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The cortical microcircuit is built with recurrent excitatory connec-
tions, and it has long been suggested that the purpose of this
design is to enable intrinsically driven reverberating activity. To
understand the dynamics of neocortical intrinsic activity better, we
performed two-photon calcium imaging of populations of neurons
from the primary visual cortex of awake mice during visual stimula-
tion and spontaneous activity. In both conditions, cortical activity is
dominated by coactive groups of neurons, forming ensembles whose
activation cannot be explained by the independent firing properties
of their contributing neurons, considered in isolation. Moreover,
individual neurons flexibly join multiple ensembles, vastly expanding
the encoding potential of the circuit. Intriguingly, the same coactive
ensembles can repeat spontaneously and in response to visual
stimuli, indicating that stimulus-evoked responses arise from
activating these intrinsic building blocks. Although the spatial
properties of stimulus-driven and spontaneous ensembles are similar,
spontaneous ensembles are active at random intervals, whereas
visually evoked ensembles are time-locked to stimuli. We conclude
that neuronal ensembles, built by the coactivation of flexible groups
of neurons, are emergent functional units of cortical activity and
propose that visual stimuli recruit intrinsically generated ensembles
to represent visual attributes.
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There is a growing consensus in neuroscience that ensembles
of neurons working in concert, as opposed to single neurons,

are the underpinnings of cognition and behavior (1–3). At the
microcircuit level, the cortex is dominated by recurrent excit-
atory connections (4, 5). Such densely interconnected excitatory
networks are ideal for generating reverberating activity (1, 6, 7)
that could link neurons into functional neuronal ensembles.
Moreover, most cortical neurons are part of highly distributed
synaptic circuits, receiving inputs from and projecting outputs to,
thousands of other neurons (8, 9). In fact, the basic excitatory
neurons of the cortex, pyramidal cells, appear to be biophysically
designed to perform large-scale integration of inputs (10). All of
these structural features indicate the possibility that rather than
relying on the firing of individual neurons, cortical circuits may
generate responses built out of the coordinated activity of groups of
neurons. These postulated emergent circuit states could represent
the building blocks of mental and behavioral processes (1–3, 11).
In the visual cortex, there has been continuing progress in

understanding functional properties and receptive fields of single
neurons using single-unit electrophysiology and optical imaging
(12–14). These single-neuron studies have provided a solid foun-
dation for neuroscience. However, the focus on single neurons
may provide an incomplete picture of this highly distributed neural
circuit (3, 15). In fact, in recent years, the network activity patterns
of the primary visual cortex (V1) in vitro and in vivo have been
shown to be highly structured in spatiotemporal properties (13,
16–18). For example, using voltage-sensitive imaging, one can
measure large-scale cortical dynamics with high temporal resolu-
tion, albeit without single-cell resolution (19–22). At this bird’s-eye
view, wave-like spontaneous spatiotemporal patterns of activity
appear similar to those patterns measured during visual stimula-
tion (19, 21, 22). These findings imply that groups of neurons are

active together in the absence of any visual input and that the
same groups of neurons are also active together in response to
visual stimulation. However, to test this hypothesis, one must
measure the circuit activity with single-cell resolution.
With calcium imaging, multineuronal activity can be visualized

with single-cell resolution (16, 23), so it has become possible to
discern exactly which neurons are activated under spontaneous
and visually evoked conditions, cell by cell. Indeed, calcium
imaging of brain slices from mouse visual cortex has revealed
that groups of neurons become coactive spontaneously (24, 25)
and that the same groups of neurons can be triggered by stim-
ulation of thalamic afferents (26, 27). However, the patterns of
activity found in slices may differ from the patterns of activity in
vivo. Therefore, to determine the relation between spontaneous
and evoked cortical activity patterns properly, it is necessary to
measure them in vivo.
Using two-photon calcium imaging in vivo, we have now

mapped the spontaneous reverberating activity patterns in the
V1 from awake mice with single-cell resolution and analyzed
their relation to the activity patterns evoked by visual stimulation.
We find patterns of coactive neurons that we term “ensembles,”
defined as “a group of items viewed as a whole rather than in-
dividually” (28). Although the mere existence of these coactive
neurons does not prove their functional importance, we provide
converging lines of evidence that these ensembles are, in fact,
functional units of cortical activity. This work provides a step in
the progression of defining neuronal ensembles, rather than re-
ceptive fields of individual cells, as a building block of cortical
microcircuits and suggests that these intrinsic neuronal ensem-
bles are recruited when the cortex performs some of its most
basic functions.

Significance

This study demonstrates that neuronal groups or ensembles,
rather than individual neurons, are emergent functional units of
cortical activity. We show that in the presence and absence of
visual stimulation, cortical activity is dominated by coactive
groups of neurons forming ensembles. These ensembles are
flexible and cannot be accounted for by the independent firing
properties of neurons in isolation. Intrinsically generated
ensembles and stimulus-evoked ensembles are similar, with one
main difference: Whereas intrinsic ensembles recur at random
time intervals, visually evoked ensembles are time-locked to
stimuli. We propose that visual stimuli recruit endogenously
generated ensembles to represent visual attributes.
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Results
Defining Ensembles of Coactive Neurons in Cortical Activity. To in-
vestigate the spatiotemporal dynamics of the activity of networks
of neurons in the V1, we used two-photon calcium imaging to
record neuronal activity simultaneously from approximately 100
neurons at a time in layer 2/3 of V1 in awake mice standing on
a floating trackball (13, 16, 29) (Fig. 1). With this preparation, we
mapped the spatiotemporal dynamics of cortical activity in the
presence or absence of visual input, using a black screen to mea-
sure spontaneous activity and either drifting gratings or a natural
movie to evoke cortical activity.
To validate that our paradigm was consistent with the rich

