
CS – 588  Analysis and Modeling of Brain Networks  
Department of Computer Science  

University of Crete 

Introductory Lecture on Neuronal Models 
                        
                          Prof. Maria Papadopouli 

http://www.csd.uoc.gr/


https://www.youtube.com/watch?v=rSExvwCVRYg 

Resources 

• Biological Neuron Models Tutorial 1 Videos 1 & 2 
by Neuromatch Academy Richard Naud 
University of Ottawa 

 

• MIT 9.49/9.490/6.S076, Instructor: Professor Ila 
Fiete 

• The Hodgkin-Huxley theory of the action 
potential, Michael Häusser 
https://www.nature.com/articles/nn1100_1165.
pdf 

• Neuronal Dynamics: From Single Neurons to 
Networks and Models of Cognition By Wulfram 
Gerstner, Werner M. Kistler, Richard Naud, Liam 
Paninski (available as PDF online) 

https://www.nature.com/articles/nn1100_1165.pdf
https://www.nature.com/articles/nn1100_1165.pdf


Roadmap 

• Leaky Integrator and Fire Model 

• Spiking vs Firing-rate Models 



Modeling the Interaction at Different Scales 

If the experimenter 

moves the electrode 

vertically down from 

the cortical surface 

to deeper layers, the 

location of the 

receptive field and 

its preferred 

orientation does 

not change 

substantially. 



Connectivity patterns inside one column. Examples of shapes of excitatory neurons 

in different layers.  

Data from a barrel column in the somatosensory cortex of the mouse. After Lefort et al. 

(2009) 

Arrows on the left indicate 

inter-layer connection 

probabilities between 

excitatory neurons 

Arrows on the right show intra-

layer connection probabilities 

between excitatory neurons 



• The cortex is a rather thin sheet of cells.  

• Cortical columns extend vertically across the sheet.  

• The connection probability within a column depends on the 

layer where pre- and postsynaptic neurons are located.  

• In addition to this vertical connectivity, neurons make many 

horizontal connections to neurons in other, cortical columns in 

the same, but also in other, areas of the brain.  

 

• Within the same brain area, the probability of making a 

connection is often modeled as distance dependent.  
Note that distance dependence is a rather coarse feature, because 

the actual connectivity depends also on the function of the pre- and 

postsynaptic cell. 

In the primary visual area, pyramidal neurons with a preferred 

orientation for horizontal bars are more likely to make connections 

to other columns with a similar preferred orientation (Angelucci and 

Bressloff, 2006). 



A typical neuron in the mammalian neocortex receives thousands of 
synaptic inputs 





• Single neuron in a drawing by Ram´on y Cajal. Dendrites, soma, and axon can be 

clearly 

     distinguished.  

• The action potential is a short voltage pulse of 1–2 ms duration and an amplitude 

of about 100mV.  

example of a neuronal action potential 

(inset) 

Dendrites 

Axon 

The synapse 

is marked by 

the dashed 

circle. 

The axons at the lower right 

end lead to other neurons 



Mathematical Model for Predicting the Spikes based on the Input Current 



If a neuron is a core computational unit, similar to the transistor, 
what is its input and output function? 



Βαςικά Κυκλωμάτων 
• Πυκνωτήσ (capacitor): Αποκθκεφει θλεκτρικό φορτίο και επομζνωσ 

θλεκτρικι ενζργεια 

     Qc: το φορτίο (current load) του κετικά φορτιςμζνου οπλιςμοφ 

• Τάςη πυκνωτή V (voltage): θ διαφορά δυναμικοφ μεταξφ των 
οπλιςμών ενόσ φορτιςμζνου πυκνωτι (Vc) 

• Χωρητικότητα (capacity) του πυκνωτι C = Q / V 

• Αντίςταςη R (resistance): δυςκολία διζλευςθσ του ρεφματοσ 

          R = V / I,  τάςθ του υλικοφ (V), προσ το ρεφμα I 

Extracellular 

Intracellular 

I 

Ohm's law states that the 
current through a conductor 
between two points is directly 
proportional to the voltage 
across the two points. 



Characterization of the input-output 
function of a neuron 



A neuron receives a (positive) input current 

I(t) which increases the electrical charge inside 

the cell.  

Electrical properties of neurons: the passive 

membrane. 

