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Correlations in neuronal spike times are thought to be key to processing in many neural systems. Many measures have been proposed to
summarize these correlations and of these the correlation index is widely used and is the standard in studies of spontaneous retinal
activity. We show that this measure has two undesirable properties: it is unbounded above and confounded by firing rate. We list
properties needed for a measure to fairly quantify and compare correlations and we propose a novel measure of correlation—the spike
time tiling coefficient. This coefficient, the correlation index, and 33 other measures of correlation of spike times are blindly tested for the
required properties on synthetic and experimental data. Based on this, we propose a measure (the spike time tiling coefficient) to replace
the correlation index. To demonstrate the benefits of this measure, we reanalyze data from seven key studies, which previously used the
correlation index to investigate the nature of spontaneous activity. We reanalyze data from �2(KO) and �2(TG) mutants, mutants lacking
connexin isoforms, and also the age-dependent changes in wild-type and �2(KO) correlations. Reanalysis of the data using the proposed
measure can significantly change the conclusions. It leads to better quantification of correlations and therefore better inference from the data.
We hope that the proposed measure will have wide applications, and will help clarify the role of activity in retinotopic map formation.
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Introduction
Quantifying the degree of correlation between neural spike trains
is a key part of analyses of experimental data in many systems
(Chiappalone et al., 2006; Dehorter et al., 2012; Kirkby et al.,
2013). Neural coordination is thought to play a key role in infor-
mation propagation and processing and also in self-organization
of the neural system during development. For example, corre-
lated activity plays a critical role in forming the retinotopic map
(Feller, 2009). In the developing retina, waves of correlated spon-
taneous activity in retinal ganglion cells have been recorded [on
multielectrode arrays (MEAs) and by calcium imaging] in vitro in
many species (Wong, 1999), and shown in vivo using calcium
imaging in mouse (Ackman et al., 2012). These waves show both

temporal and spatial correlations. Much work has focused on
assessing the role of this activity in the development of the reti-
notopic map; typically, both the map and various statistics of the
activity are compared between wild-type and mutant genotypes.
The results are used to make inferences about which features of
the activity are implicated in retinotopic map formation (Stafford
et al., 2009). There is strong evidence that correlation between
neuronal spike times is involved in this process (Xu et al., 2011).

An appropriate quantification of these correlations is vital for
inference about their role. Quantifying correlations is challeng-
ing for two reasons. First, correlated neurons fire at similar times
but not precisely synchronously, so correlation must be defined with
reference to a timescale within which spikes are considered corre-
lated. Second, spiking is sparse with respect to the recording’s sam-
pling frequency (spiking rate �1 Hz, sampling rate typically 20 kHz;
Demas et al., 2003) and also spike duration. This means that conven-
tional approaches to correlation (such as Pearson’s correlation coef-
ficient) are unsuitable as periods of quiescence should not count as
correlated and correlations should compare spike trains over short
timescales, not just instantaneously.

Many alternative measures of quantifying correlations exist
(Kruskal et al., 2007; Kerschensteiner and Wong, 2008; Joris et al.,
2006). One measure, the correlation index (Wong et al., 1993),
has widespread popularity and is the standard measure applied to
spontaneous retinal activity. It also has wider uses such as
quantifying correlations in motor (Personius et al., 2007) or
hippocampal (MacLaren et al., 2011) neurons. It is a pairwise
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measure, which quantifies temporal correlations and is fre-
quently used to investigate their dependency on a third variable,
such as neuronal separation, and to compare correlations across
phenotypes. We show that the correlation index is confounded by
firing rate, which means it cannot fairly compare correlations.
We list properties required of a correlation measure and conduct
a thorough literature search for other measures. We propose a
novel measure and then blindly and systematically test all mea-
sures for the required properties against synthetic and experi-
mental data to propose a replacement for the correlation index.
Using this replacement, we then reanalyze data from seven stud-
ies to show that results can change when correlations are mea-
sured in a way that is independent of firing rate.

Materials and Methods
Analysis of correlation index
The correlation index iA,B between two spike trains A and B is defined as
the factor by which the firing rate of neuron A increases over its mean
value if measured within a fixed window (typically 0.05– 0.10 s) of spikes
from neuron B (Wong et al., 1993). The following notation is used
throughout: the vectors a and b represent the spike times of neurons A
and B; ai is the i�th spike in train A and bj is the j�th spike in train B. The
correlation index is given by the following:

iA,B �
NA,B���t, �t�T

NANB2�t
, (1)

where NA � �a� (total number of spikes of A in recording, NB � �b�, T �
length of recording, �t � synchronicity window, and NA,B[��t, �t] is
the number of spike pairs where a spike from train A falls within 	�t of
a spike from train B as follows:

NA,B���t, �t� � �
i�1

NA �
j�1

NB

1�t
�ai � bj��,

where

1�t
 x� � � 1 if x � �t
0 otherwise.

To show that the correlation index is dependent on firing rate, we assume
the following model for neuronal firing: spike trains A and B are both
Poisson processes with rates �A and �B respectively. A fixed proportion of
the spike times are shared (A and B fire spikes synchronously). These
synchronous spikes occur with a rate �S � �A, �B. Adjusting these pa-
rameters can scale the rates while maintaining the correlation structure
to test for rate-dependence. Under this model, an expression for the
correlation index can be derived as follows:

iA,B �
�S

2�t�A�B
� 1 �

1


�A � �B � �S�T
�

�t

2T
. (2)

This expression is clearly rate-dependent. Two minor assumptions about
the size of the rates, T and �t were used to arrive at this result. These
assumptions are valid within experimentally observed ranges and the
rate-dependency of iA,B is not affected if the assumptions are violated. In
Results, we use the subcase of autocorrelation � � �A � �B � �S to show
that this rate-dependence significantly affects correlation values. In this
case, the correlation index is as follows:

iA,B �
1

�� 1

2�t
�

1

T� � �1 �
�t

2T�. (3)

This dependency was verified computationally by extensive testing on
synthetic data, including data generated from the above model using
freely available code (Macke et al., 2009).

Spike time tiling coefficient
We define the spike time tiling coefficient in Figure 1. To quantify the
correlation between spike trains A and B, we look for spikes in A which

fall within 	�t of a spike from B. We consider the proportion of spikes in
A which have this property as this is insensitive to firing rate. We account
for the amount of correlation expected by chance by making the minimal
assumption that we expect the proportion of spikes from A falling within
	�t of a spike from B by chance to be the same as the proportion of the
total recording time which falls within 	�t of a spike from B. Any extra
spikes in A which have this property are indicative of positive correlation.
We therefore use the quantity PA � TB (Fig. 1 shows definitions) which is
positive if spikes in train A are correlated with spikes from train B, and
negative if there is less correlation than expected by chance. We require
the coefficient to be equal to �1 for autocorrelation, to be �1 when PA �
0, TB � 1 and to have a range of [�1, 1]. The normalization factor
(1 � PATB) ensures that these criteria hold.

The coefficient should be symmetric so we consider both (PA � TB)
and (PB � TA), combine the contributions from both trains and renor-
malize to preserve the required range (Fig. 1). Computation of the spike
time tiling coefficient is straightforward; the only complexity is ensuring
that overlapping tiles do not count multiple times when calculating TA

and TB.
The spike time tiling coefficient uses the proportion of the recording

which falls within 	�t of spikes from A to determine whether the pro-
portion of spikes in B which also have this property is indicative of
correlation (i.e., more or less than is expected by chance). Because tile
overlaps are not counted multiple times, this depends on the firing pat-
terns as well as rates. In the correlation index (and many other measures),
only the firing rates are used to assess what is expected by chance, but
firing patterns are, in fact, important. For instance, consider an extreme
case of two spike trains (A and B) with the same average firing rate where
the spikes in A occur at regular intervals (no two spikes are within �t of

Figure 1. Diagram to demonstrate the calculation of the spike time tiling coefficient. The
four quantities required to calculate the spike time tiling coefficient are PA, PB, TA, TB. The only
free parameter is �t. Values and scales are for demonstration only.
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each other) and the spikes in B all occur within �t of each other. More of the
recording time lies within	�t of any spike from A compared with B so given
an arbitrary train C, we expect more spikes in C to fall within 	�t of any
spike from A by chance than within 	�t of any spike from B. This informa-
tion is not captured using the firing rates to assess what we expect to occur by
chance but is captured with the spike time tiling coefficient.