body of work on visual receptive field properties of single neu-
rons, we examined the orientation-tuning properties of indi-
vidual neurons in V1 by presenting mice with oriented gratings
and then calculated the orientation-tuning curve for each neuron
[Fig. S1; the mean orientation-selective index (OSI) was 0.45 ±
0.02 (mean ± SEM), and 602 neurons were imaged from seven
awake mice]. In agreement with previous work, we found that
53.9 ± 5.5% of imaged neurons were orientation-selective
(13, 30, 31) (Fig. S1C; mean ± SEM).
We then examined the potential existence of coactive groups of

neurons, neuronal ensembles. At this early stage in this research,
both the number of neurons and the extent of cortical volume
that one must record from to capture presumptive ensembles are
uncertain; however, one can start by analyzing a snapshot of the
activity from a group of neurons in a given field of view. To in-
vestigate the joint activity from groups of neurons, we analyzed
high-activity frames in which a statistically significant number of
neurons were active (Materials and Methods). Activity was defined
as crossing a threshold of spike probability inferred from calcium
signals using a fast, nonnegative deconvolution method (32) (Fig.
1G and Materials and Methods). We found 415 ± 16 high-activity
frames per imaging movie [average movie duration: 13.08 ± 0.3 min
(mean ± SEM), n = 7 mice], which corresponded to 13.0 ± 0.3%
of all image frames. Although the proportion of high-activity
frames was relatively small, half of the total activity occurred
during these high-activity frames [51.2 ± 2.4% of total thresh-
olded spike probability (mean ± SEM), n = 7 mice; Fig. 1H].
We then defined coactivation of a group of neurons in frames
with high activity as an ensemble.

Ensembles Occur Spontaneously and in Response to Visual Stimuli.
Cortical circuits are dominated by recurrent excitatory connections.
Such densely interconnected networks of excitatory neurons are
ideal for generating intrinsically driven reverberating activity that
could link neurons into functional neuronal ensembles. If that is
the case, we expect to see coordinated activity of groups of neurons
even in the absence of any external input. We therefore analyzed
intrinsic cortical activity in the absence of visual input, and we
found spontaneously active ensembles (Fig. 2A, Top). Most of the
spontaneous activity was recorded before any exposure to gratings
or a natural movie, indicating that spontaneous ensembles did not
result from the residual activity of preceding visual stimulation.
Independently, we also found ensembles evoked by drifting

gratings or a natural movie in the same awake mice and com-
pared these evoked ensembles with spontaneous ensembles (Fig.
2A). Interestingly, there was no statistical difference in the
number of ensembles per second between spontaneous activity
and visually evoked activity with drifting gratings or with a natu-
ral movie (Fig. 2B). In addition, the percentage of active neurons
per ensemble was similar in spontaneous and visually evoked
activity (Fig. 2C).
The firing rates of cortical neurons during the presentation of

a preferred stimulus are higher than the firing rates during
spontaneous activity (33, 34). Consistently, we also found that
the mean ΔF/F, fractional changes in fluorescence relative to the

baseline, of neurons was significantly higher during the pre-
sentations of preferred oriented gratings compared with spon-
taneous activity (Fig. 2D). In contrast, the mean ΔF/F of neurons
during the presentation of a natural movie was similar to that
during spontaneous activity (Fig. 2D).

Ensembles Repeat. The detected ensembles may be transient
combinations of coactive cells or, alternatively, may be more
stable groupings. To distinguish between these possibilities, we
analyzed whether ensembles repeat (Fig. 3). To evaluate the

Fig. 1. Imaging neuronal ensembles. (A) Illustration of a head-fixed awake
imaging setup. Mice were presented with a black screen or visual stimulation
with drifting gratings or a natural movie. Head fixation was omitted from
the drawing for clarity. (B) Two-photon microscopic image of a typical field
of view from bolus-loaded cells in layer 2/3 of V1. The Oregon Green Bapta-1
AM (OGB-1) dye labeled both neurons and astrocytes, and the red SR101 dye
labeled only astrocytes. (Scale bar, 50 μm.) (C) ROIs (yellow) overlaid on the
image. (D) Spike probability (color-coded) of 102 neurons in an example of
a single frame (frame 491) during spontaneous activity. Spike probability
was inferred from calcium signals using a spike inference algorithm (Mate-
rials and Methods). Spike probability was then thresholded to a level of 3
SDs above 0, as detailed in Materials and Methods, and converted to 1 (ac-
tive) or 0 (inactive). These binary activity data were used for the subsequent
analyses unless otherwise indicated. (E) Ensemble of coactive neurons after
applying a threshold to D. In a given frame, the red color denotes active
neurons and the gray contour denotes inactive neurons. (F) ΔF/F trace from
neuron 31 during spontaneous activity. (G) Inferred spike probability from
the same neuron. (H) Raster plot of spontaneous activity constructed using
thresholded spike probability data. Each row represents a single neuron, and
each mark represents neuronal activity. a.u., arbitrary unit. (I) Percentage of
neurons coactive in each frame. The red line indicates the threshold for
a statistically significant number of coactive cells in a frame (Materials and
Methods). A total of 4.07 frames were imaged per second, and the field of
view was 317.44 × 317.44 μm.
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spatial similarity between ensembles, we used the correlation
coefficients between the ensembles as a similarity metric. A
threshold for significant correlation was established for each com-
parison (Materials and Methods). We generated 50,000 independent
surrogate datasets by randomizing active cells while preserving the
total number of active cells per frame in one of the frames in every
comparison. After establishing this threshold to evaluate similarity
between pairs of ensembles, we analyzed the number of times that
similar ensembles occur spontaneously. To evaluate whether similar
ensembles occur more frequently than by chance, we generated
1,000 independent surrogate datasets by randomly exchanging ac-
tivity between cells while preserving both the number of active cells
per frame and the total amount of activity per cell (Fig. 3C).
We applied this analysis to the spontaneous activity and found