The cell membrane acts like a capacitor in parallel with a 

resistor which is in line with a battery of potential urest 

step current  

The cell membrane 

reacts to a step current 

with a smooth voltage 
trace 

u(t): membrane potential 



Use the law of current conservation and split the driving current into 
two components: I(t) = IR + IC  

From Ohm’s law:  IR   = uR / R, where uR = u −  

urest 

Capacity C 
Charge q 
Voltage u 
Voltage through resistor uR  
Capacitive current IC 
Resistive current IR 

C = q / u 
IC = dq / dt = C du/dt 

Leaky Integrator term τm  = R C 

τm 
du
𝑑𝑡

 = - [ u(t) – urest ] + R I(t)  



Decay of Membrane Potential 

• Ιn the absence of input, the membrane potential decays exponentially 
to its resting value  

• Characteristic time of decay: membrane time constant  τm = RC 

• For a typical neuron, it is ~10 ms, long compared to the duration of a 
spike (~1ms) 



Leaky Integrator Equation for Output 

Exponential decay 
Tractable model 

τn: depends on neuron n 
 rate that  the neuron leaks 

Input from multiple synapses v: membrane potential 



Electrical Input–Output Membrane Voltage Models  

• Produce a prediction for membrane output voltage as a function of 
electrical stimulation given as current or voltage input 

• Different functional relationships between the input current & 
output voltage and in the level of details 

 

Examples of models: 

• Predict the moment of occurrence of output spike (also known as 
"action potential") 

• Account for sub-cellular processes and can be either deterministic or 
probabilistic 



Natural Stimulus or Pharmacological Input Neuron Models  

• Connect the input stimulus (e.g., pharmacological, natural) to the 
probability of a spike event 

• Input stage is not electrical but rather has either pharmacological 
(chemical) concentration units or physical units that characterize an 
external stimulus, e.g., light, sound, physical pressure 

• Output stage represents the probability of a spike event and not an 
electrical voltage 



Biophysical description 
I(t)  Current impinging on excitable membrane patch 
V(t) Membrane potential (διαφορά δυναμικοφ) 

C  Capacitance of the membrane (χωρθτικότθτα) 

gL  Conductance of the membrane (αγωγιμότητα) 
EL  Equilibrium potential of “leak” 

I(t) 

Lipid 
bilayer 

Ion Chanel 

Conductance  
Conductance 
coupled with 
“battery” 

μπαταρία 

Πυκνωτήσ 
αγωγόσ 

Μεμβράνη 

Αγωγιμότθτα 
τθσ μεμβράνθσ 
(leakage) 



Leaky Integrate and Fire Model 

I(t) Current impinging on 
excitable membrane patch 

I(t) 

Lipid 
bilayer 

Ion 
Chanel 

Conductance  

Conductance 
coupled with 
“battery” 

Action potential of 
ions channels 
other than the 
stereotypical 
generation of 
spikes 

2) Replace by a 
threshold for spike 
emission 
Followed by a 
reset to a fixed 
potential 

Machinery of generation of 
action potential 

V(t) Membrane 
potential 
C Capacitance of the 
membrane 

gL Conductance of the 

membrane 
EL Equilibrium potential 
of “leak” 

The impinging current will either 
charge the capacitor or leak 
through the membrane or flow 
through the different ion channels 

1) We will 
ignore 
them… 

gL  

V-EL 

Capacitor 



Δ: the time it takes 

for the action 
potential to be 
generated, 1-2ms 
(refractory period) 

When the action potential reaches a 
threshold, a spike is generated (fire) and 
stops the dynamics for time Δ 



Suprathreshold 
current step 
Regular firing 



Leaky Integrate and Fire Model 

The refractory period of a neuron is the time in which a 
nerve cell is unable to fire an action potential  

Spikes 
The firing frequency depends on the 
magnitude of the current being injected  



Do spikes always have the same shape? 
Yes! Spikes follow stereotypical time course within 1-2 ms of onset 
Notable exception: spikes late in a high frequency burst 

Across > 
100 spikes 

If the shape of an action potential is always the same, the shape cannot 
be used to transmit information:  
Rather information is “carried” with the presence or absence of a spike 
Therefore action potentials are reduced to “events” that happen at a 
precise moment in time 



urest  

tf
i  tf

j  

The shape of postsynaptic potentials (dashed lines) depends on the time t −  tf
i  

that has passed since the last output spike of neuron i.  

