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THE SCALE-FREE PROPERTY (Chapter 4) 
 



Motifs 

Networks can be analyzed at different levels of detail. 







Network Dynamics 

Not all neurons were born equal!  

• “Party” hubs: always the same partners (same time & space) 

•  “Date” hubs: different partners in different conditions 

(different time and/or space) 

 

 Difference is important for inter-process communication 

 

Not all interactions among neurons are active all the time 
 



C. elegans  
neuronal net 

) 









Important Network Models 

• Random graph model (Erdős & Rényi, 1959) 

• Small-world model (Watts & Strogatz, 1998) 

• Scale-free model (Barabasi & Alert, 1999) 





Six Degrees of Separation 

Everyone is on average approximately six steps away from any other 

person on Earth 
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Stanley Milgram 
(1933-1984) 

• Controversial social psychologist 

• Yale & Harvard 

• Small world experiment, 1967 

– 6 degrees of separation 

• Obedience to authority - 1963 



Modeling a Network as a Graph 

• Graph: an ordered pair G = (V, E) of a set V of vertices (nodes) & a set 
E of edges (2-element subsets of V ).  

• Can be extended to include the set W of the weights of all edges in E. 

 

• Edge: models the interaction between the neurons it connects. 

• The weight of an edge can model the strength of the interaction. 

 

• Directed graph: each edge has a direction  

         e.g., the edge (a,b) indicates that there is an edge from a to b. 
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Degree Distribution of a Network 

• in-degree of a vertex (ki ): number of incoming edges of a vertex 

• out-degree of a vertex (ko ): number of outgoing edges of a vertex 

• degree (k): the total number of connections k = ki+ko 

ki ko 

When modeled as a directed graph: 



Diameter & Paths 

Diameter of a graph is the “longest shortest path”. 

n1 

n2 

n3 

n4 

n5 

n6 

n7 

Path in a graph is a finite or 

infinite sequence of edges which 

connect a sequence of vertices which, 

by most definitions, are all distinct from 
one another. 









Average Median Max Min Hubs Nodes  Edges 

11.8554 8 45 1 9 (10.84%) 83 (65.87%) 492 (6.25%) 

Degree of Connectivity Number (Percentage) 

The big connected component, 

formed by 83 neurons (43 neurons 

were not connected to any other 

neuron).  

 



  Simple Building Blocks of Complex Networks 

• Focused on directed, cyclic subgraphs of 3 or 4 nodes in yeast (no 
self-loops) 

Network Motif 

Milo et al. Science (2002) Vol. 298 no. 5594 pp. 824-827   
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Jure Leskovec 

Network motifs 

• Biological networks 

– Feed-forward loop 

– Bi-fan motif 

 

 

Others ? 



h g 

is isomorphic to 
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The discovery of the isomorphic subgraphs is a computationally 
hard task! 
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STAR TREE 

GRID 

BUS RING 

Regular Network Topologies 



Random Network Regular Network 
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Clustering Coefficient of a Network 

• The clustering coefficient characterizes the “connectedness” of the 
environment close to a node. 

 

 

 

    ni: number of connections among the neighbors  

    ki(ki-1)/2: number of possible connections among the neighbors 
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Clustering coefficient of a network  

The average clustering coefficient value      reflects how connected are the 
neighboring nodes 

 

 

 

              also shows the “density” of small loops of length 3 

 

                

                of a tree is 0 

            

                  of a fully connected graph (clique) is 1     
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Clustering Coefficient 
 

𝐶𝑔
△ = 

3 x 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑜𝑠𝑒𝑑 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡ℎ𝑠 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 2
 

 

 

 

Average shortest Path Length 

– Smallest number of steps to travel from node u to node v 

𝐿𝑔  =
2

𝑛 𝑛−1
  𝑑 𝑢, 𝑣   
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• High clustering coefficient 
• High average shortest path length 

• Low clustering coefficient 
• Average shortest path length close to one 

Τhe randomness makes it less likely that 
nearby nodes will have lots of connections, 
but introduces more links that connect one 
part of the network to another. 

Nearby nodes have a large numbers of 
interconnections but "distant" nodes 
have few.  