Implementing the measures
A literature search produced 33 other measures that were implemented
for testing. All measures were implemented in R and C except Victor and
Purpura (1997), ISI-distance (Kreuz et al., 2007a), van Rossum (2001),
and SPIKE (Kreuz et al., 2013), which were run using freely available
MATLAB code (Kreuz et al., 2013). Some measures were altered to make
them more likely to posses the required properties. The following
changes were made (see Table 3): the Kerschensteiner and Wong (2008)
and Jimbo et al. (1999) indices were originally defined as functions over
binned time lags, the value of the bin around zero was taken to be the
value of the measure (with bin width 2�t). The Jimbo et al. (1999) index
is normalized by the autocorrelation value at the origin, but the form of
this normalization was not specified. Two versions of multiplicative nor-
malization were tested, one used the above quantity, and the other used
its square root. The requirement of the event synchronization measure
(Kreuz et al., 2007b) that �t should be smaller than the smallest within-
train ISI was relaxed so �t was set freely. The Schreiber et al. (2003)
similarity coefficient and the Kruskal et al. (2007) correlation measure
had their exponential/Gaussian filters (respectively) replaced with a box-
car filter of width 2�t. This does not affect whether a measure fulfils the
required criteria, but means that a window of synchrony is used to assess
correlations (as with the correlation index). A boxcar filter is also more
computationally efficient to calculate than Gaussian or exponential fil-
ters, which require an extra parameter, namely a filter cutoff point, to
make computation feasible. Mutual information (Li, 1990) was altered to
smooth spikes with a boxcar filter before calculation. The Ripley (1976)
Kmm function (a directed measure which measures the correlation of one
train to another) was made symmetric by setting the correlation measure
to be equal to the mean of the two directed variants.

Evaluating the measures for the necessary and desirable properties
Each measure was tested extensively for the necessary and desirable
properties (see Table 2) on a range of synthetic data. This was used
instead of experimental data, as it is possible to independently alter the
key properties (such as, rate or correlation). Synthetic data were gener-
ated from the following models, which replicate four types of experimen-
tally observed spiking patterns: Poisson spiking, Poisson bursting,
regular out-of-synchrony spiking, and out-of-synchrony bursting. Sam-
ple data are presented in Figure 2 and parameter ranges for all four
models appear in Table 1.

Poisson spiking model. This model assumes that spike trains A and B
fire Poisson-distributed spikes with rates �A and �B, respectively. A cer-
tain proportion of these spikes are synchronous with a spike in the other
train, this forms a Poisson process with rate �S. The rates, correlation,
recording duration, and �t were varied in isolation to test measures for
the required properties.

Poisson burst model. The Poisson burst model was used to generate
data which replicated the burst-like firing seen in spontaneous retinal
waves (a burst of firing when a cell participates in a wave and silence
between waves). The model is a doubly stochastic process: the positions
(center-points) of bursts are generated first, and then the bursts them-
selves (consisting of the number of spikes in the burst, and a position for
each spike) are generated.

The first spike train is the “master” train and the center-points of its
bursts are generated according to a Poisson process with a given rate �.
The center-points of the second train are a copy of those in the first train,
but with some deleted (each center-point is deleted with probability, p).
The remaining center points in the second train are then jittered from
their initial positions. This is controlled by a parameter O which is either
a fixed amount, the variance of a Gaussian distribution or the range of a
continuous uniform distribution (in both cases the distributions have
zero mean) from which the offsets are drawn.

For each center-point of a burst (in either train) the number of spikes
in that burst is then generated. This is controlled by a parameter N which
is either a fixed number or is the mean of a Poisson distribution or the
maximum of a discrete uniform distribution from which the number of
spikes are drawn. The position of each spike relative to the center-point is
then generated and is controlled by a parameter � which is either the
variance of a Gaussian distribution or the range of a continuous uniform
distribution (with zero mean in both cases) from which the relative po-
sitions are drawn.

The choice of distributions affected all measures consistently and did
not qualitatively affect results. The parameters of this model were varied
in isolation to test measures for the required properties.

Out-of-synchrony spiking model. Regular, out-of-synchrony individual
spikes were generated according to a simple inhibitory integrate-and-fire
model as described by Dayan and Abbott (2001). Parameters were varied
in isolation.

Out-of-synchrony bursting model. Out-of-synchrony spike bursts were
generated according to a map-based model for neuron membrane volt-
age (Shi and Lu, 2009). This model was simulated with three neurons and
the spikes from one were discarded to produce two spike trains with
out-of-synchrony burst-like firing and periods of quiescence. Parameters
were varied in isolation.

Testing procedure. Measures were tested for necessary and desirable
properties in a two-step procedure. Each measure was assigned a unique
number at random so that the measure was blindly evaluated. Step 1

Figure 2. Examples of simulated data used to test measures. Data generated from Model 1
used a Poisson spiking model where both neurons fire at 1.5 Hz with increasing percentage of
spike times which are shared with a spike in the other train: 0% (A), 87% (B), and 99% (C). Recording
duration T�300s.DatageneratedfromModel2usedaPoissonburstmodelwithaburst rateof��
0.05Hz,wherethenumberofspikesineachburst isdrawnfromaPoissondistributionwithmeanN�
8. The positions of the spikes relative to the center of the burst (indicated by a red arrow) are drawn
from a uniform distribution on [�1, 1] s (�� 2). The center of the burst of the second train is offset
from the center of the first by a fixed amount: O � 0 s (A), 1 s (B), and 2 s (C), T � 3600 s. Data
generated from Model 3 shows regular out-of-synchrony firing with increasing firing rate generated
using an integrate-and-fire model (see Materials and Methods for details). The firing rates are 0.76 Hz
(A), 1.27 Hz (B), and 2.5 Hz (C), T � 3000 s.
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tested all the anonymized measures for the necessary properties using
synthetic data. The list of properties appears in Table 2. The measures
were tested methodically for each property using data generated from the
above models where parameters were varied in isolation (line searches)
and the values tested included the experimentally observed ranges (Table
1 shows ranges used). Necessary properties N1–5 were tested using data
generated from both the Poisson spiking and Poisson burst model.

As an example, necessary property N3 states that measures must be
robust to the recording duration. To test this, data were generated from
the Poisson spiking model with rates and �t fixed, and with varying
recording time. Each measure was then calculated. Ten repeats were
performed and then one of the fixed parameters was changed and this
process was repeated. This was done for several different values of each
fixed parameter. This process was then repeated with data from the Pois-
son burst model. Because the necessary property required that measures
are robust to recording duration, measures that showed dependency
were judged to lack this property and were not considered further.

After testing for necessary properties N1–5 remaining measures were
tested for their ability to distinguish anti-correlation from no correlation
(property N6). This property was tested using line searches on data gen-
erated from the out-of-synchrony spikes and out-of-synchrony bursts
models. Measures that were tested on data from all four models were
tested against 7640 pairs of spike trains in total.

Four measures were shown to possess all necessary properties, which
were then assessed on the basis of the desirable properties. Because the
desirable properties concern features of the measures (Table 2), it was not
possible to proceed without identifying the measures. At this point, the
simulation results from the Poisson spiking model were confirmed by
analytical calculations for all measures that were tractable under this
model.

Step 2 of testing involved assessing measures for whether they contain
extra parameters, whether they count quiet periods as correlated and
whether they make assumptions about the statistical properties of the
data (Table 2, D1–D3). If a measure was shown to lack a desirable prop-
erty, simulated data from one of the above models was used to show that
this had a qualitative effect. These measures were also extensively tested
on experimental data to verify that their behavior on synthetic data were
representative of that on experimental data.

