698

Optimal 2-Bit Branch Predictors

Ravi Nair, Fellow, IEEE

Abstract—This paper presents an efficient technique to analyze finite-
state machines to determine an optimal one for branch prediction. It also
presents results from using this technique to determine optimal
4-state branch predictors for applications in the SPEC89 benchmark
suite running on the IBM RS/6000. The paper concludes that the simple
2-bit counter is the only machine that performs consistently well and
close to the optimal over all applications.

Index Terms—Branch instructions, dynamic branch prediction, opti-
mal 2-bit predictors, trace analysis, 2-bit counter machine, 2-bit pattern
machine.

I. INTRODUCTION

The penalty due to branch instructions in an instruction stream has
been well documented in the literature (see, for example [1] and [2]).
Pipelined machines suffer a degradation in performance whenever
branches cause a disruption in the smooth issue of instructions to the
functional units. A disruption occurs when either the condition or the
target address of a conditional branch cannot be resolved in time to
fetch and issue the target instructions.

Branch prediction is a common technique used to reduce branch
penalty. Branch prediction essentially involves a guess of the likely
stream of instructions that need to be executed after a branch; disrup-
tion in the pipe is thus avoided whenever the guess is accurate. For
branches whose target addresses are unknown at compile time, such a
guess is hard, but for most common conditional branches the likely
path of the program can be guessed by simply guessing whether or
not that branch will be taken. If information is available about the
likely direction of the branch at compile time, the compiler could
indicate this information, either by setting a bit in the branch instruc-
tion [3], [4], or by arranging code so that the more likely path is the
fall-through path.

In comparison to these static techniques, dynamic branch predic-
tion is implemented in hardware by saving some history of the behav-
ior of the application to facilitate prediction of future branches. A
simple technique is to store, for each conditional branch, one bit
indicating whether the branch was taken or not taken at last encoun-
ter and predict the same behavior at the next encounter.

Studies (e.g., [2]) have indicated that better results can be ob-
tained by using two or more bits to represent the history of each
branch, with the cost-effectiveness diminishing rapidly beyond three
bits. In order to improve on the prediction percentage beyond that
obtained by simply recording the history of each branch in a fixed
number of bits, it is necessary to use more sophisticated techniques
such as the two-level branch prediction scheme [5]. In this scheme,
the recent history of each branch is recorded and is used as an index
to a table which predicts whether the branch should be taken or not.
If this table is static (determined, for example from a profiling run, as
suggested in [2]), it is referred to as a static training predictor,
whereas, if it is dynamically updated, it is referred to as a two-level
adaptive predictor [S], [6]. As explained in these papers, these
schemes, particularly the adaptive ones, tend to have considerably
fewer mispredictions compared to the simple #-bit history schemes.

Manuscript received Feb. 19, 1993; revised Jan. 29, 1994,

R. Nair is with the IBM Corporation at the Thomas J. Watson Research
Center, PO Box 704, Yorktown Heights, NY 10598.

e-mail nair@watson.ibm.com.

IEEECS Log Number C95028.

JEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 5, MAY 1995

In another form of two-level adaptive predictor, called the correla-
tion-based predictor, proposed in [7], a global branch history is used
to index into a table associated with each branch. A thorough analysis
of the relative cost and performance of the two-level schemes appears
in [8].

The two-level predictors are more expensive to implement com-
pared to, say, a 2-bit or 3-bit history scheme. In high performance
processors which have resources for executing several instructions in
a single clock cycle, and where the hardware cost of implementing
them can be tolerated, these predictors help significantly in improv-
ing performance. When space on a chip is at a premium, however, the
simple schemes provide a good cost-effective way of reducing the
penalty due to conditional branches. For example, on the
IBM RS/6000, for the SPEC benchmark espresso, a history table
with 256 2-bit entries reduces the penalty due to conditional branches
from 0.176 cycles per instruction (cpi) to 0.051 cpi [9]. Reducing the
penalty further (perhaps by half) using one of the two-level predictors
would more than double the hardware required.