Less variance, more scariance 





Describes the degree of distribution of a random network 

Most 
frequently 
encountered 
distribution 



Heavy tailed: 
Whose decay at 
large x 
is slower than 
exponential 

Rare events 



 

PDF: λ e
−λx 

 

 
Cumulative Distribution Function (CDF) 1 − e

−λx
 

The exponential distribution describes 
the time between events in a Poisson process 

Exponential Distribution 

Number of occurrence: index k 
The CDF is discontinuous at the integers of k 
λ: expected number of occurrences 
PMF: λk e-λ /k! 

CDF 

CDF 



Poisson Distribution 
 Cumulative Distribution Function (CDF) 

The CDF is discontinuous at the integers of k and flat everywhere else because a variable that is 
Poisson distributed takes on only integer values. 



National highway network  

Nodes are cities, links are major highways  

No cities with hundreds of highways  

No city disconnected from the highway 
system 



Nodes are airports & links are direct flights between them.  

Most airports have only a few flights.  

Yet, we have a few very large airports, acting as major hubs, connecting many smaller 

airports.  

Once hubs are present, they change the way we navigate the network. E.g. if we 

travel from Boston to Los Angeles by car, we must drive through many cities. On the 

airplane network, however, we can reach most destinations via a single hub, like 

Chicago. 



.  Random Networks have a degree of connectivity that follows Poisson 
distribution 





Power Law Distribution 

   

In a log-log scale, data points form 
an approximate straight line, 
suggesting that the distribution is 
well approximated with 

 

    
       

 

 

 

degree exponent γ 
 



The 80/20 Rule & the top one percent 

• A few wealthy individuals earned most of the money, while the 
majority of the population earned rather small amounts 

• Incomes follow a power law 

• 80/20 rule: Roughly 80 percent of money is earned by only 20 
percent of the population 

• US 1% of the population earns a disproportionate 15% of the total US 
income 

 



The emergence of the 80/20 rule in various areas: 

Management   

i. 80% of profits are produced by only 20% of the employees 

ii. 80% of decisions are made during 20% of meeting time 

Networks  

i. 80% of links on the Web point to only 15% of webpages 

ii. 80% of citations go to only 38% of scientists 

iii. 80% of links in Hollywood are connected to 30% of actors 

 

Most quantities following a power law distribution obey the 80/20 rule 

 





Internet 

• Link between routers in Boston and Budapest would require to lay a 
cable between North America and Europe:  prohibitively expensive 

• The degree distribution of the Internet is well approximated by a 
power law 

• Few high-degree routers hold together a large number of routers 
with only a few links 



History: first map of the WWW 

 

Objective: To understand the structure of the network behind it. 

• Generated by Hawoong Jeong at University of Notre Dame. 

• Mapped out the nd.edu domain, consisting of about 300,000 
documents and 1.5 million links.  

• Compared the properties of the Web graph to the random network 
model. 



The web played an important role in the development of 
network theory. 

 

• WWW: network whose nodes are documents & links are the URLs  

• With an estimated size of over one trillion documents (N≈1012), the 
Web is the largest network humanity has ever built 

• Exceeds in size even the human brain (N ≈ 1011 neurons) 

Standard testbed for most network measures 



WWW has power-law degree distribution 

 

Outgoing links 
The tail of the distributions follows 
P(k)≈k-r, with rout=2.45 
Incoming links: rin=2.1 
 
 

Average of the shortest path between 
two documents as a function of 
system size 

R. Albert, H. Jeong, A.-L. Barabási, Nature 401, 130 (1999) 

The degree distribution scales as a 
power-law 
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WWW follows a power law 

• If the WWW were to be a random network, the degrees of the Web 
documents would  follow a Poisson distribution 

• Poisson form offers a poor fit for the WWW’s degree distribution 

• Instead of a log-log scale data points form an approximate straight 
line, suggesting that the degree distribution of the WWW is well 
approximated with 

 

           

 

 

 

Power law distribution (exponent γ is its degree exponent) 
 



The Degree Distribution of the WWW 

The incoming  degree distribution  The outgoing  degree distribution  

Degree distribution predicted by a Poisson function with the average 
degree 〈kin〉 = 〈kout〉 = 4.60 of the WWW sample (green line). 



Poisson vs. Power-law Distributions 

A random network with ⟨k⟩= 3 & N = 
50, illustrating that most nodes 
have comparable degree k≈⟨k⟩. 

A scale-free network with γ=2.1 & 
⟨k⟩= 3, illustrating that numerous 
small-degree nodes coexist with 
a few highly connected hubs.  

