

Resting Brain and Mind

How brain dynamics are associated with ongoing cognition

Sepehr MORTAHEB

FNRS Research Fellow (Aspirant) Physiology of Cognition Lab GIGA CRC In vivo imaging University of Liège

University of Crete

April 24 2023

Studying Mind and Brain

Mind

Resting State

Brain

Blood Oxygen-Level Dependent (BOLD) signal

Diffusion Weighted Imaging (DWI)

Performing Cognitive Tasks

Introduction

Study I:

Mind Blanking

Study II:

Psychedelics

Study III:

Spaceflight

Study IV:

Mental State Decoding

Discussion and

Perspectives

Study I: Mind Blanking

Study II: Psychedelics

Study III: Spaceflight

Study IV: Mental State Decoding

Discussion and Perspectives

Functional connectome

1.0

-0.5 -1.0

Phase-based coherence matrices

Slide: 4/48

Sporns et al., PLoS Comput. Biol., 2005

How rigid structure and dynamic function support the richness of the mind?

Extreme

Study III:

Study IV: Toward mental state decoding at rest

Slide: 5/48

Introduction **Study I: Mind Blanking** Study II: **Psychedelics** Study III: Spaceflight **Study IV: Mental State** Decoding Discussion and **Perspectives**

Study I:

"Spontaneous occurrences of mind blanking"

Based on:

Mortaheb, S., Van Calster, L., Raimondo, F., Klados, M.A., Boulakis, P.A., Georgoula, K., Majerus, S., Van De Ville, D. and Demertzi, A. Mind blanking is a distinct mental state linked to a recurrent brain profile of globally positive connectivity during ongoing mentation. *Proceedings of the National Academy of Sciences,* 119(41), p.e2200511119. (2022)

Methods

Violet (Ventral Attention)

Cream (Limbic) Orange (Frontoparietal)

Red (Default)

Phase-based coherence

K-means clustering Cosine similarity

. . .

Mortaheb et al, PNAS, 2022

Data originally shared by S. Majerus, Psychology and Neuroscience of Cognition Research Unit, University of Liège, Belgium

Slide: 8/48

Study I: Mind Blanking

Study II: Psychedelics

Study III: Spaceflight

Study IV: Mental State Decoding

Discussion and Perspectives

MB is characterized by distinct neural profiles

MB reports classification based on phased-based coherence matrices

	BALANCED ACCURACY	RECALL	PRECISION
MB VS. SENS	0.97	0.95	0.99
MB VS. SDEP	0.96	0.92	1
MB VS. SIND	0.94	0.88	1
MB VS. OTHERS	0.90	0.81	1
MB VS. OTHERS (DUMMY)	0.50	0.05	0.06

$$Presicion = \frac{TP}{TP + FP} \qquad Recall = \frac{TP}{TP + FN}$$
$$Balanced Accuracy = \frac{1}{2}\left(\frac{TP}{TP + FN} + \frac{TN}{TN + FP}\right)$$

TP: True Positive FP: False Positive TN: True Negative FN: False Negative

Positive: MB Reports

MB is associated with functional hyper-connectivity pattern

Is this an effect of Global Signal (GS)?

and

Effects of GSR on dynamic connectivity patterns

MB is characterized by high amplitudes of global signal

MB is associated with higher global signal amplitude

Slide: 14/48

Discussion

Study I: Mind Blanking Study II: Psychedelics

Study III: Spaceflight

Study IV: Mental State Decoding

Discussion and Perspectives

Introduction

Study II:

"Effects of external perturbation on the brain and the mind"

and

Methods

Analysis

Data originally shared by J. Ramaekers, Faculty of Psychology and Neuroscience, Maastricht University, Netherland

Study I: Mind Blanking

Study II: Psychedelics

Study III:

Spaceflight

Profound alterations in subjective experience

Study IV: Mental State Decoding Discussion and Perspectives

Overall increase in the whole-brain functional connectivity

Psilocybin - placebo

Overall tendency of the brain to return to a hyper-connectivity state

Slide: 21/48

Study I: Mind Blanking

Overall decrease in regional BOLD signal amplitude

Psilocybin vs Placebo

Study II: Psychedelics

Study III: Spaceflight

Study IV: Mental State Decoding

Discussion and Perspectives

Functional hyper-connectivity state is associated with feelings of depersonalization

