.
.
*

in-place

.
.
.
.
.
.
.
.
.
.
.
-
.
.
-
L3
3
*
0

In-place S-

¢ (——

Undo vs. Redo logging

e Undo

— Can steal dirty bufs but must force in-place I/O before commit

— Undo records are logged (WAL) then updates written in-place
e Thus, dirty buffers can be cleaned up (stolen) before commitment

— In-place updates must be forced before commit time
e Without force, it would not be possible to apply changes after commitment

e Redo
— (Cannot steal dirty buffers but need not force in-place 1/0
— Redo records logged before commitment
— In-place updates permitted only after commitment (no-steal)
— Need not force in-place updates at commit time (no force)

e Redo-undo: Best of both worlds
— At the expense of some space and complexity

Log consistency between concurrent
operations on same set of objects

« Suppose p1 modifies A & concurrently p2 reads A and based on its contents modifies B

« Example: p1 deletes a file from block A of a directory; p2 finds that the directory does
not have name A, then creates a directory entry in block B of the directory

Do not read a modified object,

modifies object A unless committed to log
I e
: reads object A :
modifies object B
writes B to log
R CRASH
writes A to log -
l writes B to disk
writes A to disk