The postsynaptic spike has been triggered at time  

A presynaptic spike that arrives at time       shortly after the spike of the postsynaptic neuron 

has a 

smaller effect than a spike that arrives much later.  

(Data is courtesy of Thomas Berger. Berger et al., 2009). 



• If the shape of an action potential is always the same, the 
shape cannot be used to transmit information:  

• Rather information is “carried” with the presence or absence 
of a spike 

• Therefore action potentials are reduced to “events” that 
happen at a precise moment in time 



Postsynaptic neuron i 

Presynaptic neurons j=1,2 

Action potential is triggered  

An input spike from 

presynaptic neuron  

j = 2 that arrives 

shortly after the 

spike from neuron j = 

1 causes a second 

postsynaptic 

potential that adds to 

the first one. 

Single EPSPs have amplitudes ~ 1mV.  

The critical value for spike initiation is ~ 20 to 30mV 

above the resting potential.  

In most neurons, four spikes are thus not sufficient to 

trigger an action potential. Instead, about 20–50 

presynaptic spikes have to arrive within a short time 

window to trigger a postsynaptic action potential. 



Simple RC model for subthreshold voltage 

Equivalent RC circuit:  

Membrane 
capacitance 

Trans-membrane  
voltage drop Resting voltage 

Other currents (inputs,  
input-triggered/ 
voltage-dependent…) 

Membrane  
conductance 

Well below “AP threshold”, cell membrane dynamics well-modeled by a simple RC circuit.  

With appropriate choice of I, this includes HH and other models.  



Single voltage variable V(t) in model: ignoring spatial 
dynamics 

Modeling software for biophysically detailed and spatially extended neurons: NEURON.  

Simplest spatial models: multiple discrete equi-
voltage compartments, resistively coupled. 

Image: from Genesis project 



Numerical integration of subthreshold voltage 

Membrane capacitance 
Trans-membrane  
voltage drop Resting voltage Input currents 

Membrane  
conductance 



Leaky integrate-and-fire (LIF) model 
Replace complex, detailed AP currents with a simple reset condition 

When  
then reset 
and consider that the 
cell has spiked  

+ spike-and-reset 
condition 



Single voltage variable V(t) in model: ignoring spatial dynamics 

Modeling software for biophysically detailed and spatially extended neurons: NEURON.  

Simplest spatial models: multiple discrete equi-
voltage compartments, resistively coupled. 

Image: from Genesis project 



Single voltage variable V(t) in model: ignoring spatial dynamics 

Modeling software for biophysically detailed and spatially extended neurons: NEURON.  

Simplest spatial models: multiple discrete equi-voltage compartments, resistively coupled. 

Image: from Genesis project 



Simple RC model for subthreshold voltage 

Equivalent RC circuit:  

Membrane capacitance 
Trans-membrane  
voltage drop Resting voltage other currents 

Membrane  
conductance 

Take note of the short single-neuron time-constant (memory of single cells).  



Add spike mechanism 

Equivalent RC circuit:  

Complex, nonlinear voltage-dependent currents for 
AP generation (see Hodgkin-Huxley model for details) 

Hodgkin-Huxley model for both subthreshold voltage and AP generation 



Leaky integrate-and-fire (LIF) model 

Replace complex, detailed AP currents with a simple reset condition 

When  
then reset 
and consider that the 
cell has spiked  

+ spike-and-
reset condition 



Leaky integrate-and-fire (LIF) model 

Replace complex, detailed AP currents with a simple reset condition 

When  
then reset 
and consider that the 
cell has spiked  

As Iapp increases,  firing rate will increase 



Synaptic activation model  
Each synapse is a linear, low-pass filter of the presynaptic neuron’s 
spikes; activation is a dimensionless variable than can be thought of as 
“fractional activity” 

Simple 
exponential 
decay 

Upward increment whenever 
there is a spike (when t = tspk, a) 



Aside: Dirac delta function 

 has units of the inverse of its argument 



Aside: Kronecker delta 



Synaptic Activation Model Numerical Integration 

where the b superscript in                  indicates  
the spike time bin in place of the precise spike time 

Discretize equation in time 



Synaptic Activation Model  
Each synapse is a linear, low-pass filter of the presynaptic neuron’s 
spikes;  activation is a dimensionless variable than can be thought of as 
“fractional activity” 
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Current-based model 

Conductance-based Model 
   The efficacy of synaptic input depends on postsynaptic neuron voltage  

Input to neuron i Output of neuron j 

OR:  



The Hodgkin-Huxley (H-H) theory 
of the action potential 

• The Hodgkin-Huxley (H-H) theory of the action potential, formulated 
50 years ago, remains one of the great success stories in biology, and 
ranks among the most significant conceptual breakthroughs in 
neuroscience.  