Measures possessing all the necessary properties
To make this article self-contained, we briefly present the three previ-
ously published measures which possessed all necessary properties.

Spike count correlation coefficient
The recording time is partitioned into N � T/d bins of width d (let d �
�t, so bin width is equal to the timescale of interest). The spike times a
and b are binned into vectors A and B of spike counts. The spike count
correlation coefficient is Pearson’s correlation coefficient r between A
and B as follows:

r( A, B) �
�
i�1

N

(Ai � A)(Bi � B)

��
i�1

N

(Ai � A)2 ��
i�1

N

(Bi � B)2

, (4)

where A� denotes the mean of A.

Kerschensteiner and Wong (2008) correlation
The recording time is partitioned into N � T/�t bins. The spike times a
and b are binned into vectors A and B of spike counts. A sliding window
width w (	�t) is defined, which is used to calculate local average spike
counts. For simplicity let w � (2n � 1)�t for some integer n. The Ker-
schensteiner and Wong correlation, k (Eq. 5), is Pearson’s correlation

Table 1. Parameter ranges used in models to generate test data

Parameter Description Value

Common to all models
�t Window of synchrony 0.01–1 s
T Recording time 10 to 6000 s

Poisson spiking model
�A , �B Firing rates of A and B 0.01–5 Hz
�S Rate of synchronous spikes 0.01–5 Hz

Poisson bursting model
� Burst-rate of master train 0.01– 0.2 Hz
p Probability of burst in second train 0 –1
O Parameter controlling offset of burst-center in

second train (either fixed or O � range of
continuous uniform distribution, or O � variance
of Gaussian distribution)

0 –2 s

N Parameter controlling number of spikes per burst
(either fixed, N � mean of Poisson distribution,
or N � maximum of discrete uniform
distribution)

1–20

� Parameter controlling position of spikes relative to
burst center (� � range of continuous uniform
distribution, or � � variance of normal
distribution)

0.05–2 s

Out-of-synchrony spiking model (Dayan and
Abbott, 2001)

ES Synapse reversal potential �70 to 0 mV
EL Resting potential �70 mV
Vth Threshold potential �54 mV
Vreset Reset voltage after action potential �80 mV

m Membrane time constant 0.05–1.5 s
rmg�s Specific membrane resistance multiplied by

specific membrane conductance
0.05

Pmax Maximum value of synaptic release probability 0.5
RmIe Change in potential due to injection of small current 18 mV

s Synaptic time constant 0.05 s

Out-of-synchrony bursting model (Shi and Lu, 2009)
� Map control parameter 5–30
� Ensures slow gating process is slow 0.001
�A , �B , �C Regime-control parameters for neurons A, B, C �0.4 to �0.1
gc Coupling strength �0.4 to �0.01

Note that the out-of-synchrony bursting model is phenomenological, and so parameters do not relate to any
particular biological process and are unitless.

Table 2. Necessary (N) and desirable (D) properties for a correlation measure

Necessary properties
N1 Symmetry: The measure C should be symmetric: for spike trains A and B,

C(A, B) � C(B, A).
N2 Robust to variations in the firing rate: For instance, given two spike trains with

a particular correlational structure, if the rates of both trains are doubled but the
structure is preserved, the correlation measure should remain the same.

N3 Robust to amount of data: In practice, this often means robust to recording duration.
N4 Bounded: The measure should be bounded taking a value of �1 when the spike

trains are identical, with a value of zero corresponding to no correlation and �1
corresponding to anti-correlation.

N5 Robust to variations in �t: Small variations to �t should not introduce artefacts
into the measure.

N6 Anticorrelation: The measure should discriminate between no correlation and
anticorrelation.

Desirable properties
D1 Periods when both neurons are inactive should be ignored: Periods where both

neurons are silent should not be counted as correlated. Experimental data
frequently has large periods of quiescence (Wong et al., 1993; Demas et al., 2006)
which, if counted would distort calculated correlations.

D2 Minimal assumptions on structure: The measure should not assume that spike
times have a given underlying distribution as this will lessen the general applicability.

D3 Minimal Parameters: The main free parameter in the measure should be the time
window of synchrony �t. The number of other parameters should be kept to
a minimum.

Each property is assigned an identifier for ease of reference.
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coefficient with local average spike counts [Ã(i)]) replacing the global
average (A� ) as follows:

k( A, B) �
�
i�1

N

(Ai � Ã(i))(Bi � B̃(i))

��
i�1

N

(Ai � Ã(i))2 ��
i�1

N

(Bi � B̃(i))2

, (5)

where the local average at bin i is given by the following:

Ã(i) � � �j�1

i�n Aj

n � 1
if i � n

�
j�i�n

i�n Aj

2n � 1
if n  i � N � n,

�
j�i�n

N Aj

n � N � i
if i � N � n

(6)

similarly for B̃(i).

Altered Kruskal et al. (2007) correlation
The spike trains are represented as continuous signals, A and B, as
follows:

A
t� � �
i�1

NA

�
t � ai�, (7)

where � represents the Dirac delta function and B is represented simi-
larly. These signals are then convolved with a boxcar filter F of width 2�t
as follows:

F
u� � � 1, ��t � u � �t
0, otherwise . (8)

The resulting signal A� is as follows:

A�
t� � �
i�1

NA

F
t � ai�, (9)

B� is found similarly. The correlation c is Pearson’s correlation coefficient
of A� and B� as follows:

c
 A�, B�� �
Cov
A�, B��

�Var
A�� �Var
B��
, (10)

where

Cov
A�, B�� �
1

T	
0

T

�A�
s� �
2�tNA

T ��B�
s� �
2�tNB

T �ds,

(11)

and Var(A�) � Cov(A�, A�). Note that 2�tNA/T is the mean value of
signal A� (similarly for signal B�).

Results
Correlation index
The correlation index is a popular method for quantifying pair-
wise correlations in neuronal spike times. Given neurons A and B
it is defined as the factor by which the firing rate of A increases
over its mean value if measured within a fixed window of spikes
from B (see Materials and Methods). It is the standard correlation
measure in studies of spontaneous retinal activity and is also used
in several other systems, for instance motor (Personius and
Balice-Gordon, 2001) and hippocampal (MacLaren et al., 2011)
neurons. It is widely used to compare correlations across differ-
ent genotypes and ages to infer the function of correlated activity.
Because neuronal firing patterns are complex and correlation
does not vary in isolation (many other statistics of the data also
vary), it is important that measures of correlation are not con-

founded by other statistics as this means correlations cannot be
fairly compared and subsequent inferences are unreliable.

In Materials and Methods, we showed that the correlation
index is confounded by firing rate, by assuming a neuronal spik-
ing model and calculating an expression for the correlation index
which was rate-dependent (Eq. 2). To show that this is signifi-
cant, we use the example of the autocorrelation of a Poisson spike
train (the correlation index of this train compared to itself). The
correlation index in this case is given by Equation 3 from which it
is clear that the rate-dependence is such that the correlations of
neurons with low firing rates are up-weighted compared with
those with high firing rates. This result was verified by calculating
the correlation index of a simulated Poisson neuron compared
with itself for varying firing rates (Fig. 3). In this case, the corre-
lation index should be constant since no pair of identical spike
trains is more correlated than another. In fact, the correlation
index decreases with firing rate. The range of firing rates (0.1–5
Hz) used is typical of recordings of spontaneous activity. For
example, Demas et al. (2006) reported mean firing rates for four
different mouse genotypes at four different ages ranging from
0.45 	 0.04 Hz to 2.15 	 0.22 Hz. The coincidence window �t
was set to 50 ms unless otherwise specified.