that correlated ensembles repeated far more frequently than by
chance, and this result was highly statistically significant (Fig. 3D
and Fig. S2A). We extended this analysis to visually evoked activity
in response to gratings or a natural movie and again found highly
significant repetition of correlated ensembles (Fig. 3D and Fig.
S2A). We found the same results in anesthetized mice (Fig. S2B).
We chose to analyze the inferred spike probability because it

represents neuronal activity better than ΔF/F (32). However, as
a control, we also analyzed the raw ΔF/F traces to verify that
our results were not an artifact of using a spike inference al-
gorithm, and the results between the two analyses were con-
sistent (Fig. S3 and S4).

In all, these data show that ensembles, both spontaneous and
in response to stimuli, are not fleeting groupings of neurons but
stable groups that are repeatedly active together.

Responses of Individual Neurons in Isolation Do Not Account for the
Occurrence of Ensembles. The detected ensembles may emerge
simply from the firing properties of individual neurons acting in
isolation. Alternatively, they may emerge from an added layer of
functional connectivity, either intrinsic to the cortical microcircuit
or arising from the thalamus. To determine if these ensembles
could emerge from the individual firing properties of neurons in
isolation, we computed the predicted probability of the occur-
rence of a “core” ensemble, defined as a group of coactive neu-
rons that are conserved in all significantly correlated ensembles

Fig. 2. Ensemble properties. (A) Raster plots of the activity from 121 imaged
neurons in an awake mouse under three different conditions [spontaneous
(Top), drifting gratings (Middle), and natural movie (Bottom); not drawn to
spatial scale for purposes of clarity]. The activity of an ensemble is marked
in red. (B) Number of ensembles per second in spontaneous, gratings, and
natural movie conditions. (C) Percentage of active neurons per ensemble. (D)
Mean ΔF/F of neurons. In the gratings condition, only the stimulus period was
included for analysis. Data are mean ± SEM [n = 7 mice, 86 ± 8 neurons per
mouse (mean ± SEM)]. **P < 0.01, Wilcoxon signed-rank test.

Fig. 3. Ensembles repeat. (A) Example of similar ensembles occurring dur-
ing spontaneous activity. t, time during image acquisition. (Scale bar, 50 μm.)
(B) Schematic illustrating significantly correlated frames as the number of
frames compared increases. (C) Schematic illustrating the shuffling method.
In surrogate data, activities between neurons were randomly exchanged
while preserving both the number of active neurons in a given frame and
the total amount of activity in a given neuron. Black lines denote the orig-
inal activities conserved in the shuffled trace, red lines denote new activities
after shuffling, and dotted lines denote activities removed by shuffling. (D)
Correlated ensembles occur more frequently than by chance. The y axis
shows the percentage of high-activity frames that participated in correla-
tions, and the x axis shows the number of correlated frames. Dotted lines
denote the mean of the 1,000 surrogate datasets. Data are mean ± SD [n = 7
mice (data from three mice are shown in Fig. S2A)]. †P < 0.05; *P < 0.005.
spon, spontaneous. (E) Example of a histogram of the percentage of sur-
rogate high-activity frames that participated in three-time correlations in
the spontaneous condition from mouse 3 (red dotted circle in D). Note that
surrogate and observed data do not overlap. Each experiment was recorded
for 13.08 ± 0.3 min (mean ± SEM).
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(Fig. 3D), by multiplying the observed probabilities of single-cell
activation. We then compared this predicted probability with the
observed probability of core ensemble occurrence (Fig. 4A, red
neurons with green contours). If these probabilities are similar,
the coactivation of a group of neurons in ensembles may simply
result from the independent activation of individual neurons.
However, when we performed this analysis for spontaneous ac-
tivity, we found that the observed frequency of core ensemble
occurrence was significantly higher than the frequency of core
ensemble occurrence computed from the combined probability of
individual neuron activation (Fig. 4B). We applied the same
analysis to visually evoked activity with gratings or a natural
movie, and we again found that the probability of group activa-
tion was significantly higher than the probability of group acti-
vation accounted for by the properties of neurons individually
(Fig. 4B). Taken together, these data show that coactivation of

groups of neurons likely emerges from functional interactions
between neurons rather than from the individual firing properties
of isolated neurons.

