Neural dynamics and learning in Spiking Neural Networks

Angeliki Pantazi

Manager, Neuromorphic Computing & I/O Links

IBM Research - Zurich

IBM Research – Zurich

Established in 1956

45+ different nationalities Open Collaboration:

Horizon2020: 50+ funded projects and 500+ partners

Two Nobel Prizes:

1986: Nobel Prize in Physics for the invention of the scanning t unneling microscope by Heinrich Rohrer and Gerd K. Binnig

1987: Nobel Prize in Physics for the discovery of high-temperat ure superconductivity by K. Alex Müller and J. Georg Bednorz

European Physical Society Historic Site

Binnig and Rohrer Nanotechnology Centre (Public Private Partnership with ETH Zürich and EMPA)

The Evolution of Neural Networks

Spiking Neurons: Neuroscience Concepts

Spiking Neural Networks

Key features

- Neurons communicate with spikes, encoding timing information
- Independent firing of neurons and asynchronous communication
- Stateful and adaptive neuronal dynamics
- Short and long-term synaptic plasticity
- Local and event-based learning

Input encoding for energy efficiency

Challenges

- Lack of a general training approach limits the accuracy, scalability and applicability
- Demonstrate how SNN unique features can substantially impact AI applications
- Design energy efficient neuromorphic accelerators

Approaches for Training Deep SNNs

- Biologically inspired local learning rules
- Spike-timing dependent learning
- Conversion from ANNs
- Porting the weights trained in ANNs to SNNs
- Training constrained ANN networks
- Before conversion, constraints are used to model the properties of spiking neurons
- Supervised learning directly on SNNs
- Training using variations of error backpropagation

M. Pfeiffer and T. Pfeil, Front. Neurosci. 12:774, 2018. doi: 10.3389/fnins.2018.00774

Recent developments bridge the ANN and SNN worlds!

Training of Deep SNNs: Local learning rules

- Methodology
- Biologically inspired local learning such as Spike
 Timing Dependent Plasticity (STDP)
- The synaptic weight adjustments depend on the timing between input and output spikes

• Advantages

 Energy efficient learning, suitable for hardware implementations

Correlation detection

 Reduced accuracy in complex problems and limited scaling to deep SNNs

Training of Deep SNNs: Conversion from ANNs

- Methodology
- A pre-trained ANN is converted into an SNN by adapting the synaptic weights
- Activations of ANN neurons are translated into firing rates of spiking neurons
- Spiking equivalents of ANN operators were introduced for CNN architectures
- Advantages
- Deep learning framework can be exploited to train SNNs
- Limitations
- Several ANN functionalities are difficult to realize in the spiking domain, such as batch normalization

B. Rueckauer, et. al. Front. Neurosci. 11:682,00682, 2017

Training of Deep SNNs: Training constrained ANN networks

- Methodology
- Constraints are included in the ANN training to capture the properties of the spiking neurons
- After training, the parameters of the constrained ANN are used as parameters of the SNN

• Advantages

- ANN training includes the characteristics of the SNN
 → results in higher accuracies
- Limitations
- Training requires the transformation of the non-differentiable spiking neuron models

E. Hunsberger, and C. Eliasmith, arXiv:1611.05141, 2016

Hardware demonstration with TrueNorth

Training of Deep SNNs: Supervised learning directly on SNNs

- Methodology
- Introduce supervised training directly on spiking neurons
- Typically, utilizing variants of backpropagation to train the SNNs
- Advantages
- Training directly on the spiking neurons and on temporal spiking patterns
- Limitations
- Find a differentiable alternative construct to enable backpropagation training

Training of Deep SNNs: Bridging ANN and SNN worlds

X₁

- Methodology
- Transfer the SNN dynamics to RNNs and train with BPTT
- For the non-differentiable elements, a pseudoderivative is used in the backward pass

Advantages

- BPTT training enables high accuracy in deep SNNs
- Scalable deep and recurrent SNN architectures
- Limitations
- Possible dependence of the performance on the selection of pseudo-derivative

S. Wozniak, et. al., Nat. Mach. Intell., 2020

Training of Deep SNNs: Neuro-inspired units - SNUs

S. Woźniak et al., Nature Machine Intelligence 325–336, 2020

- SNUs enable modelling of SNNs in deep learning frameworks and training with BPTT
- Soft SNU(sSNU) variant introduces novel temporal dynamics into ANNs

Significant step towards exploiting the computational efficiency of SNNs

SNUs compared with RNNs, LSTMs and GRUs

- Structural similarities, i.e. with LSTM's carry and GRU's internal connection to the output
- Qualitatively different dynamics than these of existing RNN units
- SNUs are similarly robust to vanishing gradients as LSTMs

Biologically-inspired SNU extensions

SNU offers a new framework for modelling and understanding the neural dynamics

Digit recognition using rate-coded MNIST dataset

Fully-connected architecture

Record SNN accuracy: 99.53% !