A further issue is that the correlation index is unbounded
above (Eq. 1; Fig. 3). The range of values of positive correlation is
[1, ], whereas that of negative correlation is [0, 1]. Low firing
rates return very high values of correlation (Fig. 3). These high
values are frequently excluded as outliers, but high correlation
index does not imply extreme firing patterns. This makes com-
paring correlations problematic. For instance, the autocorrela-
tion index of a Poisson neuron with rate 0.1 Hz is nearly 20 times
that with rate 1 Hz (Fig. 3); however, in both cases identical spike
trains are being compared, so the conclusion that one is more
correlated than the other is erroneous. There is no intuitive feel
for how a correlation of 200 compares to a correlation of 10.

Figure 3. The correlation index is dependent on firing rate. The correlation index of two identical
Poisson spike trains is plotted for varying firing rates. Simulation values were generated by simulating
one Poisson spike train and then calculating the correlation index comparing this train with itself.
Meanwitherrorbarsof	1SDareplottedfor10trials,eachofduration300s.Thetheoreticalexpected
value of the correlation index under this model (red line) is given by Equation 3.
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Necessary and desirable properties for a correlation measure
Because the correlation index is confounded by firing rate an
alternative measure should be found which is independent of
firing rate and can fairly compare correlations. It should be able
to replace the correlation index in all analyses. Therefore, because
the correlation index is a single-valued measure, the replacement
should also be single-valued (as opposed to multivalued e.g.,
cross-correlogram). In practice, many multivalued measures can
be reduced to single values by considering just one of their values.
The correlation index quantifies correlations over a fixed, small
timescale, so its replacement should do the same.

Additionally, there are other properties needed for a measure
to fairly compare correlations across recordings where other sta-
tistics vary. There are also some desirable properties, which either
affect the range of correlation values seen in experimental data or
require extra information before correlations can be fairly com-
pared. We specified six necessary and three desirable properties,
for which we assess potential replacement measures. These are
listed in Table 2.

Many measures which quantify the degree of coordination or
correlation in neural spike trains exist: an extensive literature
search found 33 examples. There is variation in their terminology
(such as, “coefficients” or “indices”). We use the term “measure”
to provide a general term, in the sense that they all measure
correlations. We classified the measures into six categories:

(1) Measures which calculate a distance between spikes
trains, or those which calculate a cost involved with trans-
forming one train into another.

(2) Measures based on the cross-correlogram, that is, mea-
sures counting pairs of spikes which occur within 	�t of
each other (i.e., the count in the bin centered on zero of
the cross-correlogram before normalization) which is
then normalized using some statistic from the cross-
correlogram (or justified with reference to it).

(3) Measures which also count pairs of spikes which occur
within 	�t of each other, but which are not derived from
the cross-correlogram (e.g., the correlation index).

(4) Measures from Information Theory.
(5) Measures which consider spike times as a shot-noise pro-

cess; a term from electronics which considers spike times
as discrete events and uses convolution with fixed kernels
to derive useful measures.

(6) Measures which consider spike times as a marked point
process, a concept from statistics: a point process is a
process for which any one realization consists of a set of
isolated points in some space. A marked point process is a
point process where additional data exists on the points
(other than their location), these data are termed
“marks,” in this case, a binary mark denoting from which
neuron the spike originated.

A list of the measures and their classification appears in Table
3. To be as thorough as possible, we have included a broad range
of measures, not just those that quantify correlation (some measure
synchrony, some similarity, and some distance; see Discussion). As a
consequence, if a measure is shown to be unsuitable to replace the
correlation index, this is no judgment of its usefulness or worth. It is
likely that it was designed for use on a different problem and the
quantity that it measures is not similar enough to the correlation as
we measure it for it to be appropriate in this case.

No measure from the literature was proposed as a replace-
ment for the correlation index and none obviously possesses the

full list of necessary and desirable properties. We therefore de-
vised a new measure which conforms to all the criteria; the spike
time tiling coefficient (Fig. 1).

Step 1: evaluating the measures for necessary properties
The replacement for the correlation index must be able to fairly
quantify correlations for a wide range of neuronal spiking pat-
terns and therefore possess all necessary and, ideally, all desirable
properties. Measures were tested for these properties both ana-
lytically and on a wide range of simulated and experimental data.
Simulated data are more useful here as individual properties can
be altered independently. If a measure lacks at least one necessary
property, it was removed from consideration (for brevity, we

Table 3. Correlation measures evaluated in this study with evidence (if any) for
rejecting them as a replacement for correlation index

Measure
no. Measure name

Lacked
property

Evidence
in Figure

Distance measures and cost functions
1 Victor and Purpura (1997) N3 5A
2 ISI-distance (Kreuz et al., 2007a) N2 5B
3 Hunter-Milton similarity (Hunter and Milton, 2003) N6 5C
4 Van Rossum (2001) N3 5A
5 SPIKE (Kreuz et al., 2013) N2 5B

Cross-correlation based
6 Coincidence index (Pasquale et al., 2008) N2 4
7 Altered Coincidence index* N2 4
8 Cross correlation coefficient (Pasquale et al., 2008) N2 4
9 Schreiber et al. (2003) similarity coefficient N6 5C
10 Altered Schreiber et al. similarity coefficient* N6 5C
11 Kerschensteiner and Wong (2008) cross-correlation D3 6D
12 Jimbo and Robinson index (Jimbo et al., 1999) N2 4/5A

Synchrony not from cross-correlation
13 Correlation index (Wong et al., 1993) N2 3
14 Activity pair (Eytan et al., 2004) N2 4
15 Unitary events analysis (Grün et al., 2002) N2 4
16 Event synchronization (Kreuz et al., 2007b)* N2 4
17 Joris et al. (2006) correlation index N2 4

Information theory
18 Mutual information (Li, 1990) N2 4
19 Mutual information with smoothing* N2 4

Measures from shot-noise process
20 Coherence (at zero) (Eggermont, 2010) N6 5C
21 Spike count correlation (Eggermont, 2010) D1 6A
22 Smoothed spike count correlation (Kruskal et al., 2007)* D3 6C
23 Spike count covariance (Eggermont, 2010) N2 4

Measures assuming a marked point process
24 Stoyan’s Kmm function (Stoyan and Stoyan, 1994) N2 4
25 Isham’s mark correlation function (Isham, 1985) N2 4
26 Ripley’s Kmm function (Ripley, 1976) N2 4
27 Simpson (1949) index N2 4
28 Simpson (1949) index no correction N2 4
29 Stoyan’s mark covariance function (Stoyan, 1984) N2 4
30 Mark variogram (Cressie, 1993) N2 4
31 Mark covariance function (Cressie, 1993) N2 4
32 Mark conditional expectation (E; Schlather et al., 2004) N2 5B
33 Mark conditional variance (V; Schlather et al., 2004) N2 4
34 Mark conditional standard deviation (Schlather et al.,

2004)
N2 4

Tiling-based
35 Spike time tiling coefficient PASS

*Indicates that the measure was altered to make it applicable (see Materials and Methods).

All measures investigated are arranged according to our devised classification (see Materials and Methods). The
third column contains an identifier (see Table 2) corresponding to one property, which the measure was shown to
lack (if any). The fourth column denotes which figure presents evidence for the lacking property.
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Figure 4. Twenty-one measures are rejected because they are dependent on firing rate (lack property N2). All measures which showed rate-dependence when tested on the autocorrelation of Poisson spike
trains are plotted. Three measures which did not show rate-dependence are also shown in the bottom row for comparison (green). One Poisson spike train was simulated for 300 s for varying rates (0.05–5 Hz)
and the measures were calculated comparing this spike train to itself. The mean of 10 repeats are plotted and 	1 SD is shown by gray shading. The identity of each measure appears in Table 3. Note that the
correlation index is not presented here, but in Figure 3 and that measure 12 has two versions; one appears here and the other in Figure 5A; see Materials and Methods for details.
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only present evidence that a measure lacks one necessary prop-
erty; some lacked more than one). A full list of measures used and
its primary reason for rejection (unless it passed Step 1) are pre-
sented in Table 3. Measures were anonymized to remove any
possibility of bias. Our procedure was to test for each necessary
property in turn (see Materials and Methods for details).