Introduction

Study I: Mind Blanking

Study II: Psychedelics

Study III: Spaceflight

Study IV: Mental State Decoding

Discussion and Perspectives

Functional hyper-connectivity state is associated with feelings of depersonalization

Introduction

Study I: Mind Blanking

Study II: Psychedelics
Study III: Spaceflight
Study IV:
Mental State
Decoding
Discussion
DISCUSSION
and

Perspectives

Slide: 24/48

Mihalik et al., Biological Psychiatry, 2022

Study I: Mind Blanking

Functional hyper-connectivity state is associated with feelings of depersonalization

Slide: 25/48

Discussion

Slide: 26/48

Lord et al., Neuroimage, 2019

Carhart-Harris et al., PNAS, 2012

Study III:

Introduction

Study I: Mind Blanking

Study II: Psychedelics

Study III: Spaceflight

Study IV:

Mental State Decoding

Discussion and Perspectives "Effects of spaceflight on the brain's structure and function"

Circadian rhythm disruption

Methods

Data originally shared by F. Wuyts, Lab for Equilibrium Investigations and Aerospace, University of Antwerp, Antwerp, Belgium

Methods

Study II:

Psychedelics

Study III:

Spaceflight

Participants

 $n_1 = 18$ male cosmonauts $n_2 = 13$ matched controls

Paradigm

Resting State functional MRI (3T) TR = 1.4 secDWI

Analysis

Study IV: Mental State Decoding

Discussion and **Perspectives** Schaefer Atlas (100 ROIs) with 7 Networks

Purple (Visual) Blue (Somatomotor) Green (Dorsal Attention) Violet (Ventral Attention) Cream (Limbic) Orange (Frontoparietal) Red (Default)

Structure-function

- Graph Signal Processing (GSP)
- Structural Decoupling Index (SDI)

Graph Signal

Graph Signal Processing

Graph Adjacency Eigenvectors as Graph Fourier Basis

Graph Normalized Laplacian Eigenvectors as Graph Fourier Basis

Study I:

Graph Normalized Laplacian Eigenvectors (Structural Harmonics) in the Brain

Mind Blanking
Study II:
Psychedelics
Study III:
Spaceflight
Study IV:
Mental State
Decoding
Discussion
and
Perspectives

$n_1 = 18$ male cosmonauts Study I: Mind Blanking Study II: **Psychedelics Study III:** Spaceflight **Study IV: Mental State** Decoding Discussion and

 $n_2 = 13$ matched controls

Paradigm **Resting State** functional MRI (3T) TR = 1.4 secDWI

Participants

Analysis

Schaefer Atlas (100 ROIs) with 7 Networks

Purple (Visual) Blue (Somatomotor) Green (Dorsal Attention) Violet (Ventral Attention) Cream (Limbic) Orange (Frontoparietal) Red (Default)

Structure-function

- Graph Signal Processing (GSP)
- Structural Decoupling Index (SDI)

Slide: 34/48

Perspectives

Structural-functional decoupling alterations in multisensory integration regions

Introduction

Study I: Mind Blanking

Study II: Psychedelics

Study III: Spaceflight

Study IV: Mental State Decoding

Discussion and Perspectives

Slide: 35/48

No dynamic functional alterations due to exposure to prolonged microgravity after spaceflight

Slide: 36/48

and

Structural connectivity alterations after space flight

Study I:	Connection	Regions		0.018 R15-R21	R33-R61
Mind Blanking	R15-R21	LH_DAN_Post_1 – LH_DAN_PrCv_1	R96	0.016 0.014 0.014	.0004
Study II: Psychedelics	R33-R61	LH_Cont_Par_1 – RH_SomMot_4	R34 R83 R21 R46 R87 R85		
Spaceflight	R34-R72	LH_Cont_PFCI_1 - RH_DAN_FEF_1	R37 R12 R61	R34-R72	R37-R52
Study IV: Mental State Decoding	R37-R52	LH_DMN_Temp_1 – RH_Vis_3	R15 R33 R52	0.0016	0.0006
Discussion and Perspectives	R46-R96	LH_DMN_PFC_6 – RH_DMN_PFCdPFCm_2	R83-R87	0.0006 Pre Post Followup R83-R85	Pre Post Followup R46-R96
	R83-R85	RH_Cont_PFCI_2 - RH_Cont_PFCI_4	0.017 0.016 0.015 0.014 0.013 0.013	0.0350 0.0325 0.0300 0.0275 0.0250	0.0025
Slide: 27/49	R83-R87	RH_Cont_PFCI_2 – RH_PFCmp_1	Pre Post Followup	Pre Post Followup	Pre Post Followup