An additional motivation for studying simple 2-bit predictors is
that they often form a part of more sophisticated predictors. For ex-
ample, both in Yeh and Patt’s work [5], [6], [8], as well as in the
work by Pan, et al. [7], the second level pattern history is kept in a
simple 2-bit form.

Given a limited number of bits (say two or three) per branch, it
then becomes interesting to ask what the best representation of the
history is. Previous studies have simulated some of the more intuitive
ways of using two bits to represent the state of a branch. The number
of finite-state machines having four states (and hence representable in
two bits) is rather large, suggesting that it is impractical to look for
the optimal 2-bit representation. In this paper we demonstrate that
while this number is indeed large, there exist techniques to reduce the
effort in simulating all possible 4-state finite state machines for
branch prediction. We also provide results of such an evaluation for
various commonly used benchmarks.

II. ENUMERATION OF ALL 2-BIT PREDICTORS

Our principal objective is to determine a 4-state machine which
when used to represent the state of each branch in a given application
maximizes the success in predicting the outcome of the next occur-
rence of the branch. Each branch will use the same machine so that
the hardware requirement is simply a table of 2n bits, where n is the
number of distinct branches, in addition to one 4-state sequential
machine. We are focusing here on determining the optimal from a
large set of machines; we will not consider the effects of limiting the
size of the table. The reader is referred to [9] for more results from a
study of practical implementations for the IBM RS/6000.

A 2-bit predictor for a conditional branch instruction is essentially
a Moore machine having four states, one input and one output. An
input value of 0 indicates that the current branch was not taken, and 1
indicates it was taken. Each state is associated with an output value, 1
indicating that the next occurrence of the branch should be predicted
taken, and 0 indicating not taken. Each state also has a specified next
state for each of its two input values. Simply speaking, there are four
ways to assign each of eight next states, and two ways to assign an
output to each of the states, giving us 4* % 2% or 2% possible ma-
chines. Evaluating these million machines for each of the benchmark
traces is not practical even by current computing standards.

In the machine of Table I, the next state (NS) is depicted as a
function of the present state (PS) and the actual outcome (I) of a

0018-9340/95$04.00 © 1995 IEEE

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 5, MAY 1995

branch. Each state is also associated with a value that predicts the
outcome of the next instance (O) of the branch. Also shown is a
graphical representation of the machine. The starting state is repre-
sented by a bold arrow, states having a dark outline predict “taken”
(O =1), light predict “not-taken,” solid arcs represent I-transitions,
broken represent (-transitions. A convenient representation for the
machine would be simply (BCBAADCD : 3), where the letters corre-
spond to the next states for each of the states A, B, C, D in the table,
and where the 4-bit binary representation of the number 3 character-
izes the output (O) column of the table.

TABLE 1
SAMPLE FINITE STATE MACHINE
PS NS 0
I=0 I=1
A B C 0
B B A 0
C A D 1
D C D 1

The first step in reducing the number of machines simulated is to
ignore the output for each state during simulation of a given finite-
state machine (FSM). We simply record the percentage of taken
branches for each state. Clearly the best among the 2* possible ma-
chines having the same next-state transitions will be one which as-
signs a O to a state if less than half the branches are taken in that
state, and 1 if more than half are taken in that state. Thus, if the taken
fractions for each state during simulation were A: 0.8, B: 0.2, C: 0.3,
and D: 0.7, then the machine with an O assignment of 1001 would be
the best among all machines having the same NS assignments.

Among the 4* machines are several that are either trivial, have
fewer than four equivalent states, or are equivalent to other FSMs,
even ignoring output assignment. We will now show by simple
combinatorial techniques that, for a given starting state there are no
more than 5,248 distinct machines having exactly four distinct (non-
equivalent) states.