From the initial 35 measures, 34 were symmetric (satisfied prop-
erty N1). The one asymmetric measure: Ripley’s Kmm function was
altered to make it symmetric (see Materials and Methods).

All 35 measures were tested to ascertain whether they were
independent of firing rate (property N2). Twenty-five measures
showed dependency on firing rate and were therefore rejected. Of
these, 22 showed this dependency in the test case of the autocor-
relation of a Poisson spike train with varying rate. Because no
autocorrelation is more correlated than any other, values should
not vary with rate. Any measure which showed rate-dependence
was therefore removed according to property N2 (Fig. 4). The
remaining three measures which lacked property N2 were inde-
pendent of rate for autocorrelation, but showed rate-dependency
when firing rates differ. This dependency is clear in the test case of
two independent Poisson spike trains, one with fixed rate and the
other with varying rate. Measures whose correlation varied with
the rate of the second train were removed (Fig. 5A). Note that two
versions of measure 12 were considered (see Materials and Meth-
ods); both lacked property N2 (one version appears in Fig. 4 and
the other in 5A). For counting purposes, we consider Measure 12
as one measure that lacked property N2 as evidenced by consid-
ering autocorrelations. Typically, measures are confounded by
firing rate because it is used in their normalization.

The remaining 10 measures were tested to ascertain whether
they were robust to the amount of data available (property N3)
which in practice is proportional to the recording time. Measures
should therefore be independent of this (within experimental
ranges; minimum 2 min with usual range 20–100 min; Eglen et al.,
2014). To test this, two Poisson spike trains with fixed rates and
correlations were simulated for different recording times. Two mea-
sures showed dependency and so were rejected (Fig. 5B). These mea-
sures were a distance measure and a cost function, which are not
normalized and so increase as the number of spikes increases.

The eight remaining measures were then tested for the cor-
rect range (property N4). They should be equal to �1 for
identical spike trains, 0 for no correlation and �1 for strong
anti-correlation. All measures were bounded and therefore could
be scaled to have the required range provided that they can dis-
criminate between no correlation and anticorrelation (property
N6) and so none were rejected at this point.

All eight measures were found to be robust to small variations
in �t (property N5). Of these eight measures, four were rejected

Figure 5. Nine measures are rejected using remaining necessary properties. A, Measures
which are dependent on firing rate (lack property N2) where dependency is not obvious from
autocorrelation are applied to data generated from the following Poisson spiking model: one

4

train has rate 3 Hz and the other’s rate varies (0.1–5 Hz). There are no shared spike times (T �
300 s). The second version of Measure 12 is shown (the first version is in Fig. 4); see Materials and
Methods for details. B, Measures which are dependent on recording time (lack property N3) are
applied to data generated from the following Poisson spiking model: both neurons fire at rate 1
Hz and 10% of spike times are shared. The recording duration varies from 50 to 300 s and �t �
0.6 s (higher than usual because for these measures smaller values cause issues with computa-
tional precision). C, Measures which cannot distinguish anticorrelation from no correlation (lack
property N6) are applied to regular out-of-synchrony spikes of varying rate (0.25– 4.2 Hz)
generated using an integrate-and-fire model described by Dayan and Abbott, 2001 (their Fig.
5.20). The parameters are as in their figure with the following exceptions: Pmax � 0.5, RmIe �
18 mV. 
s varied from 0.05–1.5 s and Es from 0 mV to �70 mV, T � 3000 s. In all panels,
Measure 35 (which possesses the necessary properties) is shown for comparison (green), the
mean of 10 repeats are plotted and error bars are omitted for visual clarity.
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because they could not distinguish no cor-
relation from anticorrelation (property
N6). The test case on which these
measures were removed was regular out-
of-synchrony spiking (Fig. 5C). The mea-
sures rejected were measures of similarity,
rather than correlation, which therefore
could not distinguish this firing pattern
from independent spike times.

In summary, 31 of 35 measures were re-
jected in Step 1 as they lacked at least one
necessary property. A list of each measure
considered and the reason for its rejection
can be found in Table 3.

Step 2: selecting one measure based on
desirable properties
The four measures possessing all necessary
properties were as follows: (1) the spike
count correlation (Eggermont, 2010), (2)
the Kerschensteiner and Wong (2008) mea-
sure, (3) an altered version of the correlation
measure from Kruskal et al. (2007), and (4)
the spike time tiling coefficient. A brief de-
scription of each measure is given in Mate-
rials and Methods. Selecting one measure
proceeded on the basis of desirable proper-
ties (Table 2). These affect either the range of
correlations (D1: periods of silence should
not count as correlated), the applicability of
the measure (D2: spike times should not be
assumed to follow a particular distribu-
tion), or mean that extra information is re-
quired to compare correlations (D3: extra
parameters are discouraged).

The spike count correlation calculates
the Pearson’s correlation coefficient of
binned spike counts. We set our bin width
to �t (see Materials and Methods). Be-
cause firing rates are sparse, a large pro-
portion of bins have zero spikes in both
trains, which counts as correlated. This
distorts the values of correlations making
results difficult to interpret (Fig. 6A,B).
The spike count correlation therefore
lacks property D1 but does possess prop-
erties D2 and D3. A further limitation is
that spikes which are within 	�t of each other may fall into
different bins and these coincidences are missed. It has also
been reported that the spike count correlation increases with
firing rate (de la Rocha et al., 2007), which lessens its ability to
compare correlations fairly. This is not reported here because
variation in firing rate was small compared with variation
across trials on the time scales considered.

The Kerschensteiner and Wong measure is an altered version
of the spike count correlation which replaces the global average
firing rate with a local average firing rate (using a sliding window)
which prevents periods of silence counting as correlated. Data are
binned into bins of width �t and the sliding window calculates a
local average across a fixed number of bins. Although the altera-
tion is effective, this measure possesses desirable properties D1
and D2, it introduces an extra parameter: the length of the sliding
window (discouraged by property D3). In order for this measure

to be informative, the length of the sliding window must be op-
timized for the data. If the sliding window is too large compared
with the periods of quiescence, then when both trains are quiet,
the correlation at that point will be positive. If it is shorter than
the burst lengths, then periods where one neuron has a burst
and the other does not will count as zero (should count as anti-
correlated) because in the silent train both the local average and
the individual spike counts will be zero (Eq. 5). Therefore the
measure varies qualitatively with this parameter (Fig. 6C), espe-
cially on burst-like data. Correlations cannot be fairly compared
if this parameter varies, which it is likely to because a poor choice
of parameter can lead to uninformative values of correlation.

The altered version of the Kruskal et al. (2007) measure
changes the spike count correlation to overcome the fact that
coincidences may be missed if they fall in different bins: it
smooths spike trains with a boxcar kernel before calculations.

Figure 6. Detailed examination of the four measures which possess all necessary properties eliminates three on the basis of the
desirable properties. A, The spike count correlation with different bin widths (d; see Materials and Methods) is applied to data from
the following Poisson burst model which has increasing range of spike offsets within a burst: both neurons have a burst rate of 0.05
Hz, burst centers have 0 s offset, each burst contains eight spikes whose positions are drawn from a uniform distribution of varying
width (0.1– 4 s) centered on the burst center (T � 3600 s). B, The spike time tiling coefficient (STTC) applied to identical data to
that in A. The spike count correlation with d � 1 ms is plotted (black) for comparison. C, The Kerschensteiner and Wong correlation
measure with different lengths of the averaging window (w; see Materials and Methods) is applied to data from the following
Poisson burst model with increasing number of spikes per burst: both neurons have a burst rate of 0.05 Hz, burst centers have 0 s offset, the
number of spikes in each burst is drawn from a Poisson distribution with increasing mean (from 1 to 15). Spike positions are drawn from a
uniform distribution of width 2 s centered on the center of the burst (T�3600 s). D, The Kruskal measure is applied to spike times from the
following model: two independent Poisson neurons are simulated each with rate 0.1 Hz. For each spike (in either train) a burst is generated
in the other train with 0 s offset of the burst center and one to six spikes whose positions are drawn from a uniform distribution of width 2�t
around the burst center (T�2000 s,�t�0.1 s). The spike time tiling coefficient (green) is plotted in C and D for comparison. For all panels
the mean of 10 repeats is plotted, error bars are omitted for visual clarity.
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This does not possess property D1 as silence is still counted as
correlated. It does possess property D2 and D3 (because it is
possible to calculate exactly).