Single Neurons Participate Promiscuously in Multiple Ensembles.
While analyzing correlated ensembles during spontaneous or
visually evoked activity (Fig. 4), we noticed that individual neu-
rons participating in one ensemble also participated in other
ensembles with different sets of neurons (Fig. 5A). To quantify
how flexibly individual neurons shift from ensemble to ensemble,
we analyzed core ensembles conserved in the significantly cor-
related ensembles that were triggered by each oriented grating
(Fig. 5A; total of four orientations). We then calculated the
proportion of neurons that were shared in multiple core ensembles
triggered by distinctly oriented gratings. We found that 8.42 ±
1.24% of neurons were shared in different core ensembles trig-
gered by distinctly oriented gratings with a 45° difference in ori-
entation (Fig. 5B). A smaller proportion of neurons were shared in
different core ensembles when the difference in orientation was 90°
(Fig. 5B; 4.12 ± 0.74%). This finding could be explained by the
possibility that neurons shared in multiple core ensembles are more
broadly tuned (i.e., less “specialized” neurons). In contrast, neu-
rons that participated in core ensembles, but were not shared by
different core ensembles triggered by distinctly oriented gratings,
should be more specialized. To test this hypothesis, we analyzed
the mean OSI of the shared neurons and compared it with the OSI
of all imaged neurons or the neurons that participated in core

Fig. 4. Ensembles cannot be explained by firing properties of individual
neurons. (A) Example of correlated ensembles [spontaneous (Top), drifting
gratings (Middle), and natural movie (Bottom)]. The red color denotes an
ensemble in a given frame, and the green contour denotes a core ensemble,
defined as a group of coactive neurons that are conserved in all significantly
correlated ensembles. (Scale bar, 50 μm.) (B) Distributions of the predicted
probability that a core ensemble would be coactive, calculated based on the
individual firing properties of neurons in isolation (blue) vs. the observed
probability that a core ensemble was coactive (red). Mean predicted prob-
abilities were 0.0006 ± 0.0003, 0.007 ± 0.005, and 0.002 ± 0.001, and mean
observed probabilities were 0.0020 ± 0.000, 0.017 ± 0.005, and 0.010 ± 0.002
for the spontaneous, drifting gratings, and natural movie conditions, re-
spectively (P < 0.005 and n = 7 for the spontaneous and gratings conditions,
and P < 0.05 and n = 4 for the natural movie condition; Wilcoxon signed-
rank test; mean ± SEM).

Fig. 5. Individual neurons flexibly participate in multiple ensembles. (A)
Example of correlated ensembles [spontaneous (Top), drifting gratings
(Middle), and natural movie (Bottom)]. The red color denotes an ensemble
in a given frame, the green contour denotes a core ensemble (also Fig. 4),
and the blue contour denotes neurons that were shared in multiple core
ensembles. (Scale bar, 50 μm.) (B) Percentage of neurons that were shared in
multiple core ensembles evoked by distinctly oriented gratings with a dif-
ference in orientation of 45° vs. 90° (n = 7 mice). (C) Mean OSI (n = 7). (D)
Percentage of neurons that were shared in multiple core ensembles evoked
by distinct natural scenes (n = 4). Data are mean ± SEM.
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ensembles but were not shared by the other core ensembles trig-
gered by distinctly oriented gratings. We found no statistical dif-
ference (Fig. 5C). Therefore, individual neurons, regardless of how
specialized they are for a stimulus at an individual level, can be part
of multiple ensembles.
Because natural scenes consist of complex visual features, we

predicted that more neurons would be shared between the core
ensembles that are evoked by distinct natural scenes. We found
that 40.84 ± 5.15% of neurons were shared between the core
ensembles that were activated by distinct natural scenes and
12.79 ± 4.01% of neurons were shared in up to five distinct core
ensembles (Fig. 5D). Taken together, our findings demonstrate
that when individual neurons are activated, they are more likely
to be activated together with a specific set of other neurons as an
ensemble. At the same time, individual neurons can participate
in multiple ensembles, dynamically reorganizing their allegiance
with different sets of neurons.

Ensembles Evoked by Visual Stimulation Are Similar to Spontaneous
Ensembles.We found ensembles that occurred spontaneously and
in response to visual input. There may be two populations of
ensembles: intrinsically generated spontaneous ensembles and
visually evoked ensembles. Alternatively, visual stimuli may draw
on the lexicon of intrinsically generated ensembles. To distin-
guish between these possibilities, we determined whether the
correlated ensembles that are repeatedly evoked by visual
stimulation are similar to the correlated ensembles that repeat
spontaneously. A threshold for significant correlation was
established for each comparison as described in Fig. 3. After
establishing this threshold, we searched for the matching corre-
lated ensembles between spontaneous and evoked activity, by
either gratings or a natural movie, and plotted the percentage of
the evoked high-activity frames with the matching correlated
ensembles as the number of frames compared increases (Fig. 6).
To determine if the number of correlated frames with the matching
ensembles was significant, we generated 100 independent sur-
rogate spontaneous datasets in which spontaneous activity was
shuffled as described in Fig. 3C. We then performed the same
analysis with the real evoked datasets and the surrogate spon-
taneous datasets. This analysis revealed that the matching cor-
related ensembles between spontaneous and evoked activity
occur far more frequently than by chance in all seven mice (Fig.
6B and Fig. S5A). We found similar results in anesthetized mice
(Fig. S5B). Our findings show that stimulus-evoked ensembles
overlap substantially with intrinsically driven, spontaneously
active ensembles.