Consider an FSM with § states, and hence S rows in its table de-
scription. We need to consider only those machines which have the
first row representing the starting state, and for which a new state
appears in a next state entry only if all previous states (in row order)
have already appeared in the table. For all i < S, the first i rows must
then lead to j states, j > i. (If j <= i, the { + 1th state will be unreach-
able). These j states must be represented by the first j rows in the
table description. We can now write a recurrence relation for the
number of machines n; ;for which the first i rows lead to exactly j

states:
. .2 e
n =N +(2j —l)nHJ,l +jny, fori<, j<S§.

The first term in the above equation comes from the fact that if the
first i — 1 rows lead to j — 2 states, then the ith row must have transi-
tion on 0 going to state j — 1, and transition on 1 leading to state j.
The second term indicates that row i must have at least one of its
transitions going to state j. The last term comes from the fact that
since all j states have been touched already there are j* ways to assign
the ith row.

699

The initial conditions are given by:
n=0,m,=3,nm3=1,andn;;=0,j>3.

The total number of machines with S states is obtained as
N ns.,s. Table II shows the various values of n;; for a 4-state ma-
chine.

TABLE 11
CALCULATION OF NUMBER OF DISTINCT 2-BIT PREDICTORS

i]

1 2 3 4
1 0 3 1 0
2 0 0 5%3 4+ 9%1 =24 1¥3 +7%1 = 10
3 0 0 0 T*24 + 16*10 =328
4 0 0 0 16*328 = 5248

Even among these machines there are some uninteresting ones,
e.g., machines having the final state leading back to itself under both
0 and 1 input. But we will not attempt to prune this number further.

Simulating all machines with eight states (three bits) appears un-
reasonable since the above formula indicates that there are more than
12 billion such machines. However, it is more practical to simulate
all 4-state FSMs for a suite of applications, as we did. We provide
below a program which lists all 5,248 distinct 4-state machines.!

#include <stdio.h>

int SO([S][5])[10000](S];

int S1(5}([5]1(10000](5];

/* Array indices: Table 2 row,

machine #, present state */
void Copy({int ai,int aj,int an,int bi,int bj,int
bn) {
/* Copies machine number ‘an’ from row ai, column
aj of Table 2 to machine number‘'bn’ from row bi,
column bj.

/* next state for I = 0 *
/* next state for I =1 *
table 2 col,

~ o~

*/
int 1i;
/* Next states are defined only for states 1..ai
*/
for (1 = 1; 1 <= ai; i++) {
SO (bi) (bjl(bn) [i] = sOfailfajl{an]l[il;
S1(bil{bj]lbn] (i} = Sl(ail(aj]lan][i]};
}
}
void main() {
int i,3.k,p,q;
int n(511(5);
for (j = 0; j <= 4; j++) {
n(0]{j)l = 0;
}
for (1 = 1; 1 <= 4; i++) {
for (j = 0; j <= 1i; j++) {
n(i] (3] = 0;

}
}
/* Initializing machines in

(1,2) and (1,3) */

SO[1]3(2]1(0][1} = 1; S1[1}[2)[03[1]) = 2;
SO[l][Z}[l][l] = 2; s1(1)(21(11(1] = 1;
1][2][2](11 = 2; S1[11[2][2]1[1] = 2;
n[l][2] = 3;
11031001(2) = 2; s1(11{3]{0]{1] = 3;
n[l][}] = 1;
n{l] 4} = 0;

/* Deriving machines for rows 2 and 3 */

1 We believe our number, 5,248, is the right number of distinct 4-state ma-
chines compared to the number 5,428 obtained in another independent work
[10] brought to our attention by Chriss Stephens of CMU after this work had
been completed.

700

for (i = 2; i <= 3; i++) {
for (j = i+l; j <= 4; j++) {
nl[il[3] = 0;
for (k = 0; k < nli-11{j-2]; k++) {

Copy(i-1,3-2,k,i,3,n(i1(31);
S0[11(3) (n(1)(3)11i) = 3-1;
S1[i) (31 [nli1 (31 (4] = J:
n(i} [)++;
}
for (k = 0; k < n[i-1][3j-11;
for (g = 1; g <= j-1; qg++) {
Copy(i-1,3-1,k,i,3,n(il(3]);
SO[1]1 (31 (n(i)([311[1) = q;
S1[11[3) [(n(i](311(1) = 3;
nli) [(J1++;
}
for (g = 1; q <= j;
Copy(i-1,3-1,%, 1,3
SO[11 (31 n(i) (31
S1{i)[3)In{il (3111
n(i] (31++;