The spike time tiling coefficient does not count periods of
quiescence as correlated and thus possesses property D1. It does
not assume a statistical distribution of spike times and therefore
possess property D2. The only free parameter is �t and it there-
fore possesses property D3.

Although the Kruskal et al. (2007) measure lacks necessary
property D1 which reduces the range of correlations produced,
this effect is not as large as for the spike count correlation. We also
note that the Kruskal et al. (2007) measure is like a “similarity
measure” in the sense that it takes value �1 only if the spike trains
are identical whereas the spike time tiling coefficient is equal to

�1 for a wider range of firing patterns (those where PA � PB � 1)
and identical trains can be distinguished from those which are
merely highly correlated by letting �t¡ 0. Because the Kruskal et
al. (2007) measure is close to a similarity measure, relatively low
values of correlation can be assigned to highly correlated firing pat-
terns. For instance, consider two spike trains, where if one has a
single spike, the other fires several spikes within 	�t of that spike
and vice versa. This is clearly highly correlated (a firing pattern which
is indicative of some relationship between the neurons) although the
spike trains are not similar so the Kruskal et al. (2007) measure
assigns low values of correlation. This value depends on the number
of spikes fired when there is one spike in the other train (Fig. 6D) and
misrepresents the correlation. The spike time tiling coefficient as-
signs a correlation value of �1 independent of the number of spikes.

Figure 7. Evaluating correlations in retinal waves recorded from connexin mutant mice shows that the spike time tiling coefficient can significantly alter conclusions. A, Raster plots of 10 spike
trains over a 10 min interval, recorded from retinas isolated from P12 wild-type mouse and two mutant mice (lacking either one or two connexin isoforms- Cx45 and Cx36/Cx45), P11 Cx45ko and P10
Cx36/Cx45dko. Data are from Blankenship et al. (2011) and raster plots follow the presentation of their Figure 2A. The mean firing rate and number of animals (n) from each genotype is recorded in
the legend. B, Pairwise correlation index as a function of intercellular distance for each genotype. Data points are medians over all recordings and error bars indicate the interquartile range (IQR).
Inset, The same data normalized (multiplicatively) by genotype so that the correlation indices are identical at zero distance, following Figure 2B in the original publication. C, Same as B, using the
STTC in place of the correlation index. Compare with both B and B, inset. In both B and C, �t � 100 ms as in the original publication. The distances at which correlations are measured are the discrete
set of separations possible on the MEA grid.
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In practice both the Kruskal et al.
(2007) and the spike time tiling coefficient
were found to be adequate reporters of
correlation on experimental data. Because
the Kruskal measure lacks property D1
and assigns high correlations only to sim-
ilar spike trains, the spike time tiling coef-
ficient is able to pick up a larger range of
correlated firing patterns and we therefore
recommend it to replace the correlation
index.

Reanalysis of experimental data using
the spike time tiling coefficient
The issues with the correlation index raise
questions about the reliability of studies
which have used it to draw their conclu-
sions. Because the correlation index is
confounded by firing rate, it should not be
used to compare correlations in data
where rates differ significantly. Firing
rates frequently vary across age, pheno-
type, and presence of pharmacological
agonists and so this calls into question the
results of many correlation analyses: some
conclusions about differences in correla-
tions may be due to the confounding ef-
fect of the firing rates, and not the
correlations themselves. Because the
correlation index has been widely used
in the field (we found 43 papers that
used it, 29 of which have been published
since 2008), we also considered the wider
implications of its use. In particular, what
conclusions were at risk of changing if the
data were to be reanalyzed using the spike
time tiling coefficient? Four examples us-
ing seven studies in the developing retina
are presented to demonstrate the use of
the spike time tiling coefficient in place of
the correlation index. For this work, we used the freely available
retinal wave data from the CARMEN portal (Eglen et al., 2014;
https://portal.carmen.org.uk/).

Example 1: connexin isoforms
Reanalysis of existing recordings of spontaneous retinal waves
using the spike time tiling coefficient in place of the correlation
index can show significant differences. As an example, we reana-
lyzed MEA recordings from Blankenship et al. (2011), which
compared the statistical properties of wild-type spontaneous ret-
inal activity to those from mutant mice lacking either one or two
connexin isoforms (Cx45 and Cx36/Cx45). This study reported
that the two mutants exhibit substantially higher firing rates
compared with wild-type (Fig. 7A) and when the correlation in-
dices are calculated pairwise and plotted against electrode sepa-
ration (the standard analysis) the size of the correlation depends
inversely on the mean firing rate (Fig. 7B). That is, wild-type has
both the lowest firing rate and the highest correlation and Cx36/
Cx45dko has the highest firing rate and the lowest correlation.
From the raster plots (Fig. 7A) all phenotypes exhibit some cor-
related firing and the differences in correlation patterns are not as
large as the differences in firing rate.

When the data are reanalyzed using the spike time tiling coef-
ficient, the results are strikingly different (Fig. 7C): wild-type and
Cx45ko have highly similar correlation values and the difference
between correlations in wild-type and Cx36/Cx45dko are much
smaller. Although correlations are difficult to judge from the
raster plots, those of wild-type and Cx45ko have several correla-
tional features in common: they both show waves and also some
correlated spiking outside of waves. Waves cannot clearly be seen
in the raster plot of Cx36/45dko, although there is correlated
firing. The relative correlations of these phenotypes measured using
the correlation index reflect the differences in firing rate, whereas,
when measured using the spike time tiling coefficient, they reflect
differences in correlational structure (Fig. 7A).

In the original publication, the authors noted that the corre-
lation values for Cx36/Cx45dko were so low that it was difficult to
deduce anything about its distance dependence relative to the
other phenotypes. To make this comparison they (multiplica-
tively) normalized the correlation indices so that all phenotypes
had the same value (the wild-type value) at zero distance. From
this they deduced that the distance dependence of wild-type and
Cx45ko were very similar and also that the correlations of Cx36/
Cx45dko had a weaker distance dependence than the other two
phenotypes. This result is immediately apparent using the spike

Figure 8. Reanalysis using the spike time tiling coefficient supports the conclusion that correlations in spontaneous activity in
the developing ferret and mouse retina decreases with age. A, The correlation index is calculated pairwise and shown as a function
of electrode separation for spontaneous retinal activity in developing ferret for four different ages (data from Wong et al., 1993).
The distances at which correlations are measured were binned (bin width 20 �m) due to high density. B, Same as A using the STTC
in place of the correlation index. C, The correlation index is calculated pairwise and shown as a function of electrode separation for
spontaneous retinal activity in developing mouse for four different ages (data from Demas et al., 2003). The distances at which
correlations are measured are the discrete set of separations possible on the MEA grid. D, Same as C using the STTC. In all panels,
median values are plotted and IQRs are only shown at the smallest separation distance. Other IQRs are omitted for visual clarity.
Mean firing rates and number of animals (n) for each age are recorded in the legend.
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time tiling coefficient, without the need to normalize: wild-type
and Cx45ko have very similar values at all distances and Cx36/
Cx45dko has weaker distance dependence. This phenotype has
less correlation than the other two at smaller distances and more
correlation at greater distances (	400 �m). This is not apparent

using the correlation index; the spike time
tiling coefficient thus provides a more in-
formative comparison of the correlations.