Spontaneous Ensembles Repeat Randomly, Whereas Evoked Ensembles
Are Locked to Visual Stimuli. Our finding that stimulus-evoked
ensembles are similar to spontaneously evoked ensembles suggests
two distinct possibilities. The ensemble activity present during vi-
sual stimulation may simply reflect ongoing spontaneous activity
unrelated to the visual input. Alternatively, stimuli may selectively
recruit intrinsic ensembles that are also active spontaneously. If
this second scenario is the case, a given stimulus should consis-
tently evoke a specific ensemble. This is, in fact, what we found.
First, we measured the occurrence of significantly correlated
spontaneous ensembles, analyzed the time intervals between the
significantly correlated ensembles, and plotted these time intervals
for all significantly correlated ensembles (Fig. 7A; the significantly
correlated ensembles are shown in Fig. 3D). We found that cor-
related spontaneous ensembles reoccurred in an apparently ran-
dom temporal sequence. We then analyzed evoked ensembles in
response to the repeated presentation of distinctly oriented gra-
tings and found that the temporal sequence was not random at all.
Correlated ensemble frequency peaked when identically oriented
gratings were represented (Fig. 7B). Finally, we examined evoked
ensembles in response to a natural movie played in a loop. We

found that correlated ensemble frequency peaked when the cor-
responding natural scene repeated in the looped movie (Fig. 7C).
These results demonstrate that a given stimulus, whether simple
gratings or a natural scene, consistently evokes a specific ensem-
ble. Taken together, our findings show that ensembles of neurons
are active together spontaneously and that visual stimuli recruit
the intrinsic ensembles that are relevant to incoming stimuli.

Discussion
We used two-photon calcium imaging to capture the network
activity in V1 of awake mice. We found, first, that both sponta-
neous and evoked cortical activity are dominated by high-activity
periods (50% of total activity) with groups of coactive of neurons
that we defined as ensembles. Second, we found that these
ensembles repeat, suggesting that they are stable groups of
neurons and not simply fleeting pairings of neurons. Third, we

Fig. 6. Visually evoked ensembles are similar to spontaneous ensembles. (A)
Schematic illustrating ensembles that are correlated in both spontaneous
and visual stimulation conditions. (B) Correlated evoked ensembles are also
similar to correlated spontaneous ensembles above chance level. The y axis
shows the percentage of evoked high-activity (h.a.) frames that participated
in matching correlations between evoked and spontaneous data, and the
x axis shows the number of correlated frames. Dotted lines denote the mean
percentage of evoked high-activity frames that participated in matching
correlations between real evoked data and 100 spontaneous surrogate
datasets. Data are mean ± SD (n = 7 mice; data from three mice are shown in
Fig. S5A). †P < 0.05; *P < 0.005. (C) Example ensemble frames with a signif-
icant correlation between the natural movie and spontaneous conditions.
Only two ensemble frames were included for purposes of clarity, although
more were correlated. (Scale bar, 50 μm.)
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found that ensembles cannot be explained by the individual firing
properties of neurons in isolation, suggesting that neurons are
functionally bound together as a group. Fourth, we found that
individual neurons contribute to multiple ensembles, vastly
expanding the cortical encoding potential beyond a single cell
model. Fifth, we found that spontaneous ensembles and stimu-
lus-evoked ensembles are highly similar, with one main differ-
ence: Spontaneous ensembles occur at random time intervals,
whereas visually evoked ensembles are time-locked to stimuli.
In this work, we focused our analysis on the spatial structure of

ensembles. Our imaging was performed with relatively poor
temporal resolution, so it precludes us from a more detailed
analysis of the temporal structure of the firing of the neurons
within an ensemble. However, as in previous work in cortical
brain slices (24–27, 35), it is likely that a given ensemble repre-
sents a sequence of events in time. Future work, using techniques
with faster resolution, is necessary to explore the underlying
temporal dynamics of ensemble formation.

Intrinsically Active Neuronal Ensembles. We found that neurons
tend to fire together with other neurons, forming ensembles of
coactive neurons, even in the absence of any visual input. These
ensembles are repeatedly active, and they can be evoked by
specific stimuli, indicating that they do not arise from random
neuronal pairings. In fact, the probability of a group of neurons
being activated together is much higher than the probability
predicted by their individual firing properties. This finding
implies that these ensembles emerge from an added layer
of functional connections, which links neurons together into
groups. Although the spontaneous ensembles could emerge from
spontaneous patterned feed-forward activity from the thalamus,

the fact that spontaneous ensembles also repeat in cortical slices
lacking thalamic input argues against this possibility (25,
26). Therefore, these ensembles likely emerge from intrinsic
cortical connectivity. This second possibility is in agreement with
the findings by Ko et al. (30, 31), which demonstrate that in
mouse V1, neurons with the same preference for orientated
gratings or naturalistic stimuli make more synaptic connections
with each other than those neurons with a preference for or-
thogonally oriented gratings or different naturalistic stimuli.

Individual Neurons Contribute Flexibly to Multiple Ensembles. We
also found that neurons considered as a group (i.e., an ensemble)
responded reliably to stimuli. However, when neurons were
considered individually, they were promiscuous and participated
in other ensembles evoked by different visual stimuli. This
finding suggests that groups of neurons can encode visual fea-
tures more reliably than individual neurons. This finding is also
consistent with the findings showing that population responses
perform much better at decoding tasks than single neurons in
anesthetized mice (36).
These dynamic rearrangements of cortical activity may explain

how a limited number of neurons can encode the ever-changing
environment with reliability and without averaging, and this
flexibility may be a fundamental property of cortical function.

