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Although the functional properties of individual neurons in primary visual cortex have been studied intensely, little is known about how
neuronal groups could encode changing visual stimuli using temporal activity patterns. To explore this, we used in vivo two-photon
calcium imaging to record the activity of neuronal populations in primary visual cortex of awake mice in the presence and absence of
visual stimulation. Multidimensional analysis of the network activity allowed us to identify neuronal ensembles defined as groups of cells
firing in synchrony. These synchronous groups of neurons were themselves activated in sequential temporal patterns, which repeated at
much higher proportions than chance and were triggered by specific visual stimuli such as natural visual scenes. Interestingly, sequential
patterns were also present in recordings of spontaneous activity without any sensory stimulation and were accompanied by precise firing
sequences at the single-cell level. Moreover, intrinsic dynamics could be used to predict the occurrence of future neuronal ensembles. Our
data demonstrate that visual stimuli recruit similar sequential patterns to the ones observed spontaneously, consistent with the hypoth-
esis that already existing Hebbian cell assemblies firing in predefined temporal sequences could be the microcircuit substrate that
encodes visual percepts changing in time.
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Introduction
The coordinated activity of neurons firing in synchrony and or-
ganized in temporal sequences has been proposed as the general-
ized substrate for a wide variety of physiological computations
and behaviors (Lorente de No, 1938; Hebb, 1949; Abeles, 1991;
Seidemann et al., 1996; Baeg et al., 2003; Grinvald et al., 2003;
Harris et al., 2003; Dragoi and Buzsáki, 2006; Fujisawa et al.,
2008; Pastalkova et al., 2008; Buzsáki, 2010; Crowe et al., 2010;
Dragoi and Tonegawa, 2011; Harvey et al., 2012). However, little
is known about how sequential activity patterns are generated
and whether they have a functional significance. For example, it
has been proposed that specific groups of neurons firing in se-
quences could represent canonical microcircuit motifs (Hebbian
cell assemblies) that can be recalled reliably (Hebb, 1949; Huyck,

2001; Harris, 2005; Lansner, 2009), allowing the formation of
complex representations from basic multicellular functional
units (Luczak et al., 2009). Moreover, Hebb’s cell assembly hy-
pothesis postulates that neurons firing in sequential order will
create activity cycles reverberating in the absence of external
stimulation (Hebb, 1949). Accordingly, there is in vitro and in
vivo evidence that the visual cortex can generate repeated patterns
of spontaneous activity that resemble those observed under visual
stimulation (Kenet et al., 2003; MacLean et al., 2005; MacLean et
al., 2006; Miller et al., 2014). In addition, visual cortical neurons
responding to the same orientation display similar spontaneous
activity (Ch’ng and Reid, 2010) and have a higher probability to
be connected among themselves (Ko et al., 2011), suggesting that
synaptic plasticity, perhaps following Hebbian learning rules,
could explain repeated temporal dynamics.

Using two-photon calcium imaging with single-cell resolu-
tion in vivo, we recently found that most cortical activity occurred
in the form of coactive groups of cells defining neuronal ensem-
bles (Miller et al., 2014). Although the same ensembles were re-
peatedly triggered by visual stimuli of the same orientation, these
repetitions were never exact and neurons could promiscuously
join different ensembles. Interestingly, the same ensembles that
were visually evoked could be detected in the spontaneous activ-
ity, suggesting that cortical circuits may build a response to sen-
sory stimuli using internal building blocks.

Although that recent work described the spatial structure of
neuronal ensembles, it did not examine whether recurrent tem-
poral patterns were also present. To further understand the tem-
poral structure and properties of neuronal ensembles, we have
now used independent analytical tools that capture spatiotempo-
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ral population dynamics (Carrillo-Reid et al., 2011) and applied
it to the same dataset (Miller et al., 2014). As before, our approach
allowed us to identify groups of neurons firing in synchrony that
reliably represent specific visual scenes. However, in addition, we
find that these ensembles of neurons from primary visual cortex
encode natural stimuli with temporally structured network dy-
namics. Sequential activity patterns that emerge in the absence of
visual stimulation are also recruited by recurrent natural scenes,
demonstrating repeated temporally structured network activity
in primary visual cortex of awake mice. Our results indicate that
the representation of visual percepts could be implemented using
endogenous spatiotemporal dynamics of neural circuits.

Materials and Methods
Note on present study
This study represents an independent analysis of experiments described
previously (Miller et al., 2014). Although the raw data are mainly the
same, the questions investigated and analytical tools are different, focus-
ing on the detection and characterization of temporal patterns.

Animal surgery
All animal procedures were performed according to the guidelines of
Columbia University Institutional Animal Care Guidelines and have
been described previously (Miller et al., 2014). Briefly, experiments were
performed on C57BL/6 male mice (n � 4) or on parvalbumin-Cre (n �
1) or somatostatin-Cre (n � 2) � LSL-tdTomato transgenic male mice
obtained from The Jackson Laboratory at the age of postnatal day 40 – 80.
Mice were anesthetized with isoflurane (1–2%). A titanium head plate
was attached to the skull using dental cement. The site for craniotomy
was delimited using a dental drill over left V1. To facilitate head fixation,
mice underwent training to maneuver on a spherical treadmill for 1–3 h
for 2–3 d.

Functional multicell calcium imaging
On the imaging day, the part of the skull marked previously was removed
while mice were anesthetized with isoflurane. Bulk loading was per-
formed using the calcium indicator Oregon Green BAPTA-1 AM (Invit-
rogen) dissolved in 4 �l of DMSO plus 20% Pluronic F-127 (Invitrogen)
and diluted with 35 �l of pipette solution (150 mM NaCl, 2.5 mM KCl, 10
mM HEPES, pH 7.4). Sulforhodamine 101 (Invitrogen) was added to the
solution pipette to label astrocytes. Pipette solution was injected in layer
2/3 of V1 under visual control (10 p.s.i., 8 min per site) in 3 different
locations. Cortical neurons were monitored with a two-photon micro-
scope (Moveable Objective Microscope; Sutter Instruments) attached to
a Ti: sapphire laser (Chameleon Vision II; Coherent) with 880 nm exci-
tation light focused through a 20� [0.95 numerical aperture (NA);
Olympus] or 25� (1.05 NA; Olympus) water-immersion objective.
Scanning and image acquisition were controlled by the Sutter Instru-
ments software Mscan. The optical field recorded was �315 � 315 �m.
Short videos (�720 s) with a sample rate of 125–250 ms/frame were
collected at time intervals of 5–10 min for up to 2 h.

Visual stimulation
Visual stimuli were generated using MATLAB (The MathWorks) Psy-
chophysics Toolbox and displayed on a LCD monitor positioned 15 cm
from the right eye at 45° to the long axis of the animal. Spontaneous
activity in layer 2/3 of visual cortex was recorded under complete dark-
ness in an optically isolated laser room at the beginning of the experi-
ments and sometimes in the middle of the experiments (with a monitor
and room lights turned off). The imaging setup and the objective were
completely enclosed with blackout fabric and a black electrical tape and
there was no detectable light coming into the mouse eye during the
spontaneous condition. Visual stimuli consisted of full-field drifting
gratings or natural scenes. Sine or square-wave gratings (100% contrast,
0.035 cycles/degree, 2 cycles/s) drifting in 8 different directions randomly
were presented for 5 s, followed by 5 s of mean luminescence. Natural
scenes consisted of 10 distinct natural scenes displayed repeatedly for 30 s

using the MATLAB Psychophysics Toolbox synchronized with image
acquisition.

Image processing
Image processing was performed with ImageJ version 1.42q software and
custom-made programs written in MATLAB as described previously
(Mao et al., 2001; Cossart et al., 2003; Carrillo-Reid et al., 2008). Acquired
images were processed to correct motion artifacts (Dombeck et al., 2007;
Evangelidis and Psarakis, 2008; Kaifosh et al., 2013). Active neurons were
automatically identified, coordinates for each cell in a 2D plane were
assigned, and the calcium transients were measured as a function of time.
Calcium transients were computed as changes in fluorescence: (Fi �
F0)/F0, where Fi denotes the fluorescence intensity at any frame and F0

denotes the basal fluorescence of each neuron (Miller et al., 2014). Spike
probability was inferred from calcium signals using a fast, non-negative
deconvolution method (Vogelstein et al., 2010) and then a threshold of 3
SDs above noise was determined from spike probabilities of the entire
population in each experiment. The spike onsets inferred from calcium
signals were used to represent the activity of the network. We constructed
an N � F binary matrix, where N denotes the number of active neurons
and F represents the total number of frames for each video. For the
analysis, only calcium transients elicited by neurons were considered.
Each row in the binary matrix represents the activity of one neuron. To
visualize all of the active neurons, the binary matrix was plotted as a raster
plot in which ones are represented by dots. The time histogram of the
raster plot illustrates the overall behavior of the network (Mao et al.,
2001; Cossart et al., 2003; Carrillo-Reid et al., 2008).