Applications using ANN datasets

SNU variants: Lateral Inhibition

SNUs and in-memory computing

Music prediction: The task is to predict a set of notes (chord) that will be played based on the past notes

- Easy integration of SNNs into emerging inmemory computing
- Unified HW design approach supporting both ANNs and SNNs
- Training with hardware-in-the-loop compensates for PCM imperfections

Online learning

- Input time sequence needs to be truncated
- Normal network operation gets interrupted
- Memory requirement grows with unroll-length

- Low-latency learning algorithm
- Continuous network operation
- Constant memory requirements

Eligibility traces and Learning signals

Eligibility traces (e_{ij} **)** maintain a temporal trace of past neuronal events

Learning signals (L_i **)** are propagated spatially from different brain regions

Online learning alternatives to BPTT

Online learning alternatives to BPTT: E-prop

<u>E-prop is based on a derivation using a local gradient:</u>

$$\frac{dE}{dW_{ji}} = \sum_{t} \frac{dE}{dz_{j}^{t}} \cdot \left[\frac{dz_{j}^{t}}{dW_{ji}}\right]_{\text{loca}}$$

$$\frac{dE}{dW_{ji}} = \sum_{t} L_j^t e_{ji}^t$$

- Eligibility trace for synapse between neuron i to neuron j at time t: e^t_{ji}
- Learning signal for neuron j at time t: L_i^t

G. Bellec, et. al., *Nat. Commun.*, vol. 11, no. 3625, pp. 1–15, Jul 2020

Online learning alternatives to BPTT: OSTL

Online Spatio Temporal Learning (OSTL) separates spatial and temporal gradients

OSTL exploits a recursion in BPTT:

$$\begin{split} \Delta \theta_l &= -\alpha \frac{\mathrm{d}E}{\mathrm{d}\theta_l} = -\alpha \sum_t \frac{\mathrm{d}E^t}{\mathrm{d}\theta_l} = -\alpha \sum_t \frac{\partial E^t}{\partial y_k^t} \left[\frac{\partial y_k^t}{\partial s_k^t} \frac{\mathrm{d}s_k^t}{\mathrm{d}\theta_l} + \frac{\partial y_k^t}{\partial \theta_l} \right] \\ &= -\alpha \sum_l \frac{\partial E^t}{\partial y_k^t} \left[\frac{\partial y_k^t}{\partial s_k^t} \varepsilon_l^{t,\theta} + \frac{\partial y_k^t}{\partial \theta_l} \right] \\ &= -\alpha \sum_l L_l^t e_l^{t,\theta} \end{split}$$

- Learning signal L_l^t represents spatial gradients
- Eligibility trace e_l^t represents temporal gradients