• Together with the artificial neural networks of McCulloch and Pitts, 
the quantal theory of Katz, and the cable theory of Rall, all 
developed at around the same time, the H-H theory provided the 
foundation for modern computational neuroscience 



The History of the H-H Theory 
1.  Cole and Curtis demonstrated that the action potential is associated with a 

large increase in membrane conductance 
2. Hodgkin and Huxley made the first intracellular recording of an action 

potential  
3. Hodgkin and Katz explained the overshooting action potential by showing 

that it results from an increase in sodium permeability (validating the 
neglected work of Overton)  

4. Hodgkin, Huxley and Katz (following Cole and Marmont) developed a 
voltage-clamp circuit to enable quantitative measurement of ionic currents 
from squid axon 

5. Hodgkin and Huxley then showed that step depolarizations of the squid 
axon trigger an inward current followed by an outward current.  

6. Using ionic substitution, they demonstrated that this net current could be 
separated into two distinct components, a rapid inward current carried by 
Na+ ions, and a more slowly activating outward current carried by K+ ions.  

From experiments using ingenious voltage-clamp protocols, they concluded that 
these two currents result from independent permeability mechanisms for Na+ 
and K+ with conductances changing as a function of time and membrane 
potential. 



H-H  
model 

Total ionic current: sum of separate Na+, K+ & leak currents 

where separate equations for the gating variables m and h (for 
activation and inactivation of gNa) or n (for activation of gK) describe all 
the smoothly varying voltage and time dependence of the kinetics.  
Thus, the H-H model links the microscopic level of ion channels to the 
macroscopic level of currents and action potentials. 

The first 
intracellular 
recording of an 
action potential, 
from squid axon. 
Time calibration, 2 
ms.  

Separation of ionic conductances 
underlying the action potential (AP) in 
the H-H model. 



Integrate and fire models are useful 
approximations of the real neuronal 

dynamics 



Hodgkin-Huxley (H-H) 

• The unspecific channel has a leak resistance R, the sodium channel a 
resistance RNa and the potassium channel a resistance RK.  

• Separate batteries for sodium, potassium &the unspecific third 
channel, with battery voltages ENa, EK and EL, respectively  

         (since the Nerst potential differs depending the ion type) 

Τhe value of the resistance is not fixed but changes depending on whether the ion channel 
is open or closed. Because of active ion transport through the cell membrane, the ion 
concentration inside the cell is different from that in the extracellular liquid.  

Each channel type is 
represented by a resistor 

Nernst potential generated by the difference in ion concentration  



Leakage channel: described by a voltage-independent conductance  
 gL = 1/R 
u: total voltage across the cell membrane  
EL : voltage of the battery 
 
Leak current:  IL =gL(u− EL) 
If all channels are open, they transmit currents with a maximum 
conductance gNa or gK, respectively. Normally, however, some of the 
channels are blocked.  
 
The breakthrough of Hodgkin and Huxley was that they succeeded in 
measuring how the effective resistance of a channel changes as a 
function of time and voltage. 



Nernst potential 

   From thermodynamics: the probability of a molecule taking a state of energy E is 

proportional to the Boltzmann factor P(E) ~ exp ( -E / k T), where k: Boltzmann 

constant, T temperature.  

 

  Consider positive ions with charge q in a static electrical field.  

  Their energy at location x: E(x) = q u(x), where u(x) the potential at x.  

Probability of finding an ion around x is  proportional to exp[ −q u(x) / k T] 
 

Since the number of ions is huge, we may interpret the probability as an ion density.  

For ions with positive charge q>0, the ion density is higher in regions with low potential u.  

n(x): ion density at point x  

 

A difference in electrical potential Δu = u(x1)−u(x2) generates a difference in 

ion density; 

Since this is a statement about an equilibrium state, the reverse must also be true. A 

difference in ion density generates a difference Δu in the electrical potential.  