Analytical tools
Vectorization of the network activity. To identify neuronal pools firing in
synchrony, temporal vectors were constructed that represent the simul-
taneous activation of different neurons. We tested the significance of the
peaks of synchrony that we observed against the null hypothesis that the
synchronous firing of neuronal pools is given by a random process
(Shmiel et al., 2005, 2006). We generated 1000 shuffled raster plots (see
“Reshuffling methods” section below) and compared the distribution of
the random peaks against the peaks of synchrony observed in the real
data (Mao et al., 2001; Cossart et al., 2003; Carrillo-Reid et al., 2008).
Peaks of synchrony are defined by all of the adjacent high-activity frames
in a given time window (Carrillo-Reid et al., 2008). Only the peaks of
synchrony with more than the cells expected by chance ( p � 0.01) were
considered for further analysis. Synchronously active neuronal pools de-
fine population vectors representing the overall activity of the network.
Such vectors can be used to describe the network activity as a function of
time (Schreiber et al., 2003; Stopfer et al., 2003; Brown et al., 2005; Sasaki
et al., 2007; Carrillo-Reid et al., 2008). The population vectors represent-
ing the network activity define a multidimensional space in which the
number of dimensions is given by the total number of active cells in
high-activity frames. It has been shown that the temporal vectorization of
the network activity allows the discrimination of similar patterns re-
peated at different times (Schreiber et al., 2003; Ikegaya et al., 2004;
Brown et al., 2005; Carrillo-Reid et al., 2008).

Term frequency–inverse document frequency normalization. After the
identification of the vectors with low probability to be random events
( p � 0.01), we normalized the [N � T] binary matrix (where N �
number of active cells and T � the number of significant vectors) that
represents the activity of the network. The normalization was based on a
classic term frequency (TF)–inverse document frequency (IDF) search
algorithm widely used in the field of natural language processing to rec-
ognize words that are key to relevant documents (Lan et al., 2009; Lu et
al., 2009; Islamaj Doğan and Lu, 2010; Garbarine et al., 2011). The main
purpose of the normalization is to find the neurons that are more rele-
vant to specific visual stimuli. The TF–IDF matrix elements are given by
TF*IDF for each active neuron at each significant frame. TF measures
active neurons normalized by the total number of active neurons for each
frame. However, cells that are frequently active have little effect in defin-
ing neuronal ensembles even though they can be key players orchestrat-
ing the transitions between different groups (Carrillo-Reid et al., 2008).
Therefore, to reduce the impact of highly active neurons in the definition
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of a neuronal ensemble, we computed IDF, which measures the number
of times that a neuron appears in the total number of significant vectors.
For this particular case, IDF was defined as follows: IDF(i) � log(total
vectors/vectors(i)), where vectors(i) denote all of the significant vectors
where neuron i appears. TF–IDF captures how important a word is in a
collection of documents. In the context of the present work, TF–IDF
defines the importance of a specific neuron in a collection of significant
vectors that represent neuronal ensembles.

Representation of multidimensional datasets in time. To construct sim-
ilarity maps, all of the possible vector pairs taken from the normalized
TF–IDF matrix were compared. The similarity index between a pair of
vectors is defined by their normalized inner product (Schreiber et al.,
2003; Sasaki et al., 2007; Carrillo-Reid et al., 2008; Carrillo-Reid et al.,
2009) as follows: cos(�) � A � B /��A�� ��B��, which represents the cosine of
the angle between two vectors. If two population vectors in an “n” di-
mensional space point in the same direction, the similarity index has a
value of 1. In neural network context, high similarity values between two
different time points describe repeated groups of neurons firing in syn-
chrony. The inner product between different elements of a multidimen-
sional space normalized by the magnitude of the elements has been
widely used in search engines because it represents a computationally
efficient algorithm that captures the similarities between documents. The
visualization of the angles between all of the possible vector pairs repre-
sents a multidimensional reduction from “n” dimensions mapped into a
3D space, where the first two dimensions denote the significant vectors as
a function of time and the third dimension indicates the angle between
them. Significant patterns can be identified by vectors denoted by repet-
itive structures in the similarity maps (Victor and Purpura, 1996; Levy et
al., 2001; Schreiber et al., 2003; Morelli et al., 2006; Kreuz et al., 2007;
Carrillo-Reid et al., 2008; Tiesinga et al., 2008). To determine whether
similar patterns of activity repeated in a statistically significant manner,
we shuffled the normalized TF–IDF matrix, preserving the dimensional-
ity of population vectors, and compared the probability distribution of
similarity coefficients from real data and shuffled data.

Identification of neuronal ensembles. To detect different groups from
multidimensional datasets, the cosine similarity of all possible vector
pairs was used. Defined structures in the similarity maps (independent of
the distance function chosen) have been widely used to detect recurrent
patterns (Victor and Purpura, 1996; Levy et al., 2001; Schreiber et al.,
2003; Morelli et al., 2006; Kreuz et al., 2007; Tiesinga et al., 2008). How-
ever, in those approaches, the independent variable considered to per-
form the computations was given by the identity of single neurons.
Similarity maps generated by vectors in which dimensionality is defined
by individual trials give valuable information about neuronal correla-
tions, but cannot capture directly the sequential activity patterns that
define a network. The main difference with our approach is that we
consider the number of active cells as the dimension of the vectors, so our
similarity maps can reveal temporal patterns (Sasaki et al., 2007; Carrillo-
Reid et al., 2008; Carrillo-Reid et al., 2009; Carrillo-Reid et al., 2011).
Neuronal ensembles are defined by a subset of neurons that reocurr at
different times. To highlight significant patterns from similarity maps,
we transform them in a binary matrix M of size (T � T ). The cutoff value
represents the percentage of total cells that are coactive in two different
frames above chance levels. A neuronal ensemble is defined by groups of
neurons with synchronous, recurrent, and alternate activity (Hebb, 1949;
Carrillo-Reid et al., 2008; Carrillo-Reid et al., 2009; Carrillo-Reid et al.,
2011). To identify neuronal ensembles, we obtained the singular value
decomposition (SVD) of the significant patterns matrix. SVD has been
widely used in signal processing analysis because it allows the identifica-
tion of components representing the main features of a given system.
Formally, the SVD of a real matrix can be expressed as the multiplication
of three factors, U, �, and V T, where U and V T represent orthonormal
bases and the elements of � are the singular values. In our particular case,
the matrix M, which contains the information of the significant patterns
of activity, is a real symmetric matrix; so V � U. Therefore, the SVD is
given by M � V � V T. The number of singular values that defines the
total number of neuronal ensembles was determined by the rate of sin-
gular values decaying above chance levels. Rapid decaying singular values
can reproduce original data with high accuracy. SVD is a method to

factorize a dataset into linearly independent components that in this case
represent neuronal ensembles. Analogous results were obtained with
similar approaches such as locally linear embedding and clustering anal-
ysis (Carrillo-Reid et al., 2011). However, the main advantage of using
SVD is the unsupervised identification of neuronal ensembles without
the necessity to define a specific number of clusters; this fact is crucial to
identify the most representative cells during the course of an experiment,
opening the possibility to manipulate ad libitum identified neurons with
single-cell resolution.

Identification of closed cycles with graph theory. After the identification
of the neuronal ensembles, we looked for closed trajectories in the se-
quential activity patterns that are a characteristic of Hebbian cell assem-
blies (Hebb, 1949; Harris, 2005; Carrillo-Reid et al., 2009). Neuronal
ensembles transitions were plotted as a function of time (Lee and Wilson,
2002; Carrillo-Reid et al., 2009; Carrillo-Reid et al., 2011). From these
transitions, we constructed isomorphic directed graphs with the proper-
ties of Hamiltonian or Eulerian cycles. To define sequential patterns
mathematically that occur above chance levels, we just considered Ham-
iltonian or Eulerian closed cycles. The number of closed cycles that
occurred in spontaneous activity or visually evoked activity was signifi-
cantly different compared with the number of closed cycles from shuffled
data. A Hamiltonian cycle of a directed graph (digraph) is a closed tra-
jectory that contains every vertex of the graph exactly once. An Euler
cycle is a closed trajectory passing through every edge exactly once (Di-
estel, 2005). Digraphs, represented by adjacency matrices, allow the au-
tomatic identification of template sequences. Template sequences
indicate repetitive transitions between neuronal ensembles and are use-
ful to identify spatiotemporal patterns with high probability of recur-
rence. The use of graph theory applied to neuronal ensembles
transitions revealed that complex cycles of activity can be composed
by smaller cycles or “primitives” that could represent basic procedures
(Hebb, 1949; Bienenstock and Geman, 1995; Hammer, 2003; Abeles et
al., 2004; Carrillo-Reid et al., 2009).

