

Cellular mechanisms underlying memory

Kyriaki Sidiropoulou Assistant Professor of Neurophysiology Neurophysiology and Behaviour Lab Dept of Biology University of Crete <u>sidirop@uoc.gr</u> <u>www.sidiropouloulab.com</u>

Kyriaki Sidiropoulou

- B.A. in Microbiology and Physiology, Southern Illinois University at Carbondale
- Ph.D. in Neuroscience, Rosalind Franklin University of Health and Sciences/The Chicago Medical School
- Post-doc in 'Computational Neuroscience' IMBB-FORTH
- Marie Curie fellow Dr. Alcino Silva, UCLA and IMBB-FORTH
- Lecturer and Assistant Prof. of Neurophysiology, Dept of Biology, University of Crete

Neurons, neuronal networks and brain

Neurons are the building blocks of the brain

 The human brain consists of 100 billion neurons

Memory

- Working memory
- Short-term and long-term memory
 - Explicit memory
 - Implicit memory
 - Conditional
 - Non-conditional
 - Procedural

Memory

- Memory acquisition
- Memory consolidation
- Memory storage
- Memory recall
- Re-consolidation

Neurobiological substrate of long-term memory

Neuronal theories for memory storage and recall

- Synaptic theory
 - ★ Memory is stored in synapses
- Neuronal theory
 - ★ Memory is stored in neurons
- Possible compromise
 - * Memory is stored in synapses within a specific network of neurons

How do we study memory in rodents?

Mice

Rats

Example: Conditional memory Auditory fear conditioning

http://www.cns.nyu.edu/labs/ledouxlab/research.htm

Example: Conditional memory Contextual fear conditioning

Example: Spatial memory Morris water maze

University of Edinburgh

https://www.youtube.com/watch?v=LrCzSIbvSN4

Example: explicit memory: T-maze

Neurobiological substrate of memory

- Does one brain area store memories?
- Is each memory stored in the brain area that encode the initial stimulus?

Henry Molaison (1926-2008)

- Head injury (age 7)
- Epileptic seizures (age 16)
- Anti-epileptic medications did not work
- Decided to have surgery in 1953 by surgeon Scoville
 - bilateral medial temporal lobe excision

Brenda Milner (1918-)

- doctoral thesis with Donald Hebb
- noticed memory impairments in patients that had undergone surgery for epilepsy
- Had only affected episodic memory
- Did not affect implicit or procedural memory
- Each day is a new day!
- Amnesia was anterograde, not retrograde

H.M. could perform skilled movements

H.M. could perform well in fill-in the blanks, but not in free recall

ABSENT	ABS
INCOME	INC
FILLY	FIL
DISCUSS	DIS
CHEESE	CHE
ELEMENT	ELE

Hippocampus was removed in H.M. patient

Hippocampus

Brain slice

Cortex, Hippocampus, thalamus, hypothalamus

Ιππόκαμπος - Τομή

Hippocampus

Glutamatergic synapse

insertion of AMPARs

Kauer and Malenka, 2007

How do we study synaptic function?

Acute brain slice

Extracellular Recordings - Local Field Potentials

fiber volley

Whole-cell configuration Current-clamp

Διαλύματα που χρησιμοποιούνται

Εξωκυττάρια: τεχνητό εγκεφαλονωτιαίο υγρό (artificial cerebrospinal fluid, aCSF), pH, Ενδοκυττάρια (στο ηλεκτρόδιο): παρόμοια με το ενδοκυττάριο περιβάλλον

- I-V curve
- Membrane properties

Current-clamp

• Action potential properties

Patch clamp technique Configurations

- Current-clamp
 - Give current inputs and record voltage changes
 - Monitor Vm, record Action
 Potentials
- Voltage-clamp mode
 - "Clamp" voltage and record currents
 - Study different ion channels

Long-term potentiation

Mechanisms of LTP

- NMDA υποδοχέας
- Κινάση της
 καλμοδουλίνης ΙΙ
- Ασβέστιο
- CREB
- πρωτεϊνοσύνθεση