Example 2: developmental changes
in correlation
A key result used to support the hypothe-
sis that correlated activity plays a role in
map formation is that correlations in
spontaneous retinal activity decrease with
age both in ferret (Wong et al., 1993) and
mouse (Demas et al., 2003). These studies
reported different variation in firing rates
with age: firing rates decrease with age in
ferret, but increase with age in mouse
(confirmed by Maccione et al., 2014). Be-
cause neurons with high firing rates have
down-weighted correlation indices, it is
possible that this result is due to the con-
founding effect of the increasing firing
rates in mouse. This is unlikely to be the
case in ferret where firing rates decrease.
Reanalysis with the spike time tiling coef-
ficient confirmed that in both cases, cor-
relations do decrease with age and so this
conclusion stands (Fig. 8).

Example 3: �2 genotypes
A key group of genetically modified mice
which provide (somewhat controversial)
evidence that correlations are key to map
formation is the �2(KO) mutants (animals
lacking the �2 subunit of the nicotinic ace-
tylcholine receptor) which form a defective
retinotopic map. This mutant was initially
thought to have uncorrelated activity
(McLaughlin et al., 2003), but it was later
shown that retinal waves exist (Sun et al.,
2008; Stafford et al., 2009). The �2(KO)
mice have slightly higher firing rates and
weaker distance-dependence of correlations
than wild-type (typically at short distances
these mutants have lower correlation than
wild-type, but they have higher correlation
at large distances). Reanalysis of data from
Sun et al. (2008) and Stafford et al. (2009)
using the spike time tiling coefficient
confirms reported results (Fig. 9).

Although the conclusion stands, re-
analysis of the data from Sun et al. (2008)
shows differences from the original anal-
ysis (Fig. 9B): the correlation indices are
noticeably confounded by the firing rates
which differ across the genotypes. Reanal-
ysis using the spike time tiling coefficient
shows that the differences in correlation
between phenotypes are smaller than pre-
viously reported; all three phenotypes

now show significant correlation at short distances. The order of
phenotypes by correlation at short distance [wild-type is highest,
�2(KO) (Picciotto) is lowest] is preserved as is the order by dis-
tance dependence [wild-type is strongest, �2(KO) (Picciotto) is
weakest].
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Figure 9. Reanalysis of experimental data using the spike time tiling coefficient supports the conclusions that the �2(KO) and
�2(TG) mouse phenotypes show lower correlations in spontaneous retinal activity than those of wild-type. A, The correlation index
(left) or STTC (right) is plotted pairwise against electrode separation for recordings of spontaneous retinal activity for P6 wild-type
and �2(KO) phenotypes (data from Stafford et al., 2009). B, The correlation index (left) or spike time tiling coefficient (right) is
plotted pairwise against electrode separation for recordings of spontaneous retinal activity for P5 wild-type and two
�2(KO) phenotypes: Xu and Picciotto (Pic) (data from Sun et al., 2008). C, The correlation index (left) or spike time tiling
coefficient (right) is plotted pairwise against electrode separation for recordings of spontaneous retinal activity for P4
wild-type and �2(TG) phenotypes (data from Xu et al., 2011). In all panels, �t � 100 ms, as in original publications,
medians are plotted and the error bars show the IQR. Mean firing rates and number of animals (n) for each phenotype are
recorded in the legend. All recordings at 37°C. The distances at which correlations are measured are the discrete set of
separations possible on the MEA grid.
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Reanalysis of recordings of the �2(TG) mouse (Xu et al., 2011)
confirm that this phenotype shows weaker correlations than that
of wild-type (Fig. 9).

Example 4: age-related changes in �2(KO)
Retinal waves of �2(KO) mutants at different ages (P4 –P7 and
wild-type P5–P6) were recorded by Kirkby and Feller (2013) as
controls in their study of intrinsically photosensitive retinal gan-
glion cells. Sample raster plots for P4 �2(KO) and P5 wild-type are
shown in Figure 10A. Firing rates of the �2(KO) mutants increase
(Fig. 10, see legend) and their correlation indices decrease (Fig. 10B)
with age. In addition, P4 and P5 �2(KO) are extremely and errati-
cally correlated, whereas P6–P7 �2(KO) and wild-type show typical
correlations and distance dependence. One might, therefore, con-
clude that the recordings of P4–P5 �2(KO) show highly correlated
and extremely unusual firing patterns. However, this is not borne
out by inspection of the raster plots (Fig. 10A); the firing patterns of

the P4 �2(KO) mutant are not too dissimilar to those of wild-type,
albeit occurring at a much lower rate. We note that the mean firing
rates �2(KO) P4–P5 are low compared with other ages (and wild-
type) and so this behavior is likely to be due to the confounding effect
of the firing rates. Reanalysis of these data using the spike time tiling
coefficient confirms this (Fig. 10C): all correlations and distance de-
pendencies are now within typical ranges. These two phenotypes
(�2(KO) P4–P5) still show more variability in their distance depen-
dencies, but we note that this is likely to be due to the small number
of recordings, and that this variability is much less than that seen
using the correlation index.

This reanalysis alters the conclusion that correlations in
�2(KO) genotypes decrease with age (in P4 –P7), which is caused
by the confounding effect of increasing firing rates. Analysis with
the spike time tiling coefficient shows that they tend to increase
with age (the order of correlations from lowest to highest is P5,
P4, P6, P7).

Figure 10. Reanalysis of age related changes in�2(KO) mutants shows that the spike time tiling coefficient is able to more accurately quantify correlations which the correlation index ascribes as extremely
correlated. A, Raster plots of 10 spike trains over a 10 min interval, recorded from retinas isolated from P5 wild-type mouse and P4�2(KO) mouse. All data are controls from Kirkby and Feller (2013). B, Pairwise
correlation index as a function of intercellular distance for P5 wild-type mouse and �2(KO) mouse of different ages (P4 –P7). C, Same as B but using STTC. The mean firing rate and number of animals (n) from
eachgenotypeisrecordedinthelegend.DatapointsaremediansoverallrecordingsanderrorbarsindicatetheIQR.Forvisualclarity, IQRsareonlyshownatthesmallestseparationdistance.Thedistancesatwhich
correlations are measured are the discrete set of separations possible on the MEA grid. �t � 100 ms, as in original publication and recordings were performed at 33–35°C.
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Variation of window of synchrony �t can reveal timescales
of correlation
The coincidence window �t is a free parameter which should be
fixed to compare correlations. It can also be used to find time
scales of correlation in a dataset. Figure 11 shows how varying �t
changes the spike time tiling coefficient (for the data from Exam-
ple 3). Useful timescales can be found by considering local max-
ima and minima and the gradient of spike time tiling coefficient
(note that the limit of the spike time tiling coefficient as �t¡T is
�1). For instance in all panels of Figure 11 there is a clear change

in gradient at around 0.5–1 s which could indicate a timescale of
correlation. In Figure 11A,B, the wild-type gradient is largest
between 0.01 and 0.05 s as is �2(TG) in Figure 11C, which could
also indicate a useful scale. Differences in correlational time scales
between phenotypes are also apparent, for instance in Figure 11C,
wild-type spikes are less correlated than those of �2(TG) on time-
scales of �t � 0.1 s and more correlated than �2(TG) on larger
timescales (note, however, significant overlap of error bars).

Discussion
We have described the need to correctly quantify neuronal cor-
relations and considered a popular measure, the correlation in-
dex. We have shown that it is confounded by firing rate and is
unbounded above which means it cannot fairly compare corre-
lations when firing rates differ significantly. We aimed to find a
measure which could be used as a replacement for the correlation
index and which could fairly compare correlations. We listed
necessary and desirable properties that such a measure needs and
found 33 other existing measures of correlation. Because no mea-
sure obviously possessed all listed properties, we proposed a
novel measure of correlation; the spike time tiling coefficient. We
blindly tested all measures for the properties using synthetic and
experimental data. We reiterate that no existing measure was de-
signed to replace the correlation index so the exclusion of a measure
is no reflection of its usefulness. Four measures possessed all the
required properties and the spike time tiling coefficient was chosen
as the most appropriate replacement based on the desirable proper-
ties. To demonstrate its use we reanalyzed data from seven studies
and showed that it can significantly alter conclusions.