Cross-correlation analysis. We performed the normalized cross-
correlation between all of the possible combinations of neurons that
belong to the same neuronal ensemble and between all of the combina-
tions of neurons belonging to neuronal ensembles firing in sequence
repeatedly. Note that, because of the multidimensional nature of the
network activity, it is extremely difficult and time consuming to define
neuronal ensembles from an exhaustive cross-correlation of all possible
neuron pairs (Carrillo-Reid et al., 2008; Carrillo-Reid et al., 2011). Cells
belonging to the same neuronal ensemble present high cross-correlation
values at zero time lag, whereas neurons from two sequential neuronal
ensembles have high cross-correlation values at specific time lags that
reflect the temporal structure between two defined groups.

Granger causality. To determine whether the occurrence of a given
neuronal ensemble “causes” the emergence of another neuronal ensem-
ble, we performed a Granger causality test (Granger, 1969) between the
activation time courses of all possible combinations of neuronal ensem-
bles. Although causality per se is a philosophical concept, the Granger
approach infers a practical version of causality by assessing the degree to
which time course “b” can predict time course “a” better than time
course “a” alone. We estimated the activation time course for each neu-
ronal ensemble based on the similarity index function of the most repre-
sentative cells. We then performed a multiple regression of each
ensemble onto several time-shifted versions of itself to obtain R 2 and
then calculated the change in R 2 after adding time-shifted versions of
other ensemble activation time courses (termed herein “Granger co-
efficients”). Granger coefficients reflected R2 change in the time course of
ensemble “a” gained by considering the back-shifted time course of
another ensemble “b” in addition to the back-shifted time course “a.”
To discard nonzero Granger coefficients that could be occurring by
chance, we shuffled the time courses of each ensemble 1000 times,
calculating the random distribution for each shuffle separately for
each experimental condition.

Doublets analysis. To identify sequential pairs of neurons with fixed
time intervals, we performed an exhaustive matching algorithm that
searches for a given time interval in all of the possible combinations of
active neurons (Ayzenshtat et al., 2010). We consider as events only
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doublets that are present above chance levels compared with the net-
work activity shuffled in time or in space. Doublet analysis empha-
sizes the existence of pairs of neurons with structured temporal
activity.

Reshuffling methods. We performed four different spatiotemporal
shuffling paradigms of our datasets, each catered specifically to a point of
interest to robustly assess statistical significance in the absence of obvious
parametric test for population analysis. These approaches involved shuf-
fling 1000 times the binary matrices representing the overall activity of
the network and/or ensemble activation time courses as follows: (1) pre-
serving the interburst intervals but shuffling their orders across time
within cells (used to identify the maximum number of cells coactive by
chance), (2) preserving the activity within time frames but shuffling the
events across cells (used to establish the stability and robustness of en-
sembles while maintaining the dimensionality of the population vec-
tors), (3) preserving the temporal relationships between cells but
shuffling the nature and direction of their sequences by swapping spikes
at the pairwise-level, and (4) randomly time shifting the activity within
each cell (used for assessing the significance of Granger coefficients by
holding autocorrelations constant within cells).

Results
Detecting neuronal coactivations in mouse visual cortex
To measure neuronal responses to visual stimulation in neuronal
populations, we performed in vivo two-photon calcium imaging
from layer 2/3 of primary visual cortex from awake, freely moving
mice (Fig. 1A) because calcium imaging allows the spatial and

temporal study of neural networks with single-cell resolution
(Yuste and Katz, 1991; Ohki et al., 2005; Grewe and Helmchen,
2009; Wallace and Kerr, 2010). For each experiment, the imaged
field of view was �315 � 315 �m, containing on average 80 � 25
active neurons (Fig. 1B; n � 7 mice). For analysis, we assigned 2D
spatial regions of interest to each cell in the field of view and
measured their calcium transients as a function of time (Fig. 1C).
To identify action potential activity represented by calcium tran-
sients, we estimated the spike probability as described previously
(Vogelstein et al., 2010) (Fig. 1D) and considered for analysis
only those signals above a threshold �3 times SDs from the back-
ground fluorescence noise (Mao et al., 2001; Cossart et al., 2003;
Carrillo-Reid et al., 2008). These suprathreshold signals were
used to generate binary arrays that depict population activity as
raster plots (Fig. 1E), where each row represents an active neuron
and each column in the raster plot signals the overall activity of
the network at a specific time.

In these raster plots, neuronal activity was widely distributed
across the entire population of imaged cells (Fig. 1E). Moreover,
the time histogram of population activity (Fig. 1E, bottom)
showed the prevalence of periods of synchronous firing in corti-
cal neurons under both spontaneous and visually evoked activity,
as shown previously (Miller et al., 2014). These spontaneous
peaks of synchrony did not show apparent periodicity and oc-
curred at variable time intervals (76 � 35 synchronous epochs

A B C D

E

Figure 1. Two-photon imaging of population activity in primary visual cortex of freely moving animals. A, Experimental setup. Mice are head fixed to the stage of a two-photon microscope on
top of a foam ball floating in air that allows them to move freely. A monitor placed 15 cm contralateral to the craniotomy site displays different visual stimuli that are computer controlled and consist
of drifting gratings of four orientations moving in two different directions, nonstimulus or natural scenes. For simplicity, orientation bars are represented by lines and not the actual patterns
presented. B, Visual cortical neurons bulk loaded with Oregon green showing the average of 1000 consecutive frames. White dots indicate individual cells. Red circles indicate neurons shown in C.
Scale bar, 50 �m. C, Calcium transients recorded from the cells shown in B. Cortical neurons have episodes of spontaneous activity. D, Spike detection of the calcium transients taken from the insert
in C. Lines on bottom (spikes) indicate neuronal activity. Dashed line indicates a threshold �3 times the SD of noise. Spikes were used to construct binary arrays representing the activity of each
neuron. E, Raster plot representing the overall activity of the network in different experimental conditions is shown at the top. Each row represents an active neuron. Temporal histogram of the
spontaneous activity observed in cortical neurons is shown at the bottom. Dashed line indicates a threshold value used to select the synchrony peaks with a low probability ( p � 0.01) of being
random. Note the presence of spontaneous periods of synchronous activity without apparent periodicity.
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per 300 s, each epoch comprises 6 � 3 active frames; n � 7 mice).
Only peaks of synchronous activity with negligible probability of
occurring by chance were considered for further analysis (Fig. 1E;
p � 0.01; see Materials and Methods).

Multidimensional vectors depict repeated activity patterns
Raster plots can be understood as multidimensional arrays where
each point in time defines a population vector (Fig. 2A) the di-
mensionality of which corresponds to the total number of active
cells (Stopfer et al., 2003; Brown et al., 2005; Sasaki et al., 2007;
Carrillo-Reid et al., 2008). Because cells with high activity levels
can bias the identification of groups of neurons responding to
specific visual stimuli, we performed TF–IDF of the binary arrays
(Fig. 2B). TF–IDF has been used widely in search engines to lower
the weight of frequent terms. In the context of neural activity,
word vectors represent the activity of each cell and document
vectors represent a population vector (Fig. 2B).

To detect repetitions from population vectors above chance
levels, we computed the similarity coefficients (Fig. 2C) of the
normalized TF–IDF matrix from all of the possible combinations
of vectors among different experimental conditions and com-
pared them with the similarity coefficients obtained from shuf-
fled data preserving the activity within time frames (Fig. 2D).
Similarity coefficients above chance levels demonstrated that
similar population vectors occurred in spontaneous and visually
evoked activity. These experiments demonstrated that popula-
tion vectors defining network activity in primary visual cortex

repeat above chance levels, which is con-
sistent with our past work (Miller et al.,
2014).

Identification of neuronal groups
activated by visual stimuli
Even though responses to visual stimuli of
layer 2/3 neurons in primary visual cortex
have been widely characterized in many
experimental conditions (Victor and Pur-
pura, 1996; Tiesinga et al., 2008; Sawinski
et al., 2009; Kampa et al., 2011; Marshel et
al., 2011; Espinosa and Stryker, 2012; Ga-
vornik and Bear, 2014), the identification
of neuronal groups during the course of
an experiment in which coordinated ac-
tivity represents specific visual percepts
remains unexplored because optical or
electrical techniques that provide large-
scale multineuronal data are still relatively
recent.