++) {

'
i
i

< nli-1103); k++) {
;7 p <= 3; p++) {

for (g = 1; q <= J; a++) {

Copy(i-1,3,k,i,3,nlil(3]);

SO[1) (3] [n(i) (3] (1) p:

S1[1](31(n(i]1(3]1[4) di

nli} {31++;

(k = 0; k

non

/* Deriving machines for (4,4) from (3,4) */
i= 3 = 4;
for (k = 0; k < n(i-1][3); k++) {
for (p = 1; p <= 4; p++) {
for (g = 1; q <= 4; q++) {
Copy{i-1,3,k,i,i,n{i)(3)):
S0(11 (31 [n(1) (311 [i] = p;
S1{i1(31(n(i1(311(01) qa;
nli} [J)++;
}
}
}
/* Printing out machines */
for (i = 4; i <= 4; i++) {
for (j = 4; 3 <= 4; j++) {
for (k = 0; k < nl(il[3];
printf(*\n”);
for (g = 1; q <= i; qg++) {
printf (“%d%d, “s0(i}[j) (k] (al,
S1{il (31 k] lagl);

k++) {

III. EXPERIMENTAL RESULTS

Our experiments were performed on the IBM RS/6000. Details
about the architecture of the RS/6000 may be found in [11]. More
details about different types of branch instructions on the RS/6000,
and about the behavior of branches on SPEC89 benchmarks may be
found in [9]. For the present study we gathered representative traces
from each of the SPEC benchmarks. Four of these benchmarks,
nasa7, matrix300, fpppp, and tomcatv appeared to cause negligible
disruption due to branches and were ignored. Efficient analysis was
facilitated by extracting only the relevant branch information from
the traces and storing them in a compressed form. Only conditional

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 5, MAY 1995

branches were considered. Some of the conditional branches, e.g.,
decrement the count register, and branch according the register value
being zero or non-zero, are already handled effectively by special
branch-preprocessing hardware, and hence, were ignored. Thus, the
branches analyzed were truly only the “difficult” branches. Given in
Table III is a summary of the traces.

TABLE Il
TRACE STATISTICS
“Difficult” Branches taken
Benchmark Trace length conditional branches | (% “difficult” conditional
(instructions) {% instructions) branches)

spice2g6 38,741,662 641 35.03
doduc 36,857,194 6.13 3113
geel.35 19,362,014 14.05 50.37
espresso 24,062,240 15.20 41.55
I 3,108,199 13.81 38.28
eqntott 4,378,967 13.04 20.61

Our experimental results are shown in the Table IV. For each
benchmark we show the best prediction percentage and the finite
state machine that resulted in that prediction.

TABLE 1V
OPTIMAL 2-BIT PREDICTOR FOR EACH APPLICATION
Benchmark | Best prediction % Best predictor
spice2gb 972
doduc 943
geel.35 89.1
espresso 89.1
1 87.1 % f
e
eqntott 879

For doduc and espresso, the optimal finite state machines are 2-bit
“counters” first proposed in [1]. This machine counts up from state O
to state 3 when it sees consecutive 1s. It counts down from state 3to
state 0 when it sees consecutive Os. States 2 and 3 predict the next
branch to be taken, while states 0 and 1 predict it to be not taken. The
optimal machine for gcc is also a counter, except that the starting
state is different. The optimal machines for li and egntott are slight
variations of the counter. For both these machines, there is only one
state where the branch is predicted taken.

The only machine which is fundamentally different in structure is
the optimal machine for spice. A closer examination reveals that this
machine is a variation of the “pattern” machine. The pure pattern
machine, suggested in [2], simply predicts the next branch to be
taken if the last two branches were both taken, or if the last two

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 5, MAY 1995

branches were “taken” followed by “not-taken.” In the last case, the
pattern machine is guessing that there is an alternating sequence of
“taken” and “not-taken” conditions for the branch.