The size of each node is proportional to its degree. 



Poisson vs. Power-law Distributions 

Comparing a Poisson function with a power-law function (γ= 2.1) on a linear plot. 
Both distributions have ⟨k⟩= 11 



Generation of small-world networks 

A small-world network can be generated from a regular one by 

1. randomly disconnecting a few points, & 

2. randomly reconnecting them elsewhere.  

 

 

For the creation of this small world network,  

some 'shortcut' links are added  

to a regular network. 

Shortcuts because they allow 

travel from node a to node b to 

occur in only 3 steps, instead of 5 

without the shortcuts.  



Small-World Phenomenon 

Any two nodes of a complex & high clustered network would be 
connected by a relatively small paths distances. 

 

Watts & Strogatz define simple network models by rewiring 
regular lattice networks with a probability  

 

  Such networks have: 

–  Highly clustered like lattice   

–   Very small path length like random graphs 
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Barabasi et al. found that the structure of the WWW did not conform to the 

then-accepted model of random connectivity.  

Instead, their experiment yielded a connectivity that they named "scale-free."  

 

 

Scale-free Networks 

 

In a scale-free network, the 

characteristic clustering is 

maintained even as the 

networks themselves grow 

arbitrarily large. 

 

Scale-free means there is no 
characterizing degree in the 
network 





The meaning of scale-free  

In a random network, nodes have comparable degrees: 
The average degree serves as the scale of a random network 



Small world vs. Scale-free Networks 

Some small-world networks of modest size do not follow a 

power law but are exponential.  

 

This point can be significant when trying to understand the 

rules that underlie the network.  

Often small-world networks are also scale-free.  



Random networks vs. Scale-free networks 

• Main difference between a random vs. a scale-free network comes in 
the tail of the degree distribution 

• For small k, power law is above Poisson function, indicating that a 
scale-free network has a large number of small degree nodes,  

     most of which are absent in a random network 

• For k in the vicinity of 〈k〉, Poisson distribution is above power law, 
indicating that in a random network there is an excess of nodes with 
degree k≈〈k〉 



Scale-free Networks Lack a Scale 

• Scale-free name captures the lack of an internal scale, a consequence 
of the fact that nodes with widely different degrees coexist in the 
same network 

  This feature distinguishes scale-free networks from  

• lattices, in which all nodes have exactly the same degree (σ = 0),  

• random networks, whose degrees vary in a narrow range (σ = ⟨𝑘1/2⟩) 



Scale-free Networks Lack a Scale 

Random Network 

Randomly chosen node:  Scale: ⟨k⟩ 
 

Scale-Free Network 

Randomly chosen node: 
Scale: none 

The degree of a randomly chosen 

node in Poisson or Gaussian is in the 

vicinity of ⟨k⟩.  

Hence ⟨k⟩ serves as the network’s 

scale. 



Degree of Distribution of two Scale-free Networks 



Examples of Scale-free Networks 



THE MEANING OF SCALE-FREE (con’td) 
For a scale-free network, the n-th moment of the degree distribution is 

 

 

 

 

• For many scale-free networks, the degree exponent γ ϵ [2, 3].  

• For these in the N → ∞ limit, the mean is finite, but the 2nd & higher 
moments (e.g., ⟨𝑘2⟩, ⟨𝑘3⟩) go to infinity 

 

 This divergence indicates that  fluctuations around the average can 
be arbitrary large. 
A degree of a randomly selected node, could be tiny or arbitrarily 
large. 
Hence networks with γ < 3 do not have a meaningful internal scale, 
but are “scale-free” 



Random Networks Have a Scale 

• For a random network with a Poisson degree distribution σk = ⟨𝑘1/2⟩, 
which is always smaller than ⟨k⟩  

     Network’s nodes have degrees in the range k = ⟨k⟩±⟨k⟩1/2 

 

• Nodes have comparable degrees:  

    the average degree ⟨k⟩ serves as the “scale” of a random network 



Is the network scale-free? 

Degree distribution will immediately reveal: 

• In scale-free networks, the degrees of the smallest & the largest 
nodes are widely different, often spanning several orders of 
magnitude 

 

     These nodes have comparable degrees in a random network 

 



    Networks of major scientific, technological & societal importance are  scale-free. 

 

Their diversity is    
remarkable! 