To identify groups of neurons that re-
spond to a given orientation repeatedly,
we used drifting gratings at four different
orientations and two opposite directions.
Drifting gratings were presented ran-
domly intermixed with interstimulus in-
tervals of the same duration (Fig. 3A), as
described previously (Miller et al., 2014).
Visual responses to drifting gratings
evoked peaks of synchronous activity re-
flecting the overall behavior of the net-
work (Fig. 3A, bottom).

Because individual cells can respond
to multiple orientations (Victor and Pur-
pura, 1996; Mrsic-Flogel et al., 2007;

Marshel et al., 2011; Espinosa and Stryker, 2012), it is difficult to
identify a representative group of neurons that respond to spe-
cific visual stimuli (Kampa et al., 2011). To find neuronal ensem-
bles responding reliably to a given visual stimulus, we analyzed
the network activity as a whole using population vectors because
vectorization allows rigorous and quantitative comparison of ac-
tivity patterns at different times (Schreiber et al., 2003; Brown et
al., 2005; Sasaki et al., 2007; Carrillo-Reid et al., 2008). To detect
repeated patterns of activity, we constructed similarity maps of
the normalized inner product of all possible vector pairs. Simi-
larity maps still reflect the temporal characteristics of the network
activity and can be used to visualize similar population vectors
occurring at specific time points (Sasaki et al., 2007; Carrillo-Reid
et al., 2008; Carrillo-Reid et al., 2009; Carrillo-Reid et al., 2011).
Significant patterns obtained from these similarity maps repre-
sent the existence of stable structures in the responses (Victor and
Purpura, 1996; Levy et al., 2001; Schreiber et al., 2003; Morelli et
al., 2006; Kreuz et al., 2007; Tiesinga et al., 2008) that occurred
above chance levels (Fig. 2D) and can be used to identify the time
when similar population vectors were present (Fig. 3B). The ma-
trix of significant patterns can be factorized by SVD in the three
factors, U, �, and V T. The strongest singular values that define
the total number of neuronal ensembles were determined by the
rate of singular values decaying above chance levels (Fig. 3C). On
average, for the experimental condition of drifting gratings, we
identified 6 � 1 ensembles (Fig. 3C; n � 7 animals) representing
the factors that can reproduce the main features of the original

A B

C D

Figure 2. Representation of network activity as multidimensional arrays. A, Schematic representation of network activity
vectorization. Each vector represents a group of neurons firing in synchrony at a given time point. Cells active at different times (t1,
t2, tn) are highlighted in red (left). Each frame is represented as a binary vector of “n” dimensions. The dimensionality of the vectors
is given by the total number of active cells in a specific field of view (80 � 25 neurons; n � 7 mice). B, TF–IDF normalization was
calculated to decrease the overall weight of neurons with high activity (red marks). C, Schematic representation of cosine similarity
used to define repeated activity patterns. D, Probability distribution of similarity coefficients from all possible vector pairs between
three different experimental conditions. Shaded area denotes not significant values ( p � 0.05) for a range of similarity coeffi-
cients. For similarity coefficients �0.24, real data are significantly different from shuffled data.
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Figure 3. Neuronal ensembles define recurrent groups of neurons responding to specific visual stimuli. A, Raster plot of network activity responses to drifting gratings (top). Each row represents
an active neuron. Gray stripes indicate the duration of the stimuli. Temporal histogram represents the number of coactive cells over time (middle). Dashed line indicates a threshold value used to
select the synchrony peaks with low probability ( p � 0.01) of being random events. Note that peaks of synchronous activity can be observed also in the absence of visual stimulation. Four different
orientations and two directions were presented randomly (bottom). B, Binary matrix extracted from similarity map representing significant patterns of activity factorized by SVD. Black patterns
indicate recurrent coactive cells at different moments. C, Magnitude of singular values used to determine the number of neuronal ensembles. Red line indicates 2� the magnitude of singular values
from shuffled data. Cutoff value indicates the most representative number of neuronal ensembles corresponding to a significant change in slope of the magnitude of contiguous singular values.
Networks of 80 � 25 neurons stimulated with four drifting gratings can be defined by 6 � 1 neuronal ensembles (n � 7 mice). D, First six factors of SVD that reproduce reliably the overall behavior
of the network. Bars on top indicate orientations; empty squares represent recurrent neuronal ensembles appearing in the absence of visual stimuli. E, Neuronal ensembles sorted in time defined
by the most representative factors of singular value decomposition. Each row represents a neuronal ensemble. Note that some neuronal ensembles occurred spontaneously in the absence of visual
stimulation (empty squares). A neuronal ensemble represents a group of cells with synchronous, recurrent, and alternating activity. F, Calcium transients from five of the most representative cells
that defined neuronal ensemble 1 (blue; 90 degrees orientation). Blue stripes represent visual stimuli with 90 degrees orientation. Some cells responded to only one orientation and others responded
to multiple orientations. Colors on bottom depict different orientations. Note that neuronal ensembles entrained by drifting gratings represent neurons with synchronous and recurring activity
imposed by visual stimuli. G, Similarity function of the most representative neurons (core) responding to 90 degrees orientation (top). A threshold of 3 times the SD of the noise indicates when a
specific neuronal ensemble matches a given drifting grating (blue). The percentage of matches demonstrates that core ensembles can predict when a given visual stimuli was presented (bottom;
p � 0.0001; Mann–Whitney test). H, Spatial maps of the neurons belonging to different neuronal ensembles. Black cells show the most representative neurons of each ensemble (core) that can
reproduce the overall behavior of the network. Scale bar, 50 �m. I, Center of mass from different ensembles (left) and the mean distance between all of the neurons from each ensemble (right)
demonstrate that ensembles are anatomically widespread. J, Percentage of coactive cells between ensembles and core ensembles ( p�0.0001; Mann–Whitney test). K, Orientation selectivity index
from neurons belonging to ensembles or cores ( p � 0.3095; Mann–Whitney test). Note that cells with broad tuning can be part of core ensembles.
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data. Each factor from SVD depicts repetitive features of a mul-
tidimensional array that in our case represents the time when a
specific orientation was presented (Fig. 3D). Repeated coactive
patterns were readily observable and corresponded to distinctive
orientation gratings (Fig. 3E), which is consistent with our pre-
vious work (Miller et al., 2014).

Although our analytical tools allowed us to define neuronal
ensembles that distinguished specific orientations accurately, we
could not separate between opposite directions at the population
level, consistent with the fact that direction selectivity of individ-
ual neurons in V1 is lower than orientation selectivity (Marshel et
al., 2011). These results confirmed the existence of neuronal en-
sembles in primary visual cortex that respond to a given orienta-
tion and further extend our previous work (Miller et al., 2014)
identifying automatically the time when a given ensemble occurs.

Cells with diverse orientation selectivity compose
neuronal ensembles
To study the relation between neuronal ensembles and orienta-
tion selectivity, a known functional property of the mammalian
primary visual cortex (Hubel and Wiesel, 1959), population re-
sponses to visual stimuli were studied. We identified the most
representative neurons of each neuronal ensemble (base ele-
ments or core neurons) using a classic search engine algorithm to
recognize words that are key to documents (Fig. 2; see Materials
and Methods). In the context of population dynamics, each neu-
ron represents a word and documents define the collection of
high-dimensional vectors comprising each group. Calcium tran-
sients from neurons belonging to a given ensemble showed that
neuronal ensembles could be composed of cells that just re-
sponded to a given orientation and of cells responding to multi-
ple orientations (Fig. 3F). Base elements (core neurons)
consisted of groups of 14 � 5 cells (n � 7 animals) and repro-
duced the overall network behavior (Fig. 3G).

Ensembles did not simply reflect spatial clusters (Fig. 3H)
because the centroid of cells belonging to each ensemble was
located in the middle of the optical field (Fig. 3I, left) and the
mean distance between all of the neurons from each ensemble
covered most of the recorded area (Fig. 3I, right). This altogether
confirmed a “salt and pepper’ anatomical distribution of neurons
(Espinosa and Stryker, 2012) despite highly tuned visual re-
sponses. Cells belonging to core ensembles had low overlap (Fig.
3J), indicating the possibility to manipulate identified subnet-
works with single-cell resolution to drive behavioral outcomes.
Interestingly, even if core ensembles were very selective for a
given orientation, they could still have neurons with low orienta-
tion selectivity (Fig. 3K). Our analysis thus demonstrated that
specific assortments of neurons reliably respond to a given visual
stimuli as a group, a first step to studying the temporal character-
istics of neuronal ensembles.

Natural scenes trigger sequences of neuronal ensembles
We then turned our attention to the temporal analysis of the
dynamics between neuronal ensembles using natural scenes as
visual stimulus. Sequential activity patterns between neuronal
groups have been proposed as associated cells that can act as a
temporally closed system after sensory stimulation has ceased,
constituting the implementation of a mental representation
(Hebb, 1949). To identify repetitive sequential patterns between
neuronal ensembles, we created an artificial experimental para-
digm in which we presented 10 different natural scenes for 30 s
repeated in the same sequential order many times. This enabled
us to be certain that the transitions observed were evoked by our

visual stimuli and not by external factors independent of visual
stimulation. The expectation was to find closed cycles of activity
between neuronal ensembles that were precisely related to recur-
rent stimuli repeated many times. To describe sequential activity
patterns from cortical networks in vivo, we applied graph theory
techniques to the temporal transitions between neuronal ensem-
bles identifying template pathways embedded in closed cycles
(Fig. 4A; see Materials and Methods). For this analysis, we just
considered Hamiltonian or Eulerian closed cycles that are repre-
sented by unique adjacency matrixes (Fig. 4B; see Materials and
Methods) and allow the identification of recurrent transitions
between neuronal ensembles (Carrillo-Reid et al., 2009; Carrillo-
Reid et al., 2011).

Closed cycles have unique mathematical properties that allow
their identification from a sequence of events. It is important to
highlight that each transition implies specific groups of neurons
firing in synchrony and recurrently above chance levels deter-
mined from shuffled data. To investigate whether closed cycles
between neuronal ensembles in our experiments occurred above
chance levels, we used a conservative approach. We shuffled the
transitions describing a given experiment and compared the total
number of Hamiltonian or Eulerian closed cycles that appeared
in real data with the total number of closed cycles that can emerge
by chance in spontaneous and visually evoked conditions. In-
deed, closed cycles describing our experiments were significantly
different from closed cycles emerging by chance (Fig. 4C). More-
over, the same closed cycles that appeared in real data were never
found in shuffled data. We also wondered what the probability
was of finding a given sequence above chance levels for a specific
number of vertices. To answer this question, we calculated the
probability distribution of finding a random sequence in a graph
as a function of the number of vertices (Fig. 4D). In graphs with
�4 vertices, the probability of finding a given sequence was
higher than chance levels (p � 0.05). Note that, for our analysis,
each vertex represents a neuronal ensemble. This analysis dem-
onstrated that the closed cycles and sequential patterns identified
in our experiments could not be explained by chance occurrence.

We already demonstrated that neural activity defined by high-
dimensional vectors allows the reliable representation of specific
drifting gratings (Fig. 3); however, visual experience in the real
world is composed of the successive representation of complex
scenes with defined spatiotemporal properties. We therefore
tested the hypothesis that specific neuronal ensembles encoded
different natural scenes. We expected that natural scenes pre-
sented repeatedly generate recurrent transitions between a con-
stant subset of temporally organized ensembles. The network
responses captured by raster plots (Fig. 5A, top) showed that
natural scenes evoked peaks of synchronous activity without ap-
parent periodicity (Fig. 5A, bottom) even if the same scenes were
repeated in exactly the same order. However, similarity maps
representing the angle between these high-dimensional popula-
tion vectors depicted stereotypical trajectories showing repetitive
responses illustrated by parallel lines to the main diagonal (Fig.
5B). The strongest factors of these high-dimensional arrays dem-
onstrated that natural scenes could also be encoded by neuronal
ensembles (Fig. 5C). As in the case of specific orientations, neu-
ronal ensembles can distinguish accurately between different nat-
ural scenes (67 � 14% of matching; n � 7 animals). Graph theory
applied to the temporal transitions between neuronal ensembles
allowed us to identify highly repetitive sequences embedded in
closed cycles (Figs. 5C, colored arrows), as we expected from a
recurrent set of natural scenes. Calcium transients from the most
representative neurons of each ensemble demonstrated the exis-
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tence of sequential activity between neu-
ronal pairs (Fig. 5D, colored arrows). To
further corroborate that neuronal ensem-
bles and sequential activity patterns were
not an artifact of our analytical methods,
we computed the cross-correlation of all
possible combinations of neurons be-
tween cells belonging to each neuronal
ensemble (Fig. 5E, top left) and cells be-
longing to different neuronal ensembles
firing in sequence (Fig. 5E, bottom left).
Accordingly, the cross-correlation values
between cells belonging to the same neu-
ronal ensemble displayed maxima at
zero time lag, whereas cells belonging to
sequential patterns showed high cross-
correlation values at time lags determined
by the interval between different natural
scenes (maximum normalized correlation
coefficients: 0.18 � 0.082 for neuronal en-
sembles; 0.12 � 0.023 for sequential pat-
terns; n � 7 mice; for clarity, just one
sequence is highlighted). The presence of
cross-correlation peaks at nonzero lag
(Fig. 5E, right) indicated that, during nat-
ural scenes, neuronal groups are tempo-
rally tied to visual stimuli. Similar to
drifting gratings, the spatial locations of
neurons belonging to each neuronal en-
semble (Fig. 5F) defining natural scenes
presented a widespread distribution (Fig.
5G). Conversely, as for drifting-grating
conditions, there was a low overlap be-
tween core ensembles (Fig. 5H). Interest-
ingly, neurons composing a given core
ensemble exhibited either high or low ori-
entation selectivity (Fig. 5I). These results
demonstrate that specific neuronal en-
sembles respond recurrently to a given set
of natural scenes and that multidimen-
sional population vectors comprise the
temporal characteristics of the overall
network activity and thus could serve to
encode the temporal structure of the
stimulus.

Spontaneous neuronal coactivations
show sequential activity patterns
Our previous results showed that different
natural scenes changing in time could be en-
coded by a stereotyped succession of neuro-
nal groups or ensembles. However, whether
primary visual cortex can generate sequen-
tial activity patterns in the absence of repet-
itive visual stimuli remains unknown. If endogenous temporal
cortical patterns are the substrate of dynamic visual experience, it is
predicted that the spontaneous activity of neuronal populations
should also generate synchronous, recurrent, and sequential activity,
as has been recently demonstrated in auditory cortex (Luczak et al.,
2013). To test this, we recorded the spontaneous activity of cortical
neurons that were never exposed to our natural scenes stimuli and
applied the same analytical tools that we used previously to detect
sequential activity patterns in population activity.

Spontaneous activity was recorded with monitors and lights
turned off. The imaging setup and the objective were completely
enclosed with blackout fabric and black electrical tape so that no
detectable light cues were coming into the mouse’s eyes during
spontaneous recordings. Consistent with previous work (Miller
et al., 2014), raster plots representing the overall activity of the
recorded neurons (Fig. 6A) showed that the number of syn-
chrony peaks between spontaneous and evoked activity were not
significantly different (Fig. 6A, bottom; 76 � 35 peaks in sponta-
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Figure 4. Identification of closed cycles of activity describing sequential activity patterns using graph theory. A, Cell assemblies
described by Hebb. Each letter represents a group of neurons firing in synchrony. Arrows depict the transition between two
neuronal ensembles. Numbers indicate the transition between different neuronal ensembles as a time function. Letters on bottom
indicate the “sentence” describing all of the transitions. The graph depicting sequential patterns defined by Hebb can be trans-
formed by graph theory in an isomorphic graph in which each vertex represents only one vertex of the original graph. Numbers on
bottom indicate transitions between neuronal ensembles in function of time. B, Closed cycles of activity extracted from the
isomorphic graph that depicts the transitions between neuronal ensembles. Each closed cycle is defined by a unique adjacency
matrix. Note that some pathways can be part of different closed cycles. C, Total number of closed cycles that can be found during
spontaneous ( p � 0.0001; Mann–Whitney test) and visually evoked activity ( p � 0.0007; Mann–Whitney test) in real and
shuffled data. Note that exactly the same closed cycles that appeared in real data were never found in shuffled data. D, Probability
distribution of finding a specific sequence in a closed cycle as a function of the number of vertices. Note that, for closed cycles with
�4 vertices, the probability of finding a specific sequence is above chance levels ( p � 0.05).
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neous activity vs 75 � 23 peaks in natural scenes; n � 7 mice). As
in the case of natural scenes, similarity maps of population vec-
tors showed repetitive structures suggesting the existence of neu-
ronal ensembles firing in sequences (Fig. 6B). The strongest
factors of our multidimensional datasets representing spontane-
ous activity of awake mice demonstrated recurrent neuronal en-
sembles (Fig. 6C; 5 � 1 neuronal ensembles/300 s; n � 7 mice).
Graph theory techniques applied to the transitions between en-
sembles allowed us to identify recurrent sequential patters be-
tween neuronal ensembles generated endogenously (Figs. 6C,D,
colored arrows). Intriguingly, calcium transients from pairs of
neurons belonging to a given sequential pattern during sponta-
neous activity showed 300 � 85% more repetitive transitions
(Fig. 6D, colored arrows) than the ones observed at the popula-
tion level in the same time window. Note that, at the population

level, many cells must fire synchronously to be considered part of
a neuronal ensemble.

Neurons belonging to the same ensemble showed high cross-
correlation peaks at zero time lag (Fig. 6E, top left), whereas cells
belonging to a recurrent sequence showed high cross-correlation
values at nonzero time lags (Fig. 6E, bottom left, only one se-
quence is highlighted). Conversely, cross-correlation peaks at
nonzero time lags showed that spontaneous ensembles do not
appear periodically (Fig. 6E, top right) and that sequential pat-
terns between ensembles have fixed time lags (Fig. 6E, bottom
right). Similar to drifting gratings and natural scenes the spatial
distribution of neurons belonging to each neuronal ensemble
during spontaneous activity (Fig. 6F) was widespread (Fig. 6G).
In addition, neurons belonging to core ensembles showed even
less overlap than all of the neurons associated with a given ensem-
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Figure 5. Visual stimulation with natural scenes trigger sequential activity patterns. A, Raster plots representing the overall network activity evoked by 10 different natural scenes presented
recurrently in exactly the same temporal order (blue dashed vertical lines delimit the duration of each sequence). B, Similarity map illustrating the visualization of recurrent sequential activity
patterns. Note that stereotyped transitions between neuronal ensembles are represented by lines parallel to the main diagonal. C, Neuronal ensembles sorted in time representing stereotyped
sequential activity patterns from the network activity reflecting the same series of scenes presented many times. Neuronal ensembles are locked in time to visual stimuli. D, Calcium transients of the
most representative cells belonging to a specific neuronal ensemble. Numbers depict neuronal ensembles. Percentages indicate the conditional probability to go from one neuronal ensemble to
another. Dotted lines delimit the beginning of the same sequence of natural scenes. Note that stereotyped sequential activity patterns can be observed at the single-cell level. E, Cross-correlation
plots (left) of neurons belonging to the same neuronal ensemble (top) and neurons belonging to different neuronal ensembles firing in sequence (bottom). Each trace represents the average of all
possible combinations of neurons. Red lines denote confidence levels. Significant cross-correlation peaks at nonzero time lags (right) demonstrate that ensemble responses are tied to the visual
stimuli presented. Note that visual stimulation triggers recurrent sequential activity patterns. F, Spatial maps of the neurons belonging to each neuronal ensemble. Black cells indicate the most
representative cells. Red neurons show the ones highlighted in D. Scale bar, 50 �m. G, Center of mass from different ensembles (left) and the mean distance between all of the neurons from each
ensemble (right) demonstrate that ensembles are anatomically widespread. H, Percentage of coactive cells between ensembles and core ensembles ( p � 0.0001; Mann–Whitney test). I,
Orientation selectivity index from neurons belonging to ensembles or cores ( p � 0.5054; Mann–Whitney test). Note that cells with broad tuning can be part of core ensembles.
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ble (Fig. 6H) and, as it was for drifting gratings and natural scenes,
the elements composing spontaneous ensembles displayed a wide
range of orientation selectivity indexes (Fig. 6I). Our results demon-
strate the existence of preferred transitions between two different
neuronal groups during spontaneous activity.

Similarity between spontaneous and evoked sequential
neuronal coactivations
Finally, we investigated whether the temporal patterns found in
spontaneous activity were related to those under visual stimulation.
To do this, we first recorded spontaneous population activity in the
absence of visual stimuli, making sure that no other visual cues were
seen by the mice (see Materials and Methods), and then presented
natural scenes repeated in the same order several times. We already
demonstrated the existence of highly similar population vectors be-
tween spontaneous and visually evoked activity above chance levels

(Fig. 2). Because population vectors represent neuronal ensembles,
our working hypothesis was that neuronal ensembles evoked by vi-
sual stimulation also appeared spontaneously in the absence of ex-
ternal stimuli. Indeed, the strongest factors resulting from the
network activity demonstrated that 85 � 10% (Fig. 7A; n � 7 mice)
of the ensembles that appeared before natural scenes exposure also
recurred during visual stimulation, which was consistent with our
previous work (Miller et al., 2014). The representation of neuronal
ensemble transitions as directed graphs revealed that the same recur-
rent transitions between neuronal ensembles generated endoge-
nously in the spontaneous activity were also evoked by visual
stimulation (Figs. 7A,B, colored arrows; 50 � 15% of sequential
activity patterns evoked by visual stimuli were present in spontane-
ous activity; n � 7 mice).

Calcium transients from the most representative elements of
each neuronal ensemble illustrate that the same neurons had recur-
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Figure 6. Sequential activity patterns are present in spontaneous activity. A, Raster plots representing the overall network activity in the absence of visual stimulation. B, Similarity map
illustrating recurrent sequential activity patterns. Note repeated structures at different times. C, Neuronal ensembles sorted in time. Recurrent transitions between neuronal ensembles are denoted
by arrows. D, Calcium transients of the most representative cells defining each neuronal ensemble. Each arrow defines a pathway between two neuronal ensembles. Note repetitive sequential
patterns that appeared spontaneously without visual stimuli. Percentages indicate the conditional probability between two different neuronal ensembles. E, Cross-correlation plots (left) of neurons
belonging to the same neuronal ensemble (top) and neurons belonging to different neuronal ensembles firing in sequence (bottom). Red color represents the transition between ensemble number
5 and ensemble number 1. Significant peaks at nonzero time lag (right) show that spontaneous ensembles (top) and sequences (bottom) can appear at different time intervals. F, Spatial maps of
the neurons belonging to each neuronal ensemble. Black cells indicate the most representative cells. Red neurons show the ones highlighted in D. Scale bar, 50 �m. G, Center of mass from different
ensembles (left) and the mean distance between all of the neurons from each ensemble (right) demonstrate that ensembles are anatomically widespread. H, Percentage of coactive cells between
ensembles and core ensembles ( p � 0.0001; Mann–Whitney test). I, Orientation selectivity index from neurons belonging to ensembles or cores ( p � 0.6905; Mann–Whitney test). Note that cells
with broad tuning can be part of core ensembles.
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rent transitions during spontaneous activity
and visual stimuli (Fig. 7C, colored arrows).
To investigate whether recurrent transitions
observed in both spontaneous and visually
evoked activity occurred above chance lev-
els, we shuffled the transitions of spontane-
ous activity and searched for the same
recurrent transitions during natural scenes
and in shuffled data. This analysis demon-
strated that recurrent sequences considered
in the present analysis were indeed above
chance levels (Fig. 7D). Interestingly, the
mean time interval of these transitions did
not significantly differ between spontane-
ous and natural scenes conditions (Fig. 7E),
suggesting that pairs of neurons belonging
to a given sequential pattern could have
fixed time intervals. These data showed that
specific sequential activity patterns occur-
ring in spontaneous activity above chance
levels could be entrained by visual stimula-
tion as if visual stimuli used temporal motifs
already present in cortical microcircuits.

Precise firing sequences underlie
sequential patterns
The fact that similar sequential patterns
existed at different time suggests that
spontaneous cortical activity could be
represented by a highly organized tempo-
ral structure, such as precise firing se-
quences previously described in monkey
cortex during behavioral tasks (Abeles et
al., 1993). To test this hypothesis, we used
a completely independent analysis focus-
ing on repetition of neuronal pairs (dou-
blets), defined as a temporal sequence
between two cells with a fixed time inter-
val (Fig. 8A). We only considered as dou-
blets those that were repeated above
chance levels after spatial and temporal
shuffling (Fig. 8B). Exhaustive template
matching of doublets from spontaneous
activity of cortical cells (Fig. 8C; 20 � 10
doublets for 5 min intervals; n � 5 ani-
mals) demonstrated multiple pathways
between pairs of neurons reverberating
over relative long time periods (one neu-
ron can be part of 5 � 3 doublets); 73 �
8% of neurons that participate in doublets
also take part in the peaks of synchronous
activity that defined neuronal ensembles
(Fig. 8C, bottom).