Table V lists the 20 machines that were consistently close to the
optimal for all applications. All these machines are variations of the
counter. In fact, the top 16 machines are simply different versions of
five machines shown in Table VI with different starting states. The
fourth machine in Table VI is the same as the predictor proposed for
the S-1 machine as quoted in [2]. All machines in this table predict to
within 0.5% success rate of each other.

701

It is interesting to note that the pattern machine does not appear in
our list of top 20 machines. In fact, the best variation of the pattern
machine is one which predicts taken only if the last two branches
were taken (rank 102). In Table VII we compare the performance of
this pattern machine with that of the counter and the predictor used in
the S-1 machine. The counter is marginally worse than the pattern
machine for spice and egntott, but is much better than the pattern
machine in the other cases. It is also always better than the S-1 pre-
dictor. Indeed, the counter does consistently well, as evidenced by
the fact that it performs almost as well as the optimal 2-bit machine
in all applications.

TABLE V TABLE VII
LISTING OF THE BEST 20 MACHINES OVER ALL APPLICATIONS COMPARISON OF SUCCESS RATES OF VARIOUS COMMON PREDICTORS
Machine Average success Best rank Worst rank Average rank Benchmark | Optimal Counter S-1 predictor Pattern 1-bit
rate 2-bit | ABACBDCD:3 | BCBADCBC:3 | BCDABCDA:2
1. | ABACBDCD:3 9058 ! 179 50 spice2g6 | 972 970 970 97.1 96.2
2 | BCBAADCDS 056 ! 20 % doduc 943 943 943 93.6 90.2
3. | BCBABDCD:3 9055 2 166 36 ¥
gecl35 89.1 89.1 888 872 86.0
4. | BCBDACBA:10 9054 3 165 35
espresso 89.1 89.1 88.7 873 872
5. | BACADBDC:12 9054 4 182 55
li 87.1 86.8 85.5 857 825
6. | BACACDCB:12 9052 4 164 38
7 | ABACADCD:3 o051 p 67 39 eqgntott 879 87.2 86.6 875 829
8. | BCDAACDB:10 9049 2 202 7
9. | BCBADCAC:3 9033 8 195 7
10. | BCDCACDB:10 9032 8 194 73 IV CONCLUSIONS
11. | ABACDCBC:3 9030 7 193 78 In this paper we have demonstrated a new and efficient technique
12. | BACADADC:12 9028 12 200 84 to analyze finite-state machines to determine an optimal one to be
13. | BCBADCBC:3 9015 B 8 1o used for branch prediction. The technique employs the fact that many
14| BCRDACBC:10 0 . 6 ™ O,f the 'posmble r.nachmes are essentially eqmva.lem, and that one
simulation can simultaneously analyze all possible output assign-
15. | ABACDCAC:3 9012 8 319 121 . .
ments for a set of next-state assignments. We have used this tech-
6. | BCBADDACS o i i " nique to determine optimal 4-state machines for the SPEC benchmark
17. | BCDCAADB:10 soi 19 219 80 programs running on the IBM RS/6000. We have determined that the
18. | BCBABDCC:3 9011 19 7 48 2-bit counter does consistently well across all applications. The pat-
19. | BCBAADCC:3 9011 17 300 19 tern machine never outperformed the counter machine significantly
20. | BACACDCA:12 9011 9 327 126 and was usually worse. The widely used S-1 predictor [12], [13],
13th in Table V, was outperformed by the counter in all applications.
TABLE VI This is contrary to expectation from results in [2], possibly because
BEST FIVE MACHINES IGNORING STARTING STATE our study omitted the often pervasive loop counter type branches.
These branches do well on most common predictors. It is generally
Rank State diagram for machine easy to take care of them by alternative hardware techniques as in the
— RS/6000. This also allows smaller branch history tables to be used
1 for predicting the more difficult branches. While our results are
' specific to the IBM RS/6000, we feel they would also apply to other
machines provided the normally predictable branches, like loop-
counter branches and returns from subroutines, are filtered out.
2. { The results of this paper suggest that the counter as a 2-bit branch
i