Slide: 37/48

Study I:

Mind Blanking

Study II:

Psychedelics

Study III:

Spaceflight

Study IV:

Mental State

Decoding

Discussion

and

Perspectives

Discussion

Spaceflight

structure-function decoupling alterations Structure-function decoupling and multi-sensory integration Insular superior parietal 0.5 lobule cortex S R cost 0.3 Switch 5.0 R = 0.57, p = 0.0023.0 4.5 5.0 3.5 Functional decoupling from the structure Decreased connectivity **Decreased Volume** -5.91 x= -35 Insular cortex Left Insular Cortex Jillings et al., Communications Koppelmans et al., npj Microgravity, Biology, 2023 2016

Structure-function decoupling and cognition

Slide: 38/48

Study IV: "Toward mental state decoding during rest"

Based on:

Mortaheb, S., Liégeois, R., Raimondo, F., Boulakis, P. A., Fort, L. D., Moallemian, S., Sharifpour R., Karapanagiotidis, T., Van De Ville, D., and Demertzi, A., 2023. Regional functional-structural coupling and decoupling can decode ongoing mental states during task-free conditions. <u>OSF Preregistration</u>, https://doi.org/10.17605/OSF.IO/TK3UW

Mental State Decoding Discussion and

Study IV:

Introduction

Study I: Mind Blanking

Study II: Psychedelics

Study III: Spaceflight

and Perspectives

Poldrack, Neuron, 2011

Methods

Study I: Mind Blanking

Study II: Psychedelics

Study III: Spaceflight

Study IV: Mental State Decoding

Discussion and Perspectives

Slide: 41/48

Participants

n = 8 typical 5 Women, 3 Men Age: 29.5 <u>+</u> 3.9 y.o

Paradigm

Cognitive Tasks Experience-Sampling functional MRI (3T) TR = 1.133 sec DWI

Decoding Schaefer Atlas (100 ROIs)

Purple (\
 Blue (S
 Green (I)
 Violet (\
 Orange (I)
 Orange (I)
 Red (I)

Purple (Visual) Blue (Somatomotor) Green (Dorsal Attention) Violet (Ventral Attention) Cream (Limbic) Orange (Frontoparietal) Red (Default)

Feature extraction: GSP Classification: SVM Cross Validation: stratified 4-fold Performance Evaluation: - balanced accuracy

- recall

- precision

Methods

Participants Introduction n = 8 typical 5 Women, 3 Men

Age: 29.5 ± 3.9 y.o

Cognitive Tasks

TR = 1.133 sec

Experience-Sampling functional MRI (3T)

Paradigm

DWI

Decoding

Study I: Mind Blanking

Study II: **Psychedelics**

Study III: Spaceflight

Study IV: Mental State Decoding

Discussion and **Perspectives**

Purple (Visual) (Somatomotor) Green (Dorsal Attention) Violet (Ventral Attention) Cream (Limbic) Orange (Frontoparietal) Red (Default)

Feature extraction: GSP Classification: SVM Cross Validation: stratified 4-fold Performance Evaluation:

- balanced accuracy

- recall

- precision

Slide: 42/48

High number of future self-related thoughts and low number of MB

Higher than chance-level performance for temporal and referent dimension

0.0

Past

Future

Past

Future

Past

Future

Referent Dimension

Slide: 44/48

Discussion

Slide: 45/48

Introduction Study I: Mind Blanking Study II: **Psychedelics** Study III: Spaceflight Study IV: Mental State Decoding Discussion & Perspectives

General Discussion and Future Perspectives

Study III: Spaceflight

Study IV: Mental State Decoding

Discussion & Perspectives

Global signal as a proxy of physiological state

Resting Brain and Mind

Structure-function (de)coupling and cognition

Mind Blanking Ego Dissolution Depersonalization

Arousal Vigilance Cognition Mental Flexibility Fingerprint Mental State Decoding

Study I: Mind Blanking

Study II:

- > Application to individuals with neurologic disorders
- > A brain-body frameworks for mental state decoding

&

Contact info:

s.mortaheb@uliege.be @Smortaheb @PhysioCognGIGA

LIÈGE université
 GIGA
 CRC In vivo Imaging

-dr

Supplementary Information

Resting State Networks

Resting State Networks and Dynamic Functional Patterns

Mind Blanking

Mind Blanking due to reduced inner speech?