Doublets analysis revealed the exis-
tence of an underlying temporal structure
between neuronal pairs of endogenous
generated sequential activity patterns.
Interestingly, doublets appeared more
frequently than sequential transitions be-
tween neuronal ensembles, suggesting
that the synchronization of neurons that
define an ensemble can be composed by
multiple motifs from a wider area than the
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Figure 7. Similarity between endogenous and evoked sequential activity patterns. A, Neuronal ensembles sorted in time
representing spontaneous activity (left) can also be evoked by repetitive visual stimulation (right). Note the existence of stereo-
typed activity during natural stimuli conditions reflecting the same series of scenes presented many times. Note that sequential
activity patterns elicited by natural stimuli were also present in spontaneous activity before exposure to visual stimuli. B, Graph
theory techniques applied to the transitions between neuronal ensembles depicted sequential activity patterns (colored arrows)
that appeared spontaneously (left) and in the presence of natural stimuli (right). Each colored arrow defines a pathway between
two neuronal ensembles that is present in both conditions. C, Calcium transients of the most representative cells belonging to each
neuronal ensemble in the absence (left) and the presence (right) of visual stimuli. Percentages indicate the conditional probability
to go from one neuronal ensemble to another. Note that sequential patterns recruited by natural stimuli are also present in
spontaneous activity. Visual stimulation triggers endogenous generated neuronal ensembles, indicating that sequential activity
patterns recruited by sensory input are imprinted in the network. D, Total number of sequences that can be found in spontaneous
activity that were recruited by visual stimulation compared with the number of sequences that can be found in shuffled data. Note
that the recurrence between spontaneous and natural scenes is statistically significant compared with the shuffled condition ( p �
0.0078; Wilcoxon matched-pairs signed-rank test). E, Interval of recurrent sequences in spontaneous activity compared with
natural scenes is not significantly different ( p � 0.1488; Mann–Whitney test).
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optical field recorded. Our experiments demonstrated, by two
completely independent analytical approaches, that temporally
structured sequential activity generated spontaneously (in the
absence of visual stimuli) can be repeated in the same order at
different time points, showing the existence of precise firing se-
quences in these recordings (Abeles et al., 1993).

Prediction of future neuronal ensembles
If neuronal ensembles occur in repeated sequences, then the ac-
tivation of some ensembles, either spontaneous or evoked,
should predict the occurrence of the next ensemble within a given
sequence. To test this hypothesis, we first calculated Granger-
causal coefficients on estimated activation time courses for each
neuronal ensemble pair transition (Fig. 9A; see Materials and
Methods). Granger causality was developed in economics, but
has been also used in neuroscience as a straightforward compu-
tation to assess the potential for causal relationships between
variables. We compared our estimated Granger coefficients (es-
timates of causal influence of one ensemble on the activation of
another in a given sequence) to a bootstrapped random distri-
bution of coefficients from time-shuffled data to identify
ensemble transitions that are statistically significant and com-
pared these coefficients for the same ensemble pairs between
natural scenes and spontaneous conditions. Based on the max-

imum interval between activated ensembles in spontaneous
activity (Fig. 6E, bottom right), we included time lags of up to
15 s in our analysis.

Many ensemble transitions (Fig. 9B, coefficients, black trian-
gles) were statistically significant above the 95 th percentile level
(Fig. 9B, shaded area) for both spontaneous and natural scenes
conditions. Because natural scenes stimuli displayed temporal
regularity (repeats) and likely evoked temporally structured ac-
tivity, it is expected that the positive tail bootstrapped random
distribution of coefficients is longer than in the spontaneous case,
yet many of the Granger coefficients remain demonstrably signif-
icant (also as expected). From the scatterplot of coefficients (Fig.
9C), it is interesting that, whereas some significant coefficients
(Fig. 9C, red circles) have high values only in the externally driven
natural scenes condition, the opposite is not true for the spon-
taneous condition. Therefore, spontaneous sequential activity
patterns that occur above chance level could be entrained by
natural stimuli, suggesting an intrinsic temporal structure in
the network.

We demonstrated that neuronal ensembles define sequential
activity patterns. Because the activation of a specific group of cells
is temporally tied to another set of neurons, visually evoked ac-
tivity recruits a specific subset of sequential patterns that could
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Figure 8. Precise firing patterns underlie sequential activity. A, Schematic representation of
template doublets. A doublet is defined as a recurrent sequence between two cells with fixed
time interval occurring above chance. Each color depicts a different doublet pathway repeated
at distinct time points. B, Probability distribution of doublet recurrence used to determine
doublets above chance levels. Doublets represent alternate pathways of activity. Note that
doublet analysis is independent from neuronal ensemble identification. However, dou-
blets and neuronal ensembles demonstrate temporally structured network activity in
primary visual cortex. C, Raster plot of spontaneous activity from visual cortical neurons
showing doublets. Each color denotes the same pair of neurons firing in sequence with a
fixed time interval. Doublet elements appeared during spontaneous peaks of synchronous
activity (bottom).
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Figure 9. Prediction of future neuronal ensembles. A, Similarity function across time for
each neuronal ensemble during spontaneous and evoked activity. Note that the similarity index
increases every time that a given ensemble is active. Red arrows indicate transitions between
different ensembles. B, Granger causality analysis supports the predictive relationships be-
tween ensemble pairs. Granger causality coefficients (change in R 2) between several neuronal
ensemble pairs occur above chance levels (black triangles). Random coefficients were calcu-
lated between all ensemble pairs by independently shifting time courses within pairs 1000
times. Dashed areas denote 95% of the random distribution of all possible combinations be-
tween ensembles. C, Scatterplots of Granger coefficients showing that transitions between two
neuronal ensembles appearing spontaneously can be entrained by natural stimuli. Significant
ensemble pairs from B are filled circles.
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also be observed spontaneously (Fig. 10). Therefore, sensory
evoked activity could recruit preexistent temporal pathways from
spontaneous activity.

Discussion
We used two-photon calcium imaging of layer 2/3 of primary
visual cortex from freely moving mice combined with neuronal
population analysis to demonstrate that: (1) analysis of network
activity using high-dimensional population vectors allows the
identification of groups of neurons (ensembles) that repeatedly
respond to specific visual stimuli, (2) neuronal ensembles repeat
in sequential patterns that can be observed in endogenous and
visually evoked activity, (3) temporally precise firing sequences
are present at the single-cell level, and (4) sequential patterns can
be used to predict the occurrence of future neuronal ensembles.

Identification of neuronal ensembles in multineuronal recordings
Although the methodology of calcium imaging has allowed the
study of multineuronal activity with single-cell resolution for
more than two decades (Yuste and Katz, 1991; Mao et al.,
2001; Cossart et al., 2003; Ikegaya et al., 2004; Ohki et al., 2005;

Sasaki et al., 2007; Carrillo-Reid et al., 2008; Carrillo-Reid et
al., 2009; Dombeck et al., 2009; Harvey et al., 2009; Miller et
al., 2014), the analytical tools with which to characterize net-
work activity are still in development (Carrillo-Reid et al.,
2011; Churchland et al., 2012; Cunningham and Yu, 2014),
even though they are as important as the optical tools with
which to perform the recordings. In this study, we used linear
algebra to extract the spatiotemporal features of network ac-
tivity and demonstrate the existence of specific groups of cells
in primary visual cortex with synchronous, recurrent, and al-
ternating activity.

The main difference between our analytical tools and previous
approaches searching for temporal properties of network activity
resides in the representation of the overall activity as an array of
multidimensional population vectors in which the main focus is
on time points. Because each population vector is independent of
the recording length our approach allows faster identification of
recurrent groups of cells firing together. An alternative approach
to finding ensembles could be to compute all possible correla-
tions between all cells recorded. However, cross-correlation be-

Figure 10. Diagram summarizing sequential activity patterns. Visual stimuli recruit preexistent sequential activity patterns. Each neuronal ensemble is defined by a group of cells firing in
synchrony. Numbers indicate different neuronal ensembles (colored neurons denote active cells). The same groups of cells could define neuronal ensembles during spontaneous activity and visual
stimulation. Arrows represent sequential transitions between different neuronal ensembles. Sequential activity patterns entrained by visual stimuli could drive behavioral outcomes, perform
pattern completion, or transfer time information to other cortical areas. Red arrows denote sequential patterns recruited by visual stimulation; blue arrows indicate preexistent sequential patterns
present in spontaneous activity. Sensory evoked activity can recruit preexistent temporal pathways found in spontaneous activity.
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tween pairs of neurons depends on the recording length, making
computation time longer.