T. Bohnstingl, et al. arXiv, 2020, arXiv:2007.12723v2

OSTL is gradient-equivalent to BPTT for shallow networks

OSTL for spiking neurons

$$s_t = g(Wx_t + l(\tau) \odot s_{t-1} \odot (1 - y_{t-1}))$$

$$y_t = h(s_t + b)$$

Eligibility traces and Learning signal for an SNU-based network

$$\begin{split} \boldsymbol{\epsilon}_{l}^{t,\boldsymbol{\theta}} &\coloneqq \frac{\mathrm{d}\boldsymbol{s}_{l}^{t}}{\mathrm{d}\boldsymbol{\theta}_{l}} = \left(\frac{\mathrm{d}\boldsymbol{s}_{l}^{t}}{\mathrm{d}\boldsymbol{s}_{l}^{t-1}}\boldsymbol{\epsilon}_{l}^{t-1,\boldsymbol{\theta}} + \left(\frac{\partial\boldsymbol{s}_{l}^{t}}{\partial\boldsymbol{\theta}_{l}} + \frac{\partial\boldsymbol{s}_{l}^{t}}{\partial\boldsymbol{y}_{l}^{t-1}}\frac{\partial\boldsymbol{y}_{l}^{t-1}}{\partial\boldsymbol{\theta}_{l}}\right)\right) \\ \boldsymbol{\mathrm{e}}_{l}^{t,\boldsymbol{\theta}} &= \frac{\partial\boldsymbol{y}_{l}^{t}}{\partial\boldsymbol{s}_{l}^{t}}\boldsymbol{\epsilon}_{l}^{t,\boldsymbol{\theta}} + \frac{\partial\boldsymbol{y}_{l}^{t}}{\partial\boldsymbol{\theta}_{l}} \\ \boldsymbol{\mathrm{L}}_{l}^{t} &= \frac{\partial E^{t}}{\partial\boldsymbol{y}_{k}^{t}} \left(\prod_{(k-l+1)>m\geq 1}\frac{\partial\boldsymbol{y}_{k-m+1}^{t}}{\partial\boldsymbol{s}_{k-m+1}^{t}}\frac{\partial\boldsymbol{s}_{k-m+1}^{t}}{\partial\boldsymbol{y}_{k-m}^{t}}\right) \end{split}$$

OSTL has been derived for deep recurrent networks comprising spiking neurons, LSTMs, GRUs, biological models

T. Bohnstingl, et al. *arXiv*, 2020, arXiv:2007.12723v2

Comparison of Online Learning Algorithms

Algorithm	Memory complexity	Time complexity	EXACT GRADIENTS (VS. BPTT)	DERIVED FOR
BPTT (UNROLLED FOR T TIME STEPS)	Tn	Tn^2		RNNs
RTRL WITH DEFERRED UPDATES	n^3	n^4		RNNS
RTRL	n^3	n^4	×	RNNS
UORO	n^2	n^2	×	RNNS
KF-RTRL	n^2	n^3	×	RNNS
OK-RTRL (FOR r SUMMATION TERMS)	rn^2	rn^3	×	RNNS
RFLO	n^2	n^2	×	SNNs & RNNs
SUPERSPIKE (FOR INTEGRATION PERIOD t)	n^2	tn^2	×	SNNS
E-prop	n^2	n^2	×	SNNs & RNNs
OSTL: FEED-FORWARD SNNS (k LAYERS)	kn^2	kn^2	×	SNNs
OSTL: RECURRENT SNNS (k LAYERS, W/O H)	kn^2	kn^2	×	SNNS
OSTL: FEED-FORWARD SNNs	n^2	n^2		SNNS
OSTL: RECURRENT SNNs (W/O H)	n^2	n^2	×	SNNs
OSTL: GENERIC RNN S (<i>k</i> LAYERS)	kn^3	kn^4	×	SNNs & RNNs
OSTL: GENERIC RNNS	n^3	n^4	\checkmark	SNNs & RNNs

OSTL results

- Johann Sebastian Bach Chorales dataset
- Prediction of next chords
- Gradient-equivalence to
 BPTT

Handwritten digit classification

- MNIST Dataset
- Digit classification

T. Bohnstingl, et al. *arXiv*, 2020, arXiv:2007.12723v2

OSTL results

Word-level language modelling

- Penn Tree Bank Dataset
- Next-word prediction (10k words)

Speech recognition

- TIMIT Dataset
- Framewise phoneme classification

T. Bohnstingl, et al. arXiv, 2020, arXiv:2007.12723v2

AI Applications

New features in tasks for classification and prediction

Explore the effect of adaptation dynamics on the learning capability of neural networks

Abstract reasoning

Investigate neural network systems that exhibit analytic intelligence

Real-time classification, storage and recall

Design neural networks for real-time classification of data in resource-constrained environments

Adaptive low-power neuromorphic AI machinery

based on SNNs with memristive synapses using L2L Proof of concept: real-world robotics environment

Large-scale application to speech recognition

Go beyond the standard research benchmarks

Acknowledgements

Stanisław Woźniak

Thomas Bohnstingl

Giorgia Dellaferrera

Ana Stanojevic

Ayush Garg

Giovanni Cherubini

Evangelos Eleftheriou

and current and former colleagues

from the Neuromorphic Computing & IO Links team