 

Internet:  

man-made, with a 
history ~2 decades  

 

protein interaction: 
product of four billion 
years of evolution 

 

 



Power Laws and Scale-Free Networks 

• The integral of p(k) encountered in the continuum formalism 

 

 

 

 
is the probability that a randomly chosen node has degree between k1 
and k2. 



Hubs 

• Main difference between a random and a scale-free network comes 
in the tail of the degree distribution 

• high-k region of pk 

• For small k power law is above Poisson function, indicating that a 
scale-free network has a large number of small degree nodes, most 
of which are absent in a random network 

• For k in the vicinity of 〈k〉 Poisson distribution is above power law, 
indicating that in a random network there is an excess of nodes with 
degree k≈〈k〉 



Hubs 

• For large k, the power law is again above the Poisson curve  
• The probability of observing a high-degree node, or hub, is several 

orders of magnitude higher in a scale-free than in a random network 

• if the WWW were to be a random network with <k>=4.6 & size 
N≈1012, we would expect N k≥100  nodes with at least 100 links: 

 

 

 

 

 

But we have more than four billion nodes with degree k ≥100 … 



How does the network size affect the size of its hubs?  
To answer this we calculate the maximum degree, kmax, called the 
natural cutoff of the degree distribution pk.  
It represents the expected size of the largest hub in a network. 

Random networks 
Scale-free networks 



Hubs in Scale-free Networks vs. Random Networks  

Hubs in a scale-free network are several orders of magnitude larger 
than the biggest node in a random network with the same N and ⟨k⟩. 



Random vs. Scale-free Networks 

• Random network most nodes have comparable degrees 

 

• The more nodes a scale-free network has, the larger are its hubs 

      The size of the hubs grows polynomially with network size: they can 
grow quite large in scale-free networks.  

 

• In contrast, in a random network the size of the largest node grows 
logarithmically or slower with N, implying that hubs will be tiny even 
in a very large random network 



Is the network scale-free? 

• Degree distribution will immediately reveal 

• In scale-free networks, the degrees of the smallest & the largest 
nodes are widely different, often spanning several orders of 
magnitude 

• In random networks, the nodes have comparable degrees 

     Random networks have a scale 



 The behavior of scale-free networks is sensitive to the 

value of the degree exponent γ.  

Scale-Free Regime (2 < γ< 3) 

• kmax grows with the size of the network with exponent 1/(γ - 1), 
which is smaller than one.  

• The market share of the largest hub, representing the fraction of 
nodes that connect to it, decreases as ∼ N-(γ-2)/(γ-1) 

Random Network Regime (γ > 3) 

• For all practical purposes the properties of a scale-free network in 
this regime are difficult to distinguish from the properties a random 
network of similar size.  

• The reason is that for large γ the degree distribution pk decays 
sufficiently fast to make the hubs small and less numerous.  



The behavior of scale-free networks is sensitive to the 

value of the degree exponent γ.  

Anomalous Regime (γ≤ 2)  
• The exponent 1/(γ− 1) is larger than one, hence the number 

of links connected to the largest hub grows faster than the 
size of the network: 

• For sufficiently large N, the degree of the largest hub must 
exceed the total number of nodes in the network, hence it 
will run out of nodes to connect to. 

•  Similarly, for γ < 2 the average degree ⟨k⟩ diverges in the N → 
∞ limit.  

• These odd predictions are only two of the many anomalous 
features of scale-free networks in this regime.  

• Large scale-free network with γ < 2, that lack multi-links, 
cannot exist 



Example – Degree of connectivity considering the significant 
directional STTC edges (before eye opening mouse) 



Green: incoming edges 
Black: outgoing edges 
Legend: Hub id, number of bidirectional edges, one-way edges, outgoing edges, incoming edges 
Red: interneurons 
Red (filled) when they have edges with the hub   ---- Red (empty) no edges with hub 
Before eye-opening mouse 







Influence and Centrality 

• Hubs: highly or densely connected to the rest of the network 

• They facilitate global integrative processes   

 
• A node is central, if it has great control over the flow of information 

within the network  
     This control results from its participation in many of the network’s 
short paths 
 
• Closeness centrality of a node: inverse of the average path length 

between that node & all other nodes in the network 
• Betweenness centrality of a node: fraction of all shortest paths in the 

network that pass through the node 



Influence and Centrality (cont.) 