R — predictor provides a good base for comparison of more sophisticated
branch predictors. Further, in several recently published two-level
adaptive prediction schemes [5], [6], [71, [8], the second level pattern

3. history uses two bits to record the history. The results in this paper
justify the use of the 2-bit counter for recording this history.
4 REFERENCES
{1] J.E. Smith, “A study of branch prediction strategies,” Proc. 8th Annual
Int’l Symp. on Computer Architecture, pp. 135-147, June 1981.
[2] JK.F. Lee and A.J. Smith, “Branch prediction strategies and branch
5. target buffer design,” JEEE Computer, vol. 17, no. 1, January 1984, pp.
6-22.

[3] i860 64-bit microprocessor programmer's reference manual, Intel
Corporation, Santa Clara, 1989.

702

[4] Alpha architecture handbook, Digital Equipment Corporation, May-
nard, MA, 1992.

[5] T.-Y. Yeh and Y.N. Patt, “Two-level adaptive training branch predic-
tion,” Proc. 24th ACM/IEEE Int’l Symp. and Workshop on Microarchi-
tecture, pp. 51-61, Nov. 1991.

[6] T.-Y. Yeh and Y.N. Patt, “Alternative implementations of two-level
adaptive branch prediction,” Proc. 19th Annual Int’l Symp. on Com-
puter Architecture, pp. 124-134, May 1992.

{71 S.-T. Pan, K. So, and J.T. Rahmeh, “Improving the accuracy of dynamic
branch prediction using branch correlation, ” Proc. 5th Int’l Conference
on Architectural Support for Programming Languages and Operating
Systems, pp. 76-84, Oct. 1992.

[8] T.-Y. Yeh and Y.N. Patt, “A comparison of dynamic branch predictors

that use two levels of branch history,” Proc. 20th Annual Int’l Symp. on

Computer Architecture, pp. 257-266, May 1993.

R. Nair, “Branch behavior on the IBM RISC System/6000,” Research

Report RC 17859, IBM T.J. Watson Research Center, Yorktown Hits.,

NY, Apr. 1992.

[10] C.G. Ponder, “Studies in branch prediction,” Report UCRL-ID-106077,

Lawrence Livermore National Laboratory, Sept. 1990.

[11] G.F. Grohoski, “Machine organization of the [BM RISC System/6000

processor,” IBM Journal of Research and Development, vol. 34, no. 1,

pp. 37-58, Jan. 1990.

S. McFarling and J. Hennessy, “Reducing the cost of branches,” Proc.
13th Annual Int’l Symp. on Computer Architecture, pp. 396-403,
June 1986.

[13] D.J. Lilja, “Reducing the branch penalty in pipelined processors,” JEEE

Computer, pp. 47-55, July 1988.

9

[12]

Safety Levels—An Efficient Mechanism for
Achieving Reliable Broadcasting in Hypercubes

Jie Wu

Abstract—We consider a distributed broadcasting algorithm for in-
jured hypercubes using incomplete spanning binomial trees. An injured
hypercube is a connected hypercube with faulty nodes. The incomplete
spanning binomial tree proposed in this paper is a useful structure for
implementing broadcasting in injured hypercubes. It is defined as a sub-
tree of a regular spanning binomial tree that connects all the nonfaulty
nodes. We show that in an injured n-dimensional hypercube with m
faulty nodes, there are at least 2" — 2" source nodes (called /-nodes), each
of which can generate an incomplete spanning binomial tree. A method is
proposed to locate a large subset of the /-node set using the concept of
safety level. The safety level of each node in an n-dimensional hypercube
can be easily calculated through n — 1 rounds of information exchange
among neighboring nodes. An optimal broadcast initiated from a safe
node is proposed. When a nonfaulty source node is unsafe and there are
at most n — 1 faulty nodes in an injured n-dimensional hypercube, the
proposed broadcasting scheme requires at most n + 1 steps.