Visually Evoked Ensembles Are Similar to Spontaneous Ensembles. By
performing voltage-sensitive dye imaging of large-scale cortical
dynamics in V1 of anesthetized animals, Kenet et al. (19) dem-
onstrated that spontaneously occurring cortical states resemble
the cortical responses to visual inputs. Our results, using a tech-
nique with cellular resolution in awake mice, extend the study by
Kenet et al. (19) and demonstrate that the ensembles that are
active spontaneously are also activated by visual stimuli. Our
results are also consistent with the finding that a pair of neurons
with the same preference for oriented gratings exhibits higher
cell-to-cell correlation during spontaneous activity than a pair of
neurons with a preference for orthogonally oriented gratings in
anesthetized animals (37).

Visual Stimuli Recruit Intrinsic V1 Ensembles. What explains the
close overlap between spontaneous ensembles and visually evoked
ensembles? Visual experience could shape local synaptic con-
nections in V1 during development (38, 39) and continuously
throughout adulthood (40). Thus, the past activity could be re-
sponsible for the current state of synaptic connectivity that likely
generates the spontaneous ensembles. Such ongoing intrinsic
ensembles might be critical for maintaining and strengthening
this synaptic connectivity. Our findings that visual stimuli recruit
spontaneously active neuronal ensembles that are relevant to the
incoming visual stimuli suggest that ensembles encode visual fea-
tures. The reverberating, self-generated cortical activity that we
found may therefore be important for preparing the circuit to re-
ceive incoming sensory input efficiently. Feed-forward thalamic
input may then bias and amplify the intrinsic ensemble that is most
relevant to the stimulus (Fig. 8).

Neuronal Ensembles as Functional Building Blocks of the Cortex.
What is the functional meaning of these intrinsic ensembles?
We speculate that they could represent emergent states of cortical
function because the structural principles of the cortical microcircuit
are ideally suited to perform distributed computations (8–10). In
fact, over the past decades, there have been many theoretical pro-
posals postulating the existence of computational units that are built
by joining together the activity of many neurons (1, 3, 6, 11, 15, 41,
42). Such emergent units of function, named differently by different
authors (e.g., neuronal oscillations, reverberations, assemblies,
ensembles, groups, synfire chains, clicks, attractors, flashes, songs,
bumps) and with differences in the temporal precision that they

Fig. 7. Temporal occurrence of ensembles. Correlated spontaneous ensembles
reoccurred at random time intervals, whereas correlated evoked ensembles
reoccurred when an identical stimulus was represented. (A) Spontaneous
ensembles. (B) Ensembles evoked by drifting gratings (a session of four dis-
tinctly oriented gratings looped every 20 s). (C) Ensembles evoked by the
looped natural movie (30 s in length). Data from six mice were pooled.
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could exert, all share the fundamental property of diluting the
importance of the firing of individual neurons and of treating the
circuit as a neural network (43). In the extreme case of a completely
distributed circuit, the activity of any given neuron becomes
irrelevant.
Based on our results, and in agreement with previous results

from complementary experimental paradigms in brain slices (24–
27, 35) and in vivo (19, 22, 44–51), we propose that neuronal
ensembles are intrinsic circuit motifs of cortical activity that
represent its emerging computational primitives. To test if
these coactive responses are related to behavioral or intrinsic
states, one needs to alter these ensembles in vivo. It would be
ideal, in a future experiment, to generate or obliterate the
ensembles, or to alter their cellular participants, online, as if one
is “playing the piano” with the neural circuits during behavior
(52). The development of novel optical techniques, such as two-
photon holographic optogenetics (53, 54), could enable 3D spa-
tiotemporal manipulation of the activity of neuronal populations
with single-cell precision in awake animals, an ideal experimental
platform with which to explore the functional significance of
neuronal ensembles.

Materials and Methods
Animals, Surgery, and Training. All experimental procedures were carried out
in accordance with Columbia University institutional animal care guidelines.
Experiments were performed on C57BL/6 mice (n = 6) or on parvalbumin-Cre
(n = 2) or somatostatin-Cre (n = 2) × LSL-tdTomato transgenic mice, obtained
from The Jackson Laboratory, at the age of postnatal day (P) 40–P80 (55–57).
Seven mice were used for awake preparation, and three mice were used for
anesthetized preparation. During surgery, mice were anesthetized with iso-
flurane (initially 2% (partial pressure in air) and reduced to 1%). A small circle
(1–2 mm in diameter) was thinned over the left V1 using a dental drill to mark
the site for craniotomy (centered at 2.5 mm lateral from the lambda, putative
monocular region). A titanium head plate was attached to the skull using
dental cement. Mice underwent training to maneuver on a spherical treadmill
with their head fixed for 1–3 h each day for 2–3 d. This head-fixed awake
preparation allows mice to move freely, but movement is not associated with
vestibular stimulation.