 Consider two regions of ions with concentration n1 and n2, respectively;  

  At equilibrium, the concentration difference generates a voltage 



Ion Concentration of Potassium 

• The ion concentration of potassium is higher inside the cell (≈ 140 
mM) than in the extracellular liquid (≈ 5mM) 

• Potassium ions have a single positive charge q = 1.6×10−19 C 
• Application of the Nernst formula yields EK ≈−83mV at room 

temperature (with the Boltzmann constant k = 1.4×10−23 J/K 
• The reversal potential for K+ ions is therefore negative 



Sodium ions (Na+) & Reversal Potential 
At equilibrium: 
   the difference in concentration causes a Nernst potential ENa ~ +67mV.  
   the interior of the cell has a positive potential w.r.t the surround.  
 
The interior of the cell and the surrounding liquid are in contact through 
ion channels where Na+ ions can pass from one side of the membrane 
to the other.  
  If Δu < ENa, more Na+ ions flow into the cell so as to decrease the 
concentration difference.  
  If  Δu > ENa , ions would flow out the cell. 
 Thus, the direction of the current is reversed when the voltage Δu 
passes ENa. 
                          For this reason, ENa is called the reversal potential. 



Ionic Currents 

Time after start of the test pulse (ms) 







Simplified Hodgkin–Huxley Model 

• Relationship between the flow of ionic currents across the neuronal 
cell membrane and the membrane voltage of the cell 

• Set of nonlinear differential equations describing the behaviour of 
ion channels that permeate the cell membrane 

Cell membrane of capacity Cm 

Time derivative of the law of capacitance, Q = CV where the change of 
the total charge must be explained as the sum over the currents. 

Ii: current from the i-th pre-synaptic neuron 
V: membrane voltage  





The algorithm that the neuron uses to generate 
a spike 





Electrical Circuit Idioms for Modeling Neurons 

The state of the neuron is given by the voltage across a capacitance, 
with each synaptic input adding to or subtracting from the charge 
accumulating across the membrane 

The entire neuron is reduced to 
a single spatial compartment.  
The summed synaptic input is 
described by a net current I(t).  

 Integrate-and-fire 

Leaky integrate-and-fire 



Rate neuron 

In rate neuron: these discrete pulses are replaced by a continuous output 
rate.  
The monotonically increasing relationship between V & output rate  
f = g(V) can be thought of as the discharge function of a population of 
spiking cells.  



d) In most neural networks, interactions within neurons are linear.  
The necessary nonlinearity is provided by the sigmoidal g(V) function.  
Here, the output of neuron 1 is unidirectionally connected to neuron 2 
with synaptic weight w21. 

Neuron 1 

Neuron 2 

The summed synaptic input is described by a net current I(t).  



Non-linear saturating interactions can be mediated in a passive 
dendritic tree by synapses that increase the postsynaptic conductance.  
The interaction between excitation and inhibition of the shunting type is 
of the AND-NOT type and is specific in space and in time,  
e.g., the inhibitory synapse i7 vetos excitation e3 or e6 but has only a 
negligible effect on e1.  

Excitation (circles) 

Inhibition (elongated boxes) 



Electrical Circuit Idioms for Modeling Neurons 

(a) If the voltage V > a fixed threshold,  a unit pulse is 
generated, and all charge on the capacitance is removed 
by resetting V to zero (solid arrow).  
 

(b) Leaky integrate-and-fire model: charge leaks away with 
a time constant (given by the product of the capacitance C 
and the resistance R) is a series of asynchronous spikes.  

(c) In rate neuron: these discrete pulses are replaced by a 
continuous output rate.  
The monotonically increasing relationship between V & 
output rate f = g(V) can be thought of as the discharge 
function of a population of spiking cells.  

The entire neuron is reduced to a single spatial compartment.  
The summed synaptic input is described by a net current I(t).  

 Integrate-and-fire 

Leaky integrate-and-fire 

The state of the neuron is given by the voltage across a capacitance, with each synaptic input 
adding to or subtracting from the charge accumulating across the membrane 

Rate neuron 



Neural Models: Spiking vs Firing-rate Models 

• Spiking models involve dynamics over time scales ranging from 
channel openings (less than 1 ms)  to collective network processes 
that may be several orders of magnitude slower. 

• Firing-rate models avoid the short-time scale dynamics required to 
simulate action potentials and thus are much easier to simulate on 
computers.  