Kawagoe et al., Human Brain Mapping, 2019

Mental States Reportability During Acquisition

Mortaheb et al., PNAS, 2022

Global Signal Amplitude and Reaction Times

Mortaheb et al., PNAS, 2022

Effects of number of clusters on dynamic connectivity patterns and MB reportability

Mortaheb et al., PNAS, 2022

Mental State Decoding

Cognitive Tasks

Reaction Times in Mental States Reporting

Mental State Decoding Performance Measures (Temporal Dimension)

Cognitive Tasks

Classifier	Feature	Cut-off Eigenvalue	Balanced Accuracy	Precision	Recall
Past vs all	Decoupling map	50	0.66	0.50	0.47
Present vs all	Decoupling map	80	0.87	0.87	0.85
Future vs all	Decoupling map	70	0.64	0.46	0.42
MB vs all	Decoupling map	70	0.58	0.16	0.23

Experience Sampling Probes

Classifier	Feature	Cut-off Eigenvalue	Balanced Accuracy	Precision	Recall
Past vs all	Decoupling map	70	0.60	0.36	0.41
Present vs all	Coupling map	40	0.61	0.39	0.42
Future vs all	SDI map	110	0.65	0.56	0.61
MB vs all	Decoupling map	40	0.60	0.35	0.29

From cognitive tasks to ES probes

Mental State Decoding Performance Measures (Referent Dimension)

Temporal Dimension	Feature	Cut-off Eigenvalue	Balanced Accuracy	Precision	Recall
Past	Coupling map	20	0.58	0.57	0.56
Future	SDI map	80	0.55	0.56	0.56

Experience Sampling Probes . Accuracy 900 9.25 * Precision :.. Recall • • Balanced / ••• 2. 0.0 Future Past Future Future Past Past

Temporal Dimension	Feature	Cut-off Eigenvalue	Balanced Accuracy	Precision	Recall
Past	Coupling map	20	0.67	0.64	0.67
Future	SDI map	90	0.62	0.73	0.76

From cognitive tasks to ES probes

Classification Performance Measures for Imbalanced Datasets

Precision: A parameter between 0 and 1 also defined as the ability of the classifier not to label as positive a sample that is negative.

$$Presicion = \frac{TP}{TP + FP}$$

Recall: A parameter between 0 and 1 defined as the ability of the classifier to classify positive samples correctly.

$$Recall = \frac{TP}{TP + FN}$$

Balanced Accuracy: To compute balanced accuracy, each sample is weighted according to the inverse prevalence of its true class which accordingly will avoid inflated performance estimates on imbalanced datasets.

Balanced Accuracy =
$$\frac{1}{2}\left(\frac{TP}{TP+FN} + \frac{TN}{TN+FP}\right)$$

DWI Acquisition Parameters

Mental State Decoding

- multiband SE-EPI sequence
- 2mm isotropic spatial resolution
- TR = 4030 ms
- TE = 69.80 ms
- 70 transverse slices
- slice thickness = 2 mm
- slice acceleration factor = 2
- in-plane resolution 2x2 mm
- FoV = 192x216 mm.
- matrix = 96x108
- acceleration factor 2
- bandwidth per pixel = 2264 Hz/Px.
- Multi-shell (b = 650, 1000 & 2000)
- 118 volumes:
 - The first volume was discarded to avoid T1 saturation effect
 - 105 DW images (15 b=650, 30 b=100, 60 b=2000) interleaved with 12 b=0

Cosmonauts

- multi-shell (b = 700, 1200, & 2800)
- 153 volumes:
 - 145 DWI images (25 b=700, 45 b=1200, 75 b=2800) interleaved with 8 b=0
- repetition/echo time of 7800/100 ms
- voxel size of 2.4 \times 2.4 \times 2.4 mm^3
- matrix size of 100 \times 100
- 58 slices
- Imaging was accelerated by a factor of 2