
Neural dynamics and 
learning in 
Spiking Neural Networks

IBM Research - Zurich

Angeliki Pantazi
Manager, Neuromorphic Computing & I/O Links



IBM Research – Zurich

2

• Established in 1956
• 45+ different nationalities
• Open Collaboration:

Horizon2020: 50+ funded projects and 500+ partners

• Two Nobel Prizes:
1986: Nobel Prize in Physics for the invention of the scanning t
unneling microscope by Heinrich Rohrer and Gerd K. Binnig
1987: Nobel Prize in Physics for the discovery of high-temperat
ure superconductivity by K. Alex Müller and J. Georg Bednorz

• European Physical Society Historic Site
• Binnig and Rohrer Nanotechnology Centre 

(Public Private Partnership with ETH Zürich 
and EMPA)



The Evolution of Neural Networks
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1952  
Hodgkin-Huxley 
model of spiking neural 
dynamics – Nobel Prize

1956
von Neumann 
postulates SNN-based 
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2012 - today 
GPUs for ANNs, large-scale 
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Artificial Neural Networks (ANNs) 

Spiking Neural Networks (SNNs) 
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Spiking Neurons: Neuroscience Concepts 
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Leaky Integrate-and-Fire (LIF) dynamicsSpiking Neuron

W. Gerstner, W. M. Kistler, R. Naud and L. Paninski, Neuronal Dynamics, Cambridge University Press, 2014



Spiking Neural Networks
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Key features
– Neurons communicate with spikes, encoding timing 

information
– Independent firing of neurons and asynchronous 

communication 
– Stateful and adaptive neuronal dynamics 
– Short and long-term synaptic plasticity
– Local and event-based learning

Challenges
– Lack of a general training approach limits the 

accuracy, scalability and applicability
– Demonstrate how SNN unique features can 

substantially impact AI applications
– Design energy efficient neuromorphic accelerators 

Low 
latency

High energy  
efficiency

Novel AI 
features
Memory & 
energy efficiency
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Input encoding for energy efficiency
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Approaches for Training Deep SNNs

● Biologically inspired local learning rules
- Spike-timing dependent learning

● Conversion from ANNs
- Porting the weights trained in ANNs to SNNs

● Training constrained ANN networks
- Before conversion, constraints are used to model the properties of spiking neurons

● Supervised learning directly on SNNs 
- Training using variations of error backpropagation
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Recent developments bridge the ANN and SNN worlds! 

M. Pfeiffer and T. Pfeil, Front. Neurosci. 12:774, 2018. doi: 10.3389/fnins.2018.00774



Training of Deep SNNs: Local learning rules
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● Methodology 
- Biologically inspired local learning such as Spike 

Timing Dependent Plasticity (STDP)
- The synaptic weight adjustments depend on 

the timing between input and output spikes

● Advantages
- Energy efficient learning, suitable for hardware 

implementations

● Limitations
- Reduced accuracy in complex problems and 

limited scaling to deep SNNs

Typical STDP

H. Markram, et. al., Science 275, 213–215, 1997

Correlation detection

A. Pantazi, et. al.  
Nanotechnology 27, 355205, 2016

S. Song, et.al. Nat. Neurosci. 3:919, 2000



Training of Deep SNNs: Conversion from ANNs
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● Methodology 
- A pre-trained ANN is converted into an SNN by adapting the synaptic weights
- Activations of ANN neurons are translated into firing rates of spiking neurons 
- Spiking equivalents of ANN operators were introduced for CNN architectures 

● Advantages
- Deep learning framework can be exploited to train SNNs

● Limitations
- Several ANN functionalities are difficult 

to realize in the spiking domain, such as 
batch normalization

Y. Hu, et. al. arXiv:1805.01352, 2018B. Rueckauer, et. al. Front. Neurosci. 11:682,00682, 2017

SNN error rate for CIFAR-10



Training of Deep SNNs: Training constrained ANN networks
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Hardware demonstration with TrueNorth

S. K. Esser et. al. PNAS 113 (41) 11441-11446, 2016

● Methodology 
- Constraints are included in the ANN training to capture 

the properties of the spiking neurons  
- After training, the parameters of the constrained ANN 

are used as parameters of the SNN   

● Advantages
- ANN training includes the characteristics of the SNN

à results in higher accuracies 

● Limitations
- Training requires the transformation of the 

non-differentiable spiking neuron models 

E. Hunsberger, and C. Eliasmith, arXiv:1611.05141, 2016



Training of Deep SNNs: Supervised learning directly on SNNs 
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● Methodology 
- Introduce supervised training directly on spiking 

neurons
- Typically, utilizing variants of backpropagation to 

train the SNNs

● Advantages
- Training directly on the spiking neurons and on 

temporal spiking patterns

● Limitations
- Find a differentiable alternative construct to enable 

backpropagation training  

D. Huh and T. J. Sejnowski, NeurIPS 2018

H. Mostafa, IEEE Trans. Neural Netw. Learn. Syst. 29, 3227–3235, 2018



Training of Deep SNNs: Bridging ANN and SNN worlds
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● Methodology 
- Transfer the SNN dynamics to RNNs and train 

with BPTT
- For the non-differentiable elements, a pseudo-

derivative is used in the backward pass 

● Advantages
- BPTT training enables high accuracy in deep SNNs
- Scalable deep and recurrent SNN architectures  

● Limitations
- Possible dependence of the performance on 

the selection of pseudo-derivative

Spiking Neural Unit 
(SNU)