• A node with high betweenness centrality can control information 
flow because it is at the intersection of many short paths 

• Centrality measures identify elements that are highly interactive 
and/or carry a significant proportion of signal traffic 

• A highly central node in a structural network has the potential to 
participate in a large number of functional interactions 

• A node that is not central is unlikely to be important in network-
wide integrative processes 

• Loss of highly central nodes have a larger impact on the 
functioning of the remaining network 

 

 

 

 



NOT ALL NETWORK ARE SCALE-FREE 

• Networks appearing in material science, describing the bonds 
between atoms in crystalline or amorphous materials:  

     Each node in these networks has exactly the same degree,   
determined by chemistry 

 

• The neural network of the C. elegans worm 

 

• The power grid, consisting of generators & switches connected by 
transmission lines 



Power grid has exponential degree distribution. 

R. Albert et al, Phys. Rev. E 69, 025103(R) (2004) 
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The probability that a substation has more than K transmission lines. 

fraction of 
generating 
substations  
among  
substations with 
degree k. 



• Scale-free property to emerge: nodes need to have the capacity to 
link to an arbitrary number of other nodes.  

 

 These links do not need to be concurrent  

     We do not constantly chat with each of our acquaintances  

      A protein in the cell does not simultaneously bind to each of its    
potential interaction partners 

 

• The scale-free property is absent in systems that limit the number of 
links a node can have, effectively restricting the maximum size of the 
hubs.  

• Such limitations are common in materials  

     (explaining why they cannot develop a scale-free topology) 



(d) C60 (buckminsterfullerene)  

(e) C540 (a fullerene)  

(f) C70 (another fullerene)  
 

graphite diamond lonsdaleit 

Material  
Networks 

amorphous carbon 
 

single-walled carbon nanotube 
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Rewire with a 
probability p 

For p = 1, we have a 
random graph 

Lattice and random graphs should have: 
• Same number of nodes  
• Same number of edges 







Random Graphs 
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Construction of Random Networks & Lattice 
 

They can follow different approaches: 

1. Erdös-Rényi models 

    G(N,p) 

    G(N,m) 

1. Sporns Erdös-like model 

2. Sporns real-based model 
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They use different input. 



 Erdös-Rényi Models: G(N,p) & G(N,M) 

Graphs of N nodes:  

In Erdös-Rényi G(N,p) 

• A graph is constructed by connecting nodes randomly.  

• Each edge is included in the graph with 

probability p independent from every other edge.  

     p can be thought of as a weighting function;  

     

p is estimated from the observed graph = E/(n*(n-1)/2) 

In   Erdös-Rényi G(N, M) 

• A graph is chosen uniformly at random from the collection of all 
graphs with N nodes and M edges.  

     E.g., in G(3, 2) model, each of the three possible graphs on three 
vertices and two edges are included with probability 1/3. 



• G(N, p) model fixes the probability p that two nodes are connected  

•   G(N, M) model fixes the total number of edges M.  

• While in G(N, M) model, the average degree of a node is simply <k> 
= 2L/N, other network characteristics are easier to calculate in the 
G(N, p) model. 





Erdös-Rényi Randomization 

Start from a lattice network and rewire an edge with a probability p. 

 

• N : number of nodes 

• p : rewiring probability 

• k : average degree of connectivity (it must be an even 
number) 

 

– Random network, p = 1          All the edges are rewired 

– Lattice network, p = 0             No edge is rewired 
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Watts-Strogatz  Randomization 
k: average degree of connectivity of observed graph G=(V, E) 

1. Create a lattice by connecting the k/2 nodes closer to the left & right 
neighbours of each node. 

2. For the creation of the random graph (p=1) 

i. Disconnect all edges   

ii. For |E| iterations   

a) Select two different nodes randomly  

b) Create a new edge between these two nodes 

 

Note that the random graph may have a smaller number of edges than 
the lattice 



Generation of randomized version of given network 

Full Randomization 
Generates a random (Erdős–Rényi) network with the same N and E as the 
original network.  
1. Select randomly a source node (S1) & two target nodes T1, T2, where T1 

is linked to S1 & T2 is not.  
2. Destroy the edge (S1,T1) link & create the edge (S1,T2) .  
3. Perform this procedure once for each link in the network. 
 
Degree-Preserving Randomization (according to Sporns Real-based) 
Generates a network in which each node has exactly the same degree as in 
the original network but the network’s wiring has been randomized.  
1. Select two edges (S1, T1) & (S2, T2). 
2.  Destroy them & create new edges (S1,T2) & (S2, T1). 
     The swap leaves the degree of each node unchanged. 
1. Repeat this procedure until we rewire each link at least once. 