Dye Loading and Two-Photon Calcium Imaging.On the imaging day, mice were
anesthetized with isoflurane and the craniotomy, marked previously, was
completed for dye injection. For bulk loading of cortical neurons Oregon

Green Bapta-1 AM (Molecular Probes) was first dissolved in 4 μL of freshly
prepared DMSO containing 20% Pluronic F-127 (Molecular Probes) and then
further diluted in 35 μL of dye buffer [150 mM NaCl, 2.5 mM KCl, and 10 mM
Hepes (pH 7.4)] (58). Sulforhodamine 101 (50 μM; Molecular Probes) was
added to the solution to label astrocytes (59). The dye was slowly pressure-
injected into the left visual cortex at a depth of 150–200 μm at an angle of
30° with a micropipette (4–7 MΩ, 10 psi, 8 min) under visual control by two-
photon imaging (20× water immersion objective, 0.5 N.A.; Olympus). The
activity of cortical cells was recorded by imaging fluorescence changes with
a two-photon microscope (Moveable Objective Microscope; Sutter In-
strument) and a Ti:sapphire laser (Chameleon Vision II; Coherent) at 880 nm
or 1,040 nm through a 20× (0.95 N.A.; Olympus) or 25× (1.05 N.A.; Olympus)
water immersion objective. Scanning and image acquisition were controlled
by Sutter software (4.07 frames per second for 512 × 512 pixels or 8.14
frames per second for 340 × 340 pixels, Mscan; Sutter Instrument).

Visual Stimulation. Visual stimuli were generated using the MATLAB
(MathWorks) Psychophysics Toolbox (60) and displayed on a liquid crystal
display monitor (19-inch diameter, 60-Hz refresh rate) positioned 15 cm from
the right eye, roughly at 45° to the long axis of the animal. Spontaneous
calcium signals were measured for ∼13 min in the dark at the beginning of
the experiments and sometimes in the middle of the experiments (with
a monitor and room lights turned off). The imaging setup was completely
enclosed with blackout fabric (Thorlabs). After spontaneous calcium signals
were collected, mice were presented with either sequences of full-field
grating stimuli or a natural movie (the order of presentations was alternated
randomly). Square or sine wave gratings (100% contrast, 0.035 cycles per
degree, two cycles per second) drifting in eight different directions in ran-
dom order were presented for 5 s, followed by 5 s of mean luminescence
gray screen (10 repetitions). A natural movie (Moose in the Glen, from the
British Broadcasting Corporation’s Natural World documentary series) con-
sisting of 10 distinct natural scenes in 30-s sequences was played using the
MATLAB Psychophysics Toolbox (20 repetitions). In some experiments, a
natural movie was played using the QuickTime Player (Apple). The sequences
of gratings or a natural movie stimulation played in MATLAB were syn-
chronized with image acquisition using Sutter software (Mscan; Sutter In-
strument). Locomotion of a mouse was not associated with motion of the
visual scene relative to the mouse.

Image Analysis. The raw images were processed to correct brain motion
artifacts using the enhanced correlation coefficient image alignment algo-
rithm (61) or a hidden Markov model implemented previously (62, 63). Initial
image processing was carried out using custom-written software in MATLAB
(Caltracer 2.5, available at our laboratory website). Cell outlines were
detected using an automated algorithm based on fluorescence intensity, cell
size, and cell shape, and were adjusted by visual inspection. Cell-based
regions of interest (ROIs) were then shrunk by 5–10% to minimize the in-
fluence of the neuropil signal around the cell bodies. All pixels within each
ROI were averaged to give a single time course, and ΔF/F was calculated by
subtracting each value with the mean of the lower 50% of previous 10-s
values and dividing it by the mean of the lower 50% of previous 10-s values.
For a cross-correlation analysis using ΔF/F, neuropil contamination was re-
moved by first selecting a spherical neuropil shell (6.2-μm thickness) sur-
rounding each neuron and then subtracting the average signal of all pixels
within the spherical neuropil shell, excluding adjacent ROIs and pixels within
0.3 μm surrounding ROIs, from the average signal of all pixels within the ROI.
Neurons with noisy signal with no apparent calcium transient were detected
by visual inspection and excluded from further analysis.

Spike probability was inferred from calcium signals using a fast, non-
negative deconvolution method (32). Briefly, the baseline of calcium signals
was detrended, and ΔF/F was then calculated before applying an algorithm
to infer spike probability. The decay constant of calcium transients, τ, was set
to 0.8 s. The output was normalized by a maximum value in each neuron.
Spike probability was then thresholded to a level of 3 SDs above 0, de-
termined from spike probabilities of the entire population in each experi-
ment, to identify active cells not confounded from the noise in the
recordings; the values above a threshold were set to 1, and the values below
a threshold were set to 0. These binary activity data were then used for
subsequent analyses unless otherwise indicated. Although most spikes
resulted in significant somatic calcium transients with a calcium indicator
and analysis threshold similar to our experiments (25), we likely under-
estimated the presence of action potentials, particularly when neurons fire
a single action potential or at frequencies higher than 40 Hz (64).

To analyze the OSI, average inferred spike probability or ΔF/F was taken
as the response to each grating stimulus. Responses from 10 trials were

Fig. 8. Model illustrating that visual stimuli recruit ensembles from a
spontaneous lexicon. In this proposed model, when a visual stimulus reaches
the cortex, it activates individual components of an ensemble, each of which
is relatively unreliable in isolation. Through recurrent connections, an entire
ensemble is then activated, recruited from the spontaneously active lexicon
of ensembles. The two examples shown are actual cortical responses to
distinct visual stimuli and highlight the fact that individual neurons con-
tribute to multiple ensembles. (Scale bar, 50 μm.)
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averaged to obtain an orientation-tuning curve or matrix. The preferred orien-
tation was taken as the modulus of the preferred direction to 180°. The OSI
was calculated as (Rbest − Rortho)/(Rbest + Rortho), where Rbest is the best di-
rection and Rortho is the average of responses to the direction orthogonal to
the best direction. Cells with an OSI <0.4 were considered to be unselective
for orientation.