G. Bellec, et. al., NeurIPS, 2018 

E. O. Neftci, et.al. 
IEEE Signal Process. Mag., 2019

S. Wozniak, et. al., arXiv, 2018.
S. Wozniak, et. al., Nat. Mach. Intell., 2020



Training of Deep SNNs: Neuro-inspired units - SNUs 

● SNUs enable modelling of SNNs in deep learning frameworks and training with BPTT
● Soft SNU(sSNU) variant introduces novel temporal dynamics into ANNs
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Biology
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Deep Learning
Spiking Neural Unit (SNU)

accumulation stage spiking stage

𝑠% = 𝑔 𝑊𝑥% + 𝑙 𝜏 ⨀𝑠%&'⨀ 1 − 𝑦%&'
𝑦% = ℎ 𝑠% + 𝑏
S. Woźniak et al., Nature Machine Intelligence 325–336, 2020

Significant step towards exploiting the computational efficiency of SNNs
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SNUs compared with RNNs, LSTMs and GRUs

● Structural similarities, i.e. with LSTM’s carry and GRU’s internal connection to the output
● Qualitatively different dynamics than these of existing RNN units
● SNUs are similarly robust to vanishing gradients as LSTMs
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Biologically-inspired SNU extensions
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SNU Lateral Inhibition SNU (LI-SNU) Adaptive SNU (a-SNU)

SNU offers a new framework for modelling and understanding the neural dynamics



Digit recognition using rate-coded MNIST dataset
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Convolutional architecture

Fully-connected architecture

Record SNN accuracy: 99.53% !



Applications using ANN datasets
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Language 
modelling 

(PTB)

Music 
prediction 

(JSB)

Weather 
prediction 

(Jena)



SNU variants: Lateral Inhibition
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Lateral Inhibition SNU (LI-SNU)

Internal representation: Different kind of features (larger motifs)

Significant neural activity reduction, and thus lower energy footprint



SNUs and in-memory computing 
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Music prediction: The task is to predict a set of notes 
(chord) that will be played based on the past notes

weight cloning
(w/o drift compensation)

weight cloning
(drift compensation)

in-the-loop training

Music prediction inference over 4 days

● Easy integration of SNNs into emerging in-
memory computing 

● Unified HW design approach supporting 
both ANNs and SNNs

● Training with hardware-in-the-loop 
compensates for PCM imperfections



Online learning
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Training with BPTT Online learning

• Input time sequence needs to be truncated 
• Normal network operation gets interrupted
• Memory requirement grows with unroll-length

• Low-latency learning algorithm
• Continuous network operation
• Constant memory requirements



Eligibility traces and Learning signals 
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Eligibility traces (𝒆𝒊𝒋) maintain a 
temporal trace of past neuronal 
events 

Learning signals (𝑳𝒊) are propagated 
spatially from different brain regions

BIOLOGY



Online learning alternatives to BPTT

BPTT

UORO KF-RTRL OK-RTRL

Gradient-based 
methods

RTRL
with deferred 

updates

RTRL

RFLO E-prop OSTL

Biological constraints

Reduced complexity 
approximations

Equivalent

ANNs SNNs
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Online learning alternatives to BPTT: E-prop

22

• Eligibility trace for synapse between neuron i to neuron j 
at time t:  𝑒!"#

• Learning signal for neuron j at time t: 𝐿!#

E-prop is based on a derivation using a local gradient:

G. Bellec, et. al., Nat. Commun., vol. 11, no. 3625, pp. 1–15, Jul 2020



Online learning alternatives to BPTT: OSTL
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OSTLBPTT

T. Bohnstingl, et al. arXiv, 2020, arXiv:2007.12723v2

OSTL exploits a recursion in BPTT: 

• Learning signal 𝑳𝒍𝒕 — represents spatial gradients

• Eligibility trace 𝒆𝒍𝒕 — represents temporal gradients

Online Spatio Temporal Learning (OSTL) 
separates spatial and temporal gradients

OSTL is gradient-equivalent to BPTT for shallow networks



OSTL for spiking neurons
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T. Bohnstingl, et al. arXiv, 2020, arXiv:2007.12723v2

SNU

𝑠% = 𝑔 𝑊𝑥% + 𝑙 𝜏 ⨀𝑠%&'⨀ 1 − 𝑦%&'
𝑦% = ℎ 𝑠% + 𝑏

Eligibility traces and Learning signal for an SNU-based network

OSTL has been derived for deep recurrent networks comprising
spiking neurons, LSTMs, GRUs, biological models



Comparison of Online Learning Algorithms
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T. Bohnstingl, et al. arXiv, 2020, arXiv:2007.12723v2



OSTL results 
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T. Bohnstingl, et al. arXiv, 2020, arXiv:2007.12723v2

Music prediction
• Johann Sebastian Bach 

Chorales dataset
• Prediction of next chords
• Gradient-equivalence to 

BPTT

Handwritten digit 
classification
• MNIST Dataset
• Digit classification



OSTL results 
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T. Bohnstingl, et al. arXiv, 2020, arXiv:2007.12723v2

Word-level language 
modelling
• Penn Tree Bank Dataset
• Next-word prediction 

(10k words)

Speech recognition 
• TIMIT Dataset
• Framewise phoneme 

classification



AI Applications
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New features in tasks for classification and prediction
Explore the effect of adaptation dynamics on the 
learning capability of neural networks

Abstract reasoning
Investigate neural network systems 
that exhibit analytic intelligence

Adaptive low-power neuromorphic AI machinery 
based on SNNs with memristive synapses using L2L 
Proof of concept: real-world robotics environment

Large-scale application to speech recognition
Go beyond the standard research benchmarks 

Real-time classification, storage and recall
Design neural networks for real-time classification of 
data in resource-constrained environments
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