Index Terms—Binomial trees, broadcasting, fault tolerance, hyper-
cubes.

1. INTRODUCTION

Efficient broadcasting [3] of data is one of the keys to the per-
formance of a hypercube system. Basically, broadcasting is the proc-
ess of transmitting data from one node, called the source node, to all
the other nodes once and only once. Broadcasting provides basic

Manuscript received Mar. 5, 1993; revised May 2, 1994.

The author is with the Dept. of Computer Science and Engineering, Florida
Atlantic University, Boca Raton, FL 33431; e-mail jie@cse.fau.edu.

IEEECS Log Number C95040.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 5, MAY 1995

functions to implement distributed agreement, clock synchronization,
and broadcast-and-aggregate type of algorithms. We define an in-
Jjured hypercube [2] as a connected hypercube with faulty nodes.
Broadcasting in an injured hypercube is defined as successful broad-
casting of a datum to all the nonfaulty nodes. The concept of incom-
plete spanning binomial tree is introduced to implement the broad-
casting process. An incomplete spanning binomial tree in an
n-dimensional injured hypercube is a connected subgraph of an n-
level spanning binomial tree with the same root node that connects
all the nonfaulty nodes in the cube, and its root node is called /-node.

Lee and Hayes [5] proposed the concept of safe node which re-
quires a stronger condition than the one that defines /-nodes.
(Therefore, the safe node set is a subset of the l-node set.) The safe
node set can be decided in O(n?) rounds of information exchange
among neighboring nodes. However, the broadcasting algorithm
based on this definition of safe node is applicable to injured hyper-

cubes with no more than I-%-i node failures. That is, there are cases

when no safe nodes exist in an injured hypercube with more than
l-%-l faulty nodes. Wu and Fernandez [10] gave a refined definition

of safe nodes by relaxing certain conditions and hence increasing the
size of the safe node set and raising the degree of fault tolerance. The
process that identifies the node status needs fewer rounds than the
one in [5] in general. However it still requires O(n*) rounds in the
WwOrst case.

In this paper, we propose the concept of safety level, which is an
enhancement of the safe node concept by further weakening its
definition. Each node in an n-dimensional hypercube is assigned an
integer within the range of 0 to n. A node with safety level # is still
called safe node. The safety level is an approximate measure of the
number and distribution of faulty nodes in the neighborhood, rather
than just the number of faulty nodes. We provide a process that
identifies the node status in » — 1 rounds of information exchange
among neighboring nodes. Simulation results show that the safe node
set is very close to the [-node set when m < n. A broadcasting scheme
is proposed which uses the safety level of each node. It is shown that
broadcast from a safe node is both time and traffic optimal [4], where
time is measured by the number of hops (or steps) required to com-
plete a broadcasting and traffic is a measure of the total number of
messages transmitted from one node to another in the broadcasting
process. Moreover, it is proved that, for each nonfaulty but unsafe
node, there is at least one safe neighbor when m < n. The same
broadcasting scheme can be used by selecting a safe neighbor as the
source node. A total of n + 1 steps is required in this case.

The proposed method differs from the existing fault-tolerant
broadcasting methods which are based on either local information [6]
or global information ([11, {7], [9]). Local-information-based broad-
casting algorithms normally require routing history as part of mes-
sage to be broadcast, and results are not optimal. Global-information-
based broadcasting algorithms, although having their merits of sim-
plicity and optimality, require a process that collects global informa-
tion. The broadcasting based on limited information is a compromise
of the above two schemes. In the proposed method limited global
information is captured in the safety level associated with each node.
Since this type of information is easy to update and maintain and the
optimality is still preserved, this method is more attractive than the
existing ones.

The safety level is the first practical model that captures fault in-
formation in terms of the distribution and the number of faults, rather
than just in terms of the number of faults. In a separate paper, we
show that it can also be used to achieve optimization in routing and

0018-9340/95%04.00 © 1995 IEEE