Definition of an Ensemble. An ensemble was defined as coactivation of
a group of neurons in a high-activity frame in which a statistically significant
number of neurons were active. To establish a threshold for the significant
number of coactive neurons, binary activity data (thresholded spike proba-
bility) were shuffled 1,000 times by randomly transposing intervals of activity
within each cell (shuffling within cells). The threshold corresponding to
a significance level of P < 0.05 was estimated as the number of activated cells
in a single frame that exceeded only 5% of these surrogate datasets. The
number of ensembles per second was calculated by dividing a number of
high-activity frames by a number of total frames and then multiplying the
quotient by a frame rate in each imaging movie. In the drifting gratings
condition, only stimulus periods were included in this analysis. The mean
ΔF/F of neurons was calculated by averaging ΔF/F during the presentation of
preferred oriented gratings for each neuron. Only neurons with an orien-
tation preference were counted in this analysis. From the same set of neu-
rons, ΔF/F was averaged throughout the entire traces for the spontaneous
and natural movie conditions.

Correlated Ensembles. The similarity between ensembles was evaluated using
Pearson’s correlation coefficient (r). To convert r to the normally distributed
variable z, the Fisher z-transformation was applied to r according to the
following:

z=
1
2
ln
�
1+ r
1− r

�
: [1]

A threshold for significant correlation was established for each pairwise
comparison. Establishing a threshold for each comparison is important be-
cause in binary data the number of active neurons in a frame influences
a correlation coefficient between a pair of frames. We generated 50,000
independent surrogate ensembles by randomizing active cells while pre-
serving the number of active cells per frame in one of the frames in each
comparison (shuffling across cells). The threshold corresponding to a signif-
icance level of P < 0.05 was estimated as the correlation coefficient that
exceeded only 5% of correlation coefficients between these surrogate
ensembles. After establishing this threshold to evaluate similarity between
ensembles, we analyzed the number of times that similar ensembles occur.
To evaluate whether similar ensembles occurred more frequently than by
chance, we generated 1,000 independent surrogate datasets by randomly
exchanging activity between cells while preserving both the number of ac-
tive cells per frame and the total amount of activity per cell. Surrogate data
were independently generated in all conditions (i.e., spontaneous activity
and visually evoked activity with gratings or a natural movie) because the
activity of individual neurons may differ in different conditions.

To search for the matching correlated ensembles between spontaneous and
visually evoked activity, the similarity between spontaneous and evoked
ensembles was calculated using Pearson’s correlation coefficient. A threshold for
significant correlation was established for each pairwise comparison as above.
To evaluate whether matching-correlated ensembles occur more frequently
than by chance, we generated 100 independent surrogate spontaneous data-
sets by randomly exchanging activity between cells while preserving both the
number of active cells per frame and the total amount of activity per cell in
spontaneous activity and searched for the matching correlated ensembles be-
tween surrogate spontaneous and real evoked activity.

The predicted probability of a core ensemble being activated together was
calculated by multiplying the probabilities of single neurons in the core
ensemble being activated during spontaneous activity. The probability of
a single neuron being activated was calculated by dividing the number of
frames where the neuron was active by the number of total frames during
spontaneous activity. The observed probability of a core ensemble being
activated together was calculated by dividing the number of frames where
the ensemblewas coactive by the number of total frames during spontaneous
activity. In the visual stimulation conditions, the probability of a single neuron
being activated was calculated by dividing the number of frames where the
neuron was active during the presentations of the same orientation or same
natural scene by the number of total frames that were presented with the
same orientation or same natural scene. Similarly, the probability of a core
ensemble being activated was calculated by dividing the number of frames
where the core ensemble was coactive during the presentations of the same
orientation or same natural scene by the number of total frames that were
presented with the same orientation or same natural scene. Note that the
entire frames were used in this analysis.

To analyze the percentage of neurons shared in multiple core ensembles,
the core ensembles that were conserved in significantly correlated ensembles
evoked by each oriented grating (total of four orientations) or each natural
scene (total of 10 scenes) were counted. After the core ensembles were
identified, the number of neurons shared in different core ensembles that
were evoked by distinctly oriented gratings or different natural scenes was
counted (“shared neurons”) and divided by the total number of imaged
neurons. Neurons that belonged to core ensembles, but were not shared
with other core ensembles evoked by distinctly oriented gratings or differ-
ent natural scenes, were defined as “unshared neurons.”

To analyze the time interval between significantly correlated ensembles,
we first looked at the image acquisition time of a set of significantly cor-
related frames and calculated time intervals between all possible pairs of the
significantly correlated frames. We then repeated this analysis for the entire
sets of significantly correlated frames and plotted these time intervals as
a histogram for spontaneous or visually evoked activity. Each frame pair was
counted only once. In the gratings condition, each orientated grating was
presented in random order during image acquisition, and we sorted activity
traces of all neurons according to four differently orientated gratings in each
session (90°, 135°, 0°, and 45° in order; total of 20 sessions per experiment).
Because each session consisted of 20 s (5-s stimulus, four orientations), the
identical orientation reoccurred every 20 s and lasted for 5 s. Note that only
the stimulus period was included in this analysis. For the natural movie
condition, because the 30-s movie was played in a loop 20 times during
image acquisition, the identical scene reoccurred every 30 s and lasted for
less than 0.25 s.

Statistical Analysis. We used Wilcoxon rank sum tests to determine statistical
significance (P < 0.05) unless otherwise indicated.
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