Characteristics of long-term potentiation

Correlation between LTP and memory

Neuronal theories for memory storage and recall

- Synaptic theory
 - ★ Memory is stored in synapses
- Neuronal theory
 - ★ Memory is stored in neurons
- Possible compromise
 - * Memory is stored in synapses within a specific network of neurons
Neuronal excitability following training to memory task

CREB increases excitability

Increased neuronal excitability is due to reduced slow afterhyperpolarization

Oh et al., 2010

Pathways underlying conditioned learned fear memory

Neural pathways of learned fear

Amygdala

Hippocampal network and interaction with other brain regions

Neuronal Competition and Selection During Memory Formation Jin-Hee Han, *et al. Science* **316**, 457 (2007); DOI: 10.1126/science.1139438

CREB over expression

В

Arc activation following fear memory recall

Model of memory allocation

Synaptic plasticity and memory engram

Figure 2. Synaptic Plasticity and Network Oscillation Gate Memory Engram Formation in the BLA

Before learning, some BLA neurons (gray balls) display low excitability and others (brown balls) higher excitability (by intrinsic factors and/or synaptic inputs). At the population level, poorly synchronized rhythms can be detected among BLA and connected brain areas. Learning promotes Hebbian synaptic plasticity of the CS pathway on neurons that were more active during conditioning. This plastic process results in CSpotentiated neurons that form an engram (blue balls). Memory retrieval triggers synchronization of rhythmic activity between the BLA and some interconnected structures, as well as reactivation of engram cells.

Long-term vs remote memory

Frankland et al., 2004

Systems consolidation process

Time

Frankland and Bontempi, 2005

c-fos activation following memory recall (Paul Frankland)

Identification of a Functional Connectome for Long-Term Fear Memory in Mice

Anne L. Wheeler^{1,2}, Cátia M. Teixeira¹, Afra H. Wang^{1,2}, Xuejian Xiong³, Natasa Kovacevic⁴, Jason P. Lerch^{1,5}, Anthony R. McIntosh^{4,6}, John Parkinson^{3,7}, Paul W. Frankland^{1,2,8}*

Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada, 2 Institute of Medical Science, University of Toronto, Toronto, Canada, 3 Program in Molecular Structure and Function, The Hospital for Sick Children, Toronto, Canada, 4 Rotman Research Institute, Baycrest Centre, Toronto, Canada, 5 Department of Medical Biophysics, University of Toronto, Toronto, Canada, 6 Department of Psychology, University of Toronto, Toronto, Canada, 7 Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Canada, 8 Department of Physiology, University of Toronto, Toronto, Canada

Experimental design

Differential change of c-fos expression between control and trained mice

Wheeler et al., 2013

Correlation networks that underlie memory recall

Wheeler et al., 2013

Effect of removing specific brain regions in silico

Chemogenetic inactivation of specific brain regions-hubs

express the following protein: hM4Di use clozapine-N-oxide to activate the receptor

Anterior Cingulate

Chemogenetic inactivation of specific brain regions-hubs

LSI: lateral septal nucleus Re: Nucleus reunions LD:laterodorsal thalamic nucleus CA1

Memory

• Working memory

- Short-term and long-term memory
 - Explicit memory
 - Implicit memory
 - Conditional
 - Non-conditional
 - Procedural

Electrophysiology and behavior

- Working memory
- Persistent activity

Goldman-Rakic, 1995, Neuron

© 2001 Singuer Associates, Inc.

Occulomotor delayed response task

Nature Reviews | Neuroscience

Hypothetical model of underlying circuit in the PFC

TRENDS in Cognitive Sciences

Mechanisms of persistent activity

- Recurrent networks
 - PFC has about 50% of neurons that are reciprocally connected (Wang et al, 2003, Nat Neuro)
- NMDA receptors
 - No decrease in NR2B subunits with age in PFC
- GABA receptors
- Ionic currents

Neuron models used to study persistent activity

• Integrate and fire neurons

Attractor networks to model working memory

Attractors

Networks of compartmental models

NMDA receptors in recurrent networks

Effects of NMDA currents on persistent activity

Computational modeling

In vivo during ODR

Wang et al, 2013, Neuron

NMDA receptor subtypes

NR2A NR2B

increased conductancedecreased conductancefaster kineticsslower kinetics

NR2B localization in the synapses

Wang et al, 2013, Neuron

Effect of NR2B specific blockers on delayperiod activity

Wang et al, 2013, Neuron

Effect of AMPA blockers on delay-period activity

Wang et al, 2013, Neuron
Βασικές αρχές λειτουργίας του νευρικού συστήματος, Κυριακή Σιδηροπούλου <u>http://repository.kallipos.gr/handle/11419/4828</u>

Bibliography

- Study cellular correlates of behavior
 - Persistent activity for working memory
 - Long-term potentiation for long-term memory
- Study neurons that are activated during a specific behavior
 - Action potentials electrophysiological/ imaging
 - Synaptic activity electrophysiological
 - markers of activity
- Correlate their activity with specific aspects of behavior
- Manipulate their activity and study the effect on behavior
 - optogenetics

Neurons communicate with each other to form networks through synapses

Neurons communicate with electrical signals

Neuronal networks in the brain

Recurrent excitation and inhibition

- Study neurons that are activated during a specific behavior
 - Action potentials electrophysiological/ imaging
 - Synaptic activity electrophysiological
 - markers of activity
 - Correlate their activity with specific aspects of behavior
- Manipulate their activity and study the effect on behavior
 - optogenetics

- Study cellular correlates of behavior
 - Persistent activity for working memory
 - Long-term potentiation for long-term memory
- Study neurons that are activated during a specific behavior
 - Action potentials electrophysiological/ imaging
 - Synaptic activity electrophysiological
 - markers of activity
- Correlate their activity with specific aspects of behavior
- Manipulate their activity and study the effect on behavior
 - optogenetics

- Study cellular correlates of behavior
 - Persistent activity for working memory
 - Long-term potentiation for long-term memory
- Study neurons that are activated during a specific behavior
 - Action potentials electrophysiological/ imaging
 - Synaptic activity electrophysiological
 - markers of activity
- Correlate their activity with specific aspects of behavior
- Manipulate their activity and study the effect on behavior
 - optogenetics

Cellular and molecular techniques

- Immediate early genes Activity markers
 - Arc
 - c-fos
 - c-jun
- Genes that are transcribed and translated in response to neuronal activity

c-fos activation following epileptic seizures

WT mouse, 300mg/kg pilocarpine

Rac1 conditional KO mouse 100mg/kg pilocarpine

Chalkiadaki, Sidiropoulou, unpublished data

PREFRONTAL CORTEX

Delayed alternation Left-Right discrimination Open-Field

Electrophysiological recordings

- Anaesthetized
- Head-fixed
- Freely-moving

In vivo recordings

Voltage-clamp

- Διαλύματα (ανάλογα με το ρεύμα που είναι να καταγραφεί)
- Τα περιεχόμενα των διαλυμάτων μπορούν να επηρεάσουν κατά πολύ τα αποτελέσματα των καταγραφών.

Current recordings

- Ρεύμα νατρίου (μπλοκάρουμε τα ρεύματα καλίου και ασβεστίου)
- Ρεύμα καλίου (μπλοκάρουμε τα ρεύματα νατρίου και ασβεστίου)
- Ρεύμα ασβεστίου (μπλοκάρουμε τα ρεύματα νατρίου και καλίου)

Tetradotoxin, tetra-ethyl-ammonium (TEA), cadmium

Potassium currents voltage-dependent (whole-cell configuration)

Whole-cell vs single-channel currents

Single DR-type K⁺ channel

What is the connection to networks and behavior?

Extracellular recordings

(FIELD POTENTIALS DOMINATED BY PSPs)

ELD POTEN-SP THALS DETECTED)

3.0 HY

Mountcastle, 1957

Brain slice - LFPs

- Record brain areas that are stratified
 - hippocampus
 - Cortex
- Spontaneous/Epileptiform activity
- Evoked field excitatory postsynaptic potentials (fEPSP)
- Long-term potentiation

Basal spontaneous activity

Evoked LFPs - Long-term potentiation

Extracellular Recordings - Single unit recordings Dopamine neurons

Ventral Tegmental Area Substantia Nigra A8, A9, A10

- Διαλύματα
 - Ελεκτρόδιο
 - NaCl
 - Fast green

Interaural 3.40 mm*

Bregma -5.60 mm

Extracellular Recordings

Extracellular Recordings Dopamine neurons

Relative voltage

Dopamine neuron waveforms

- Spontaneously active, and fire at low irregular frequencies (1-10Hz)
- Triphasic waveform of long duration
 - Tonic or burst-firing

Avαφορά: Marinelli and White, 2000, J. Neuroscience

Correlation between dopamine neuron firing rate and exploratory activity in a novel environment (Marinelli and White, 2000)

Differentiating the neuronal type based on the waveform properties

1 Σύνθετο κύτταρο

Μήκος γραμμής (βαθμοί)

Receptive fields in the visual cortex

Εικόνα 23-12 Τα ακρο-

μηκών μιας κατακόρυφης φωτεινής γραμμής. 1. Η απόκριση αυτού του σύνθετου κυττάρου αυξάνεται καθώς το μήκος της γραμμής αυξάνεται μέχρι 2° περίπου, ενώ έπειτα δεν υπάρχει μεταβολή. 2. Η απόκριση αυτού του ακρο-αναστελλόμενου κυττάρου βελτιώνεται, καθώς η γραμμή αυξάνεται μέχρι 2°, αλλά κατόπιν μειώνεται, έτσι ώστε μια γραμμή 6° ή μεγαλύτερη δεν προκαλεί απόκριση.

(συνεχίζεται)

In vivo intracellular recordings

Tetrode-array technology

- Bruce McNaughton (Arizona)
- Matt Wilson, MIT (open course)

http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-96Experimental-Methods-of-Adjustable-Tetrode-Array-NeurophysiologyJanuary--IAP-2001/ CourseHome/index.htm

Place cells (Hippocampus)

Matt Wilson, MIT
Place cells movie

cell activity

behavior

overall

Grid cells in enthorhinal cortex

Moser group

2014 Nobel prize in Medicine

Photo: David Bishop, UCL John O'Keefe Prize share: 1/2

May-Britt Moser Photo: G. Mogen/NTNU May-Britt Moser Prize share: 1/4

Edvard I. Moser Photo: G. Mogen/NTNU Edvard I. Moser Prize share: 1/4

Functional imaging techniques

• Calcium imaging

- Voltage imaging
- PET
- MRI, fMRI
- Real-time imaging

Calcium imaging

- Calcium cannot be measured directly
- Calcium indicators used
 - Calcium-binding molecules are used that change their fluorescence properties
 - calcium changes can be measures in multiple milliseconds (compared to microseconds in electrophysiology)
- Requirements for successful calcium imaging
 - fast calcium indicator
 - high signal-to-noise ratio
 - proper instrumentation (images without photobleaching, fast scanning)

Advantages compared to recording techniques

- Multiple cells
- Cell-type identification

Calcium -imaging video of spontaneous neuronal activity, Golshani Lab, UCLA, <u>http://golshanilab.neurology.ucla.edu/</u> <u>techniques</u>

Molecules used for calcium imaging

 Natural calcium-binding proteins with fluorescent properties, aequorin

- Synthetic chemicals
- Genetically modified calcium indicators

Synthetic chemical compounds

- Fura-2/Fura-2AM (membrane permeable)
- BAPTA-AM
- Orange green

Roger Tsien Nobel prize in chemistry 2008 Green Fluorescent Protein

Genetic calcium indicators

• Forster resonance energy transfer (FRET)

Yellow cameleon

Roger Tsien Nobel prize in chemistry 2008 Green Fluorescent Protein recipient)

Two fluorescent substances (donor and recipient)

Genetically-encoded calcium indicators (2012)

Camgaroo 1

Camgaroo 2

Inverse pericam

GCaMP 2

GCaMP 3

Yellow Cameleon 3.6

Yellow Cameleon Nano

D3cpV

TN-XL

TN-L15

TN-XXL

Genetically encoded calcium indicators

GECI expression

Viral transduction

In utero electroporation

Transgenic mice

Microscopy to study calcium imaging

- Fluorescence microscopy
- confocal laser microscopy
- portable microscopy devices

Study activation of neural networks

In vivo activation of neural networks

A a

b

Odor A Odor B

Neuronal activity during working memory tasks

© 2001 Singuer Associates Inc.

(C) Stimulus presented

(D) No stimulus presented

0 2001 Singuer Associates, Inc.

Working memory task in head-fixed animals

To image task-related neuronal activity....

- head-fixed mice
- CaMKIIa-Cre mice
- Cre-inducible adeno-associated virus (AAV) expressing the calcium indicator GCaMP6f30 into the dorsomedial PFC (dmPFC)

-

modified from O'Connor DH et al 2009

Pyramidal neuron activity during the delayed Go vs. No-Go task.

Gray shading: delay period Blue stripes: sample periods with target tone

Orange stripes: sample periods with nontarget tones,

Dashed line: end of response window in CR trials.

Black tick on top: lick

response.

Blue arrowheads: delivery of reward

Orange arrowheads:

punishment

Optogenetics

Ed Boyden, MIT

Karl Deisseroth, Stanford

Optogenetics

"The major challenge facing neuroscience was the need to control one type of cell in the brain while leaving others unaltered. Electrical stimuli cannot meet this challenge."

- Francis Crick

Optogenetics

- Combination of optical and genetic techniques for specifically controlling neuronal subtypes
- Use of ion channels that are activated by light, are expressed in archeobacteria and not expressed in animals

Channels used to control excitability **Opsins**

Natronomonas pharaonis

Nature Reviews | Neuroscience

Step 1: Expression of opsin in the desired neuronal population

- Viral transfection
- Use of Cre-loxP system in mice
- PV-cre mice
- Som-cre mice
- CamKII-cre mice

Step 2: Activate opsin with light

1: Controlling the Brain with Light by Karl Deisseroth, Scientific American, November, 2010, pages 49-55

How to direct light into the brain: Optical fibres

(a) (i)

Verifying the effect of opsin expression in

TRENDS in Cognitive Sciences

Using optogenetics to study behaviour

References used

- Kamigaki, T., & Dan, Y. (2017). Delay activity of specific prefrontal interneuron subtypes modulates memory-guided behavior. Nature Neuroscience, 13, 1479–13. <u>http://doi.org/10.1038/nn.4554</u>
- Nasif, F. J., Sidiropoulou, K., & White, F. J. (2004). Repeated Cocaine Administration Increases Membrane Excitability of Pyramidal Neurons in the Rat Medial Prefrontal Cortex. Journal of Pharmacology and Experimental Therapeutics, 312(3), 1305–1313. <u>http://doi.org/10.1124/jpet.</u> <u>104.075184</u>
- Marinelli, M., & White, F. J. (2000). Enhanced Vulnerability to Cocaine Self-Administration Is Associated with Elevated Impulse Activity of Midbrain Dopamine Neurons. Journal of Neuroscience, 20(23), 8876–8885.
- Wheeler, A. L., Teixeira, C. M., Wang, A. H., Xiong, X., Kovacevic, N., Lerch, J. P., et al. (2013). Identification of a Functional Connectome for Long-Term Fear Memory in Mice. PLoS Computational Biology, 9(1), e1002853. <u>http://doi.org/10.1371/journal.pcbi.1002853</u>
- Grienberger, C., & Konnerth, A. (2012). Imaging Calcium in Neurons. *Neuron*, 73(5), 862–885. <u>http://doi.org/10.1016/j.neuron.2012.02.011</u>

Aplysia californica

http://brembs.net/learning/aplysia/aplysia.html

Αντανακλαστικό απόσυρσης βραγχίου

Sensitization of the gill-withdrawal reflex

http://www.hhmi.org/biointeractive/aplysias-gill-withdrawal-reflex-and-sensitization#video-7b9676a4-5f24-4837-9aaf-9352eed43c1e

Habituation

Εθισμός

Η επανάληψη ενός ερεθίσματος προκαλεί μείωση στην απόκριση που προκαλεί

<u>Μηχανισμός</u> Μείωση της έκλυσης γλουταμινικού οξέως

Ευαισθητοποίηση

Μηχανισμός της βραχύχρονης ευαισθητοποίησης

Ετεροσυναπτική διευκόλυνση

Αύξηση του cAMP

- μείωση ρευμάτων καλίου
- αύξηση ρευμάτων
 ασβεστίου

Connectome