Sporns Erdös-like – Creation of Lattice 

Input:  N : number of nodes, K : total number of edges  

1. Place the nodes at the periphery of a circle 

2. Connect each node with its immediate left & right neighbour 

3. Compute the total number of edges (E) 

i. If E=K, the lattice has been constructed 

ii. If E>K, randomly disconnect (E-K) edges 

iii.  If E< K, connect each node with its second degree 
neighbours  (left & right) in the circle 

                            Repeat the step (3) 
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Sporns Erdös-like – Creation of Random Network 

Input:  N : number of nodes, K : total number of edges  

 

1. Place the nodes at the periphery of a circle 

2. Repeat the following steps for K iterations 

i. Select two different nodes randomly  

ii. Connect them with an edge 

End 
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Sporns real-based – Creation of Lattice 

Input:  G: graph (V, E) of real network, R: number of iterations 
1. Repeat the following steps for R iterations 
2.      Repeat the following steps for |E| iterations 
3.            Select randomly two different edges from G, e.g., (A,B), (C,D) 
                  If these 4 nodes are not different, return to step 3 
4.           If (A,D) ϵ E or (B,C) ϵ E,  return to step 3 
                  Otherwise 
                         If ||A,B||+||C,D||> ||A,D||+||B,C|| 

                             create the new edges (A,D) & (B,C) 
                             destroy the (A,B), (C,D) 
                  end 

                        Return to step 3 
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||A,B||: denotes the Euclidian distance between A &B 



Sporns real-based – Creation of Random Network 

Input:  G: graph (V, E) of real network, R: number of iterations 
1. Repeat the following steps for R iterations 
2.    Repeat the following steps for |E| iterations 
3.        Select randomly two different edges from G, e.g., (A,B), (C,D) 
              If these 4 nodes are not different,  return to step 3 
4.       If (A,D) ϵ E or (B,C) ϵ E,  return to step 3 
              Otherwise 
                      create the new edges (A,D) & (B,C) 

                destroy the (A,B), (C,D) 
        end 
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Small-world networks 
 

L = characteristic path length         C = clustering coefficient 

 

• A small-world network is much more highly clustered than an 

equally sparse random graph (C >> Crandom) & its characteristic 

path length L is close to the theoretical minimum shown by a 

random graph (L ~ Lrandom).  

• The reason a graph can have small L despite being highly 

clustered is that a few nodes connecting distant clusters are 

sufficient to lower L.  

• Because C changes little as small-worldliness develops, it 

follows that small-worldliness is a global graph property that 

cannot be found by studying local graph properties.  
 



L(p)/L(0)  



Small-world Criteria 

• Small-worldness SΔ> 1  

SΔ =
𝛾𝑔
△

𝜆𝑔
                𝛾𝑔

△= 
𝐶𝑔
△

𝐶𝑟𝑎𝑛𝑑𝑜𝑚
△            𝜆𝑔= 

𝐿𝑔

𝐿𝑟𝑎𝑛𝑑𝑜𝑚
 

 
• Small-world propensity (φ) close to 1 (suggested reference value 0.6) 

                      Δ𝐿=
𝐿𝑔 − 𝐿𝑟𝑎𝑛𝑑𝑜𝑚

𝐿𝑙𝑎𝑡𝑡𝑖𝑐𝑒 − 𝐿𝑟𝑎𝑛𝑑𝑜𝑚
 

φ  = 1 −
Δ𝐶
2+ Δ𝐿

2

2
 

  Δ𝐶=
𝐶𝑙𝑎𝑡𝑡𝑖𝑐𝑒
△ − 𝐶𝑔

△

𝐶𝑙𝑎𝑡𝑡𝑖𝑐𝑒
△ − 𝐶𝑟𝑎𝑛𝑑𝑜𝑚

△  

g: real network 
rand: random network 



Small-world Criteria (cont’d) 

C≫Cr and L≈Lr, or   σ>1 

  Compares the network’s clustering coefficient & average shortest path length to the random   
reference graph, ignoring the corresponding lattice 

values around 0 considered small world 

Recommended  when the degree distribution is maintained 



n number of nodes 
m number of edges 
ξ density of edges 
<k> mean degree of connectivity 



Average Median Max Min Hubs Nodes  Edges 

11.8554 8 45 1 9 (10.84%) 83 (65.87%) 492 (6.25%) 

Degree of Connectivity Number (Percentage) 

The big connected component, 

formed by 83 neurons (43 neurons 

were not connected to any other 

neuron).  

 

The small world analysis has been 

done for the connected 

component. 



Example: Degree of Connectivity (DoC) using the big connected 

component, formed by 83 neurons (43 neurons were not connected to 

any other neuron).  

The small world analysis has been done for the connected component. 



  Clustering Coeff  Shortest Path 

Real-life    0.43 2.22 

Erdös Rényi Random 0.15 2.01 

Lattice 0.68 3.92 

Sporns Erdös-like Random 0.14 1.98 

Lattice 0.68 3.92 

Sporns real-based Random 0.38 2.10 

Lattice 0.41 2.17 

  
𝜸𝒈
△
𝒄𝒄

 𝝀𝒈𝒄𝒄
 𝑺△ =

𝜸𝒈
△
𝒄𝒄

𝝀𝒈𝒄𝒄
 𝚫𝑪 𝚫𝑳 𝝓 = 𝟏 −

𝚫𝑪
𝟐 + 𝚫𝑳

𝟐

𝟐
 

Erdös Rényi 2.78 1.11 2.50 0.47 0.11 0.66 

Sporns Erdös-like 3.08 1.12 2.75 0.46 0.12 0.66 

Sporns real-based 1.11 1.06 1.05 0 1 0.29 

Animal P36-G8 Small-Worldness Small-World Propensity 

Erdös Rényi ✓ ✓ 

Sporns Erdös-like ✓ ✓ 

Sporns real-based ✓ ✗ 



Preferential attachment models the 
growth of a network 



Preferential attachment models the growth of a network 

• Add a new node 
• Probability of linking a node is proportional to its degree 

 
 
 

• The preferential attachment process generates a "long-tailed" 
distribution following a Pareto distribution or power law in its tail. 
 

• Based on Herbert Simon’s result 
– Power-laws arise from “Rich get richer” (cumulative advantage) 

 
Examples  

1. Citations: new citations of a paper are proportional to the number it already 
has [Price 1965] 

2. Growth of the WWW [Albert & Barabasi 1999] 



Jure Leskovec 

Preferential attachment 

• Leads to power-law degree distributions 
 

 

 

• There are many generalizations & variants,  

     but the preferential selection is the  

    key ingredient that leads to power-laws 

3 kpk



Jure Leskovec 

Network resilience (1) 
How does the connectivity (length of 
the paths) of the network changes as 
the vertices get removed? 

 

• Removal of vertices  
–      Random 

–      Targeted 

–      According to a systematic 
process 

 

• Important for epidemiology 

e.g., removal of vertices 
corresponds to vaccination 



Jure Leskovec 

Network resilience (2) 
• Real-world networks are resilient to random attacks 

– One has to remove all web-pages of degree > 5 to disconnect the 
web 

– But this is a very small percentage of web pages 
• Random network has better resilience to targeted attacks  

Fraction of removed nodes 

M
e

a
n
 p

a
th

 l
e
n
g
th

 

Random network 

Fraction of removed nodes 

Internet (Autonomous systems) 

Random 

removal 

Preferential 

removal 



Dynamical Process 

• Starting with N isolated nodes, the links are added gradually through 
randomly placed edges between nodes. 

•  This corresponds to a gradual increase of p, with striking consequences 
on the network topology.  

 
First examine how the size of the largest connected cluster within the 
network (NG), varies with the average degree of connectivity ‹k›: 
 
Two extreme cases are easy to understand: 
1. For p = 0, ‹k› = 0 (all nodes are isolated)  
                        → NG = 1 & NG/N→0 for large N 
1. For p = 1, ‹k›= N-1 (network is a complete graph & all nodes belong to a 

single component  
                       →  NG = N & NG/N = 1 

 



The Evolution of a Random Network 

Absence of a giant component for small p &  its sudden emergence once p reaches a critical value. 

tiny clusters 

For ‹k› ‹ 1, the largest cluster is a tree with size 
NG ~ lnN , hence its size increases much slower 
than the size of the network 

Critical Point: ‹k› = 1 (p = 1/N) 

The critical point separates the regime where 
there is not yet a giant component (‹k› ‹ 1) 
from the regime where there is one (‹k› › 1). 



Emergence of a Giant Component 

• One would expect that the largest component grows gradually from NG = 1 
to NG = N, if ‹k› increases from 0 to N-1.         

      Yet, this is not the case! 
• NG/N is zero for small ‹k›, indicating the lack of a large cluster.  
• Once ‹k› exceeds a critical value, NG/N increases,  
  signaling the rapid emergence of a large cluster (i.e., the giant component) 

 
          The condition for the emergence of the giant component is  ⟨k⟩=1  
                                                 (Erdős & Rényi in their classical 1959 paper) 
            A giant component exists if and only if each node has on average  
            more than one link  
 
       The fact that we need at least one link per node to observe a giant    
component is not unexpected. Indeed, for a giant component to exist, each of 
its nodes must be linked to at least one other node.  
                          That one link is sufficient for its emergence! 

 



Emergence of a Giant Component (con’td) 

The condition for the emergence of the giant component is  ⟨k⟩=1  
  is equivalent with  

Therefore the larger a network, the smaller p is sufficient for the giant component. 

For ‹k› ‹ 1, the largest cluster is a tree with size NG ~ lnN  
hence its size increases much slower than the size of the network 

At the critical point, the size of the largest component is NG ~ N2/3 

Consequently NG grows much slower than the network’s size, so its relative size decreases as 
NG/N ~ N -1/3 in the N→∞ limit. 
 
Note, however, that in absolute terms, there is a significant jump in the size of the largest 
component at ‹k› = 1. For example, for a random network with N = 7 ×109 nodes, comparable to 
the globe’s social network, for ‹k› ‹ 1, the largest cluster is of the order of NG ≃ lnN = ln (7 ×109) 
≃ 22.7. In contrast at ‹k› = 1 we expect NG ~ N2/3 = (7 ×109)2/3 ≃ 3 ×106, a jump of about five 
orders of magnitude. Yet, both in the subcritical regime and at the critical point the largest 
component contains only a vanishing fraction of the total number of nodes in the network. 



Network Evolution: Different Regimes 

• Subcritical Regine (<k>  < 1) 

• Critical Point (<k> = 1 or                         ) 

• Supercritical Regine  ( <k> > 1  ) 

• Connected Regime (‹k› › lnN  or p › lnN/N ) 



Network Evolution: Supercritical regime 
(<k> > 1) 

•  In the supercritical regime numerous isolated components coexist 

with the giant component. 

• These small components are trees, while the giant component 
contains loops and cycles.  

• The supercritical regime lasts until all nodes are absorbed by the 
giant component. 



Network Evolution: Connected Regime 
 ‹k› › lnN (p › lnN/N) 

• For sufficiently large p, the giant component absorbs all nodes and 
components, hence NG ≃ N 

• In the absence of isolated nodes, the network becomes connected  

• The average degree at which this happens depends on N 

• When we enter the connected regime, the network is still relatively 
sparse, as lnN / N → 0 for large N 

• The network turns into a complete graph only at ‹k› = N - 1 



Phase Transitions: Transitions from Disorder to Order 

 
    The emergence of the giant component at ‹k›=1 in the 
random network model is reminiscent of a phase transition 
 
Examples from physics & chemistry 
• Water-Ice Transition:  
At high temperatures, the H2O molecules engage in a diffusive 
motion, forming small groups & then breaking apart to group up 
with other water molecules.  
If cooled, at 0˚C, the molecules suddenly stop this diffusion, 
forming an ordered rigid ice crystal. 
• Magnetism:  
In ferromagnetic metals, like iron, at high temperatures the 
spins point in randomly chosen directions.  
Under some critical temperature Tc all atoms orient their spins 
in the same direction and the metal turns into a magnet. 

 



Water-Ice Transition 



Magnetic Phase Transition 

In ferromagnetic materials the magnetic moments of the individual atoms (spins) can point in 
two different directions.  
At high temperatures they choose randomly their direction (right panel). In this disordered state 
the system’s total magnetization (m = ΔM/N, where ΔM is the number of up spins minus the 
number of down spins) is zero.  

by lowering the temperature T, the system 
undergoes a phase transition at T= Tc, when a 
nonzero magnetization emerges 

Lowering T further allows m to 
converge to one. In this ordered 
phase all spins point in the same 
direction  