The form and use of the spike time tiling coefficient
Both the correlation index and the spike time tiling coefficient
use a small time window to identify spike pairs which are indic-
ative of an overall correlation between the spike trains. We quan-
tify correlations that are functionally significant, which are
typically those which can affect synaptic change. In spontaneous
retinal waves, correlated activity is thought to contribute to map
formation by helping neighboring neurons wire to common tar-
gets via a Hebbian mechanism (Demas et al., 2003). This process
has a critical time window: studies of spike-time-dependent-
plasticity (Zhang et al., 1998) provide a means to estimate its
width, which is age- and species-dependent, �50 –500 ms (Lee et
al., 2002). More recently, other rules, such as burst-time-
dependent-plasticity, suggest longer windows (Butts et al., 2007).

The time window, �t, can take any value of interest; often that
value is dictated by the phenomenon being investigated. For in-
stance, in spontaneous retinal activity, �t is dictated by spike-time-
dependent-plasticity and in cortical circuits, local oscillatory events
could be used to find a �t of interest as they are reporters of syn-
chrony (Harris et al., 2003). If there is no prior �t of interest, its value
could be varied to show timescales of correlations (Fig. 11). If varying
�t is infeasible, an approximate value of interest could be generated
by inspection of cross-correlograms.

The spike time tiling coefficient assumes stationary spiking
patterns. Correlations calculated from highly nonstationary data
may be misleading as network states greatly influence firing pat-
terns in, e.g., hippocampal firing, so the average value of correla-
tion may not accurately represent the data. Changes in
correlation over a nonstationary recording can be identified us-
ing the spike time tiling coefficient by calculating it within a
sliding window to get a temporally varying correlation. This window
must be large enough to capture representative behavior and so if it
is required to capture changes in correlation on a very small time-

Figure 11. Varying the window of synchrony �t can be informative about correlational
timescales inherent in data. A, The STTC of spike trains from Stafford et al. (2009) was calculated
pairwise (as in Fig. 9B) and the median value at the smallest electrode separation is plotted for
varying �t. Error bars show the IQR. The genotypes shown are P6 wild-type and �2(KO). B,
Same as A, but data from Sun et al., 2008; Fig. 9D). The genotypes shown are P5 wild-type and
two �2(KO) phenotypes: Xu and Picciotto (Pic). C, Same as A, but data from Xu et al., 2011 (Fig.
9F). The genotypes shown are P4 wild-type and �2(TG) mouse. Vertical lines at �t � 1 s
indicate separation between region with strong �t dependency (�t � 1) and weaker depen-
dency (note x-axis has a log-scale and that the limit of the spike time tiling coefficient as �t
tends to infinity is one).
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scale, a measure which incorporates some form of localized mea-
surement (Kerschensteiner and Wong, 2008) may be preferable.

We have used the word “correlation” throughout but noted
that the terminology varies. Few of the measures measure corre-
lation in the statistical sense (the degree to which measurements
on the same group of elements tend to vary together). Neither the
correlation index nor the spike time tiling coefficient are correla-
tions under this definition. The only “true” correlation is the
spike count correlation coefficient (and the altered versions).

We suggest that the correct terminology for what we measure
is “affinity” in the biological sense; meaning a relationship or
resemblance in structure that suggests a common origin or pur-
pose. We measure a relationship between spike times that may
indicate that neurons are involved in the same process. In spon-
taneous retinal activity, we measure the propensity of two neu-
rons to fire close in time to each other in such a way that it can
affect their wiring onto a common target.

Pairwise measures of correlation will only capture a subset of
the full correlational relationships in a neuronal population. Pop-
ulation dynamics are less noisy than pairwise dynamics and may
encode critical information. Methods exist to study higher-order
correlations (Nakahara and Amari, 2002; Walters et al., 2008)
and investigating population dynamics is a common approach
(Okun et al., 2012). We have focused on pairwise correlations,
partly due to its popularity and the large literature concerning its
quantification but also as evidence suggests that pairwise interac-
tions can account for much of the observed higher-order inter-
actions (Shlens et al., 2006; Schneidman et al., 2006).

The spike time tiling coefficient in the reanalysis of data and
cross-study comparisons
We have reanalyzed the results of seven studies using the spike time
tiling coefficient instead of the correlation index. This has shown that
sometimes the correlation index reflects differences in firing rate
more than differences in correlation and so the spike time tiling
coefficient can change the conclusions of studies. For example, our
reanalysis of the data from Blankenship et al. (2011) significantly
changes the conclusions about the relative correlations in spontane-
ous retinal activity of connexin knock-out mutants.

The popularity of the correlation index means that many
studies have drawn conclusions on the basis of a problematic
measure. Studies where firing rates differ significantly and the
order of phenotypes by correlation is the reverse of the order by
firing rate are likely to change. However, of these, we have shown
that two important conclusions made using the correlation index
still stand when reanalyzed with the spike time tiling coefficient.
These are the age-dependent changes in wild-type correlations in
mouse and ferret (Fig. 8) and also relative correlations of wild-
type and �2(KO) mouse mutants (Fig. 9).

Although the reanalysis of data from �2 mutants broadly con-
firms the conclusions of the original studies, the correlations of the
two �2(KO) mutants from Sun et al. (2008) show stronger distance-
dependence and values closer to wild-type than was evident using
the correlation index (Fig. 9B). Both mutants have relatively high
firing rates (Fig. 9, see legend) so their correlation indices are down-
weighted, making the distance dependence appear weaker.

The �2(KO) mutant line used in Stafford et al. (2009) is the
same as the Xu knock-out line used in Sun et al. (2008) with ages
P6 and P5, respectively. We note variation between studies of the
size and distance dependence of these correlations. Some of the
variation between reported correlations may be due to different
bath solutions (Stafford et al., 2009), or possibly to age-related
differences. However, we also note large cross-study variation in

the wild-type control (P4, Xu et al., 2011; P5, Sun et al., 2008; and
P6, Stafford et al., 2009). Given that they are similar ages, we
would expect control firing rates and correlations to be reason-
ably similar (Wong et al., 1993); however, both the firing rates
and maximal correlation values vary significantly (Fig. 9). Varia-
tion between studies for the controls is large so the differences
observed in �2(KO) between studies are not surprising given this
and the use of different bath solutions.

One conclusion about the correlations in �2(KO) which
changed when reanalyzed using the spike time tiling coefficient is
that correlations tend to increase during P4 –P7, rather than de-
crease (Fig. 10). This case provides a good example of how the
correlation index can assign extreme values to data which is not
atypical but which has low firing rates. These data are typically
excluded as outliers: many studies filter neurons for extremely
low or high firing rates before calculating correlations (Maccione
et al., 2014). However, reanalysis using the spike time tiling coef-
ficient shows that this is not necessary: meaningful conclusions
about correlations can still be obtained from these data.

Conclusions
Here, we have used spontaneous retinal activity as a case study.
Because quantifying correlations in spike times is of wider inter-
est, we expect the spike time tiling coefficient to have applications
to measuring correlations in other systems, such as hippocampal
cultures (Godfrey and Eglen, 2009), multisensory integration
(Parise et al., 2013), or motor control (Lee and Lisberger, 2013).
With regards to our case study, we hope that its use will help
clarify the exact role of correlations in map formation.

Notes
Supplemental material for this article is available at https://github.
com/CCutts/Detecting_pairwise_correlations_in_spike_trains. This
project repository contains freely available code relating to this project
and links to a freely available R package in which the spike time tiling
coefficient is implemented. It also links to a document containing the
derivation of Equations 2 and 3 and the mathematical details of the
choice of normalization for the spike time tiling coefficient. This material
has not been peer reviewed.
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