The understanding of the spatiotemporal properties from net-
work activity considered as multidimensional arrays involves the
use of dimensionality reduction techniques (Sasaki et al., 2007;
Carrillo-Reid et al., 2011) and a priori selection of a few compo-
nents that preserve the features of interest (Churchland et al.,
2012). Because we were interested in the nonsupervised identifi-
cation of groups that can represent a series of visual stimuli, we
used an alternative approach consisting of the visualization of the
angles between all of the possible pairs of vectors (Sasaki et al.,
2007; Carrillo-Reid et al., 2008). The angles between all of the
vectors define similarity maps, which represent a reduction of the
dataset dimension but allow the visualization of the original tem-
poral features. The factorization of the significant patterns ob-
tained from similarity maps can then be used to extract the time
when a specific group of neurons fired recurrently (Fig. 3). The
main difference between SVD factorization and other dimen-
sionality reduction algorithms is that the number of neuronal
ensembles is given by the magnitude of the singular values, so it is
not necessary to define a priori the number of groups. We dem-
onstrated that the strongest factors taken from SVD represent
groups of neurons firing recurrently to specific visual stimuli
(Fig. 3).

Evoked neuronal ensembles recapitulate spontaneous ones
Groups of neurons responding to visual stimuli were also present
spontaneously in the absence of visual stimulation. Because our
recordings from spontaneous activity were performed in the ab-
sence of any visual cues or external factors (see Materials and
Methods), the most parsimonious interpretation is that neuronal
ensembles found in spontaneous activity represent groups of cells
that were imprinted in cortical circuits during the animal’s life.
The fact that neurons with similar tuning properties have higher
probability to be connected (Ko et al., 2011) supports this hy-
pothesis. Indeed, spontaneous activity in auditory cortex also
shapes the responses to sensory stimuli (Luczak et al., 2009; Har-
ris et al., 2011; Luczak et al., 2013).

Interestingly, neuronal ensembles, responding to a specific
visual stimulus, are spatiotemporally flexible. Therefore, neurons
belonging to different ensembles overlapped (�30%; Figs. 3J,
5H, 6H). At the same time, the most representative neurons of
each ensemble (core) have significantly less overlap (�10%) with
other cores (Figs. 3J, 5H, 6H), indicating that a subset of neurons
remains stable over long time periods. Recently, it has been
shown that strongly coupled neurons remain stable during sen-
sory stimuli or spontaneous activity, supporting the idea of a
finite repertory of stable microcircuit motifs (Okun et al., 2015).
The stability of specific groups of neurons opens the possibility of
manipulating targeted populations using optogenetics with
single-cell resolution. The relation between population coupling
and cortical ensembles deserves further study because it may re-
veal general connectivity rules between groups of neurons related
to physiological events. Interestingly, neurons with broad orien-
tation tuning can be part of core ensembles (Figs. 3K, 5I, 6I),
suggesting that they could encode different aspects of visual stim-
uli, the spatiotemporal environment, or the context as a whole.
Because in primary visual cortex, interneurons have broad orien-
tation properties (Kerlin et al., 2010) and high population cou-
pling (Okun et al., 2015), they could have a pivotal role in the
orchestration of neuronal ensembles.

The widespread spatial distribution of neuronal ensembles
could suggest an optimized cortical architecture to allow parallel

processing of external events and fastest exchange of information
between different representations. However, the lack of a distinct
anatomical organization found in the present study could be a
limitation of the 2D recording techniques. The development of
real time holographic imaging will be useful for our understand-
ing of cortical microcircuits in 3D (Nikolenko et al., 2008).

Hebbian cell assemblies in cortical microcircuits
Our experiments show that visual stimulation is able to recruit
endogenous generated sequential patterns with temporally struc-
tured characteristics. The existence of closed cycles of activity
with high recurrence was proposed by Hebb as a mechanism to
capture, maintain, and consolidate relevant sensory inputs
(Hebb, 1949). Our experiments are consistent with Hebb’s hy-
pothesis that cortical networks are indeed reverberant microcir-
cuits composed of neuronal ensembles that are activated in
closed pathways. Sequential activity patterns have been suggested
as a mechanism underlying delay-based tasks (Abeles et al., 1993;
Seidemann et al., 1996; Funahashi, 2006), spatial navigation
(O’Keefe and Recce, 1993), complex motor actions (Hahnloser et
al., 2002), and sensory perception (Luczak et al., 2007; Shuster-
man et al., 2011). The observation of recurrent sequences sug-
gests that prolonged maintenance of neural activity could be
mediated by the continuous replaying of sequential patterns,
which is contrary to the view that prolonged neural activity rep-
resents tonic firing of individual cells.

Because our goal was the study of ensemble temporal proper-
ties, we generated recurrent sequential patterns artificially by re-
petitive stimuli (natural scenes). Graph theory allowed us to
identify closed cycles of activity between ensemble transitions
that occur above chance level (Fig. 4). A very small fraction of all
possible sequences occurring above chance level is sufficient for
successfully reconstruct visual scenes (Fig. 7). Further character-
ization of the origin, mechanisms, and function of endogenous
neuronal ensembles in primary visual cortex that are not evoked
by visual stimuli goes beyond the main goal of our study but
deserves further investigation and the development of behavioral
experimental paradigms.

Even though the activity patterns described in the present
work are limited by the temporal resolution of two-photon im-
aging, the fact that we were able to identify groups of neurons
responding reliably to repeated natural stimuli supports the idea
of sequential patterns as being physiologically relevant events in
primary visual cortex. In fact, the high redundancy of doublet
pathways (Fig. 8) suggests dynamic networks with high flexibility
that could allow the representation of infinite environments with
a finite number of primitives. Therefore, at the mesoscale level,
behavioral relevant timescales could be achieved by the compo-
sition of small spatiotemporal building blocks (Bienenstock,
1995). In addition, because sequential patterns have the capabil-
ity to track long time delays, fixed time intervals between diverse
ensembles could carry information about how much time passed
but also about future events (Fig. 9). Consistent with this, se-
quential activity patterns have been proposed recently as being
the underlying mechanism for episodic memory (Eichenbaum,
2013) that, in the case of visual cortex, can represent pattern
completion (Gavornik and Bear, 2014) or stimulus processing
(Ayzenshtat et al., 2010). In addition, abnormal neuronal firing
patterns are associated with different neuropsychiatric disorders
(Schnitzler and Gross, 2005; Uhlhaas and Singer, 2006). There-
fore, during pathological states, dissonances in sequential activity
between neuronal ensembles could generate abnormal rhythms
as if neurons were not able to follow the external world. The
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ability to identify spatiotemporally structured groups of neurons
that are related to physiological relevant events opens the possi-
bility of restoring the normal flow of information using optoge-
netics with single-cell resolution.
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Carrillo-Reid L, Hernández-López S, Tapia D, Galarraga E, Bargas J (2011)
Dopaminergic modulation of the striatal microcircuit: receptor-specific
configuration of cell assemblies. J Neurosci 31:14972–14983. CrossRef
Medline

Ch’ng YH, Reid RC (2010) Cellular imaging of visual cortex reveals the
spatial and functional organization of spontaneous activity. Front Integr
Neurosci 4.

Churchland MM, Cunningham JP, Kaufman MT, Foster JD, Nuyujukian P,
Ryu SI, Shenoy KV (2012) Neural population dynamics during reach-
ing. Nature 487:51–56. Medline

Cossart R, Aronov D, Yuste R (2003) Attractor dynamics of network UP
states in neocortex. Nature 423:283–288. CrossRef Medline

Crowe DA, Averbeck BB, Chafee MV (2010) Rapid sequences of population
activity patterns dynamically encode task-critical spatial information in
parietal cortex. J Neurosci 30:11640 –11653. CrossRef Medline

Cunningham JP, Yu BM (2014) Dimensionality reduction for large-scale
neural recordings. Nat Neurosci 17:1500 –1509. CrossRef Medline

Diestel R (2005) Graph theory, Ed 3. New York: Springer.
Dombeck DA, Khabbaz AN, Collman F, Adelman TL, Tank DW (2007)

Imaging large-scale neural activity with cellular resolution in awake, mo-
bile mice. Neuron 56:43–57. CrossRef Medline

Dombeck DA, Graziano MS, Tank DW (2009) Functional clustering of
neurons in motor cortex determined by cellular resolution imaging in
awake behaving mice. J Neurosci 29:13751–13760. CrossRef Medline
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