• Firing-rate models also allow us to present analytic calculations of 
some aspects of network dynamics that could not be treated in the 
case of spiking neurons.  

• Spiking models tend to have more free parameters than firing-rate 
models, and setting these appropriately can be difficult. 

 



Modeling the Interaction at Different Scales 

If the experimenter 

moves the electrode 

vertically down from 

the cortical surface 

to deeper layers, the 

location of the 

receptive field and 

its preferred 

orientation does 

not change 

substantially. 



Connectivity patterns inside one column. Examples of shapes of excitatory neurons 

in different layers.  

Data from a barrel column in the somatosensory cortex of the mouse. After Lefort et al. 

(2009) 

Arrows on the left indicate 

inter-layer connection 

probabilities between 

excitatory neurons 

Arrows on the right show intra-

layer connection probabilities 

between excitatory neurons 



• The cortex is a rather thin sheet of cells.  

• Cortical columns extend vertically across the sheet.  

• The connection probability within a column depends on the 

layer where pre- and postsynaptic neurons are located.  

• In addition to this vertical connectivity, neurons make many 

horizontal connections to neurons in other, cortical columns in 

the same, but also in other, areas of the brain.  

 

• Within the same brain area, the probability of making a 

connection is often modeled as distance dependent.  
Note that distance dependence is a rather coarse feature, because 

the actual connectivity depends also on the function of the pre- and 

postsynaptic cell. 

In the primary visual area, pyramidal neurons with a preferred 

orientation for horizontal bars are more likely to make connections 

to other columns with a similar preferred orientation (Angelucci and 

Bressloff, 2006). 



Interconnections in Cortex - Columns  
• In the neocortex, which forms the convoluted outer surface of the human 

brain, neurons lie in six vertical layers highly coupled within cylindrical 
columns.  

• Such columns “act” as basic functional units, cortical columns and 
stereotypical patterns of connections both within a column and between 
columns are repeated across cortex. 

Top view onto the surface of the visual 

cortex.  

Neurons that are optimally activated by a moving 

grating with an orientation of, say, 60◦, form bands. 

The direction of the hash-line texture indicates the 

preferred orientation. Iso-orientation contour lines 

converge to form pinwheels. One of the pinwheels is 

highlighted by the dashed circle. 

Side view of a pinwheel (dashed 

circle) 

Orientation selectivity is indicated by 

thick bars. Neurons with the same 

orientation form vertical columns. 

Schematic representation following 

experimental data shown in Bressloff 

and Cowan (2002). 



Interconnections in Cortex (cont’d) 

 

• Feed-forward connections bring input to a given region from another 
region located at an earlier stage along a particular processing 
pathway 

• Recurrent connections interconnect neurons within a particular 
region, considered to be at the same stage along the processing 
pathway, e.g., connections within a cortical column as well as 
connections between both nearby and distant cortical columns within 
a region 

• Top-down connections carry signals back from areas located at later 
stages 

 

Neurons within a given region send top-down projections back to the areas from 
which they receive feed-forward input, and receive top-down input from the areas to 
which they project feedforward output 



Pathways & Assemblies 

• The sensory pathways create abstract representations 

• Top-down attention can modify these representations 

• Higher areas selectively represent task-relevant information 

• Information often is coded sparsely and dynamically 

 

Donald Hebb (1949) introduced the notion of neuronal assemblies, i.e., groups of cells 

which get activated together so as to represent a mental concept such as the preparation 

of a movement of the right arm toward the left.  

Assembly: group of neurons, distributed across one or several brain areas (thus not 

necessarily a local group); homogeneous population that is activated whenever the 

corresponding mental concept is evoked.  

Important: the assignment of a neuron to a population is not fixed but can depend on the 
stimulus. 



Prominent Examples of Columns 

• In the somatosensory and visual cortex (Mountcastle, 1957; Hubel 
and Wiesel, 1962) 

• Pools of motor neurons (Kandel et al., 2000).  

• Given the large number of neurons within such a column or pool, it is 
sensible to describe the mean activity of the neuronal population 
rather than the spiking of individual neurons 



A fully connected population of 

neurons 

(not all connections are 

shown).  

Mean-Field Concept 

i receives input spikes from the whole 

population. Hence it is driven by the population 

activity A(t). The same is true for all other 

neurons. 

i: an 

arbitrary 

neuron 

in the 

network 



Homogeneous Networks 

• all neurons 1 ≤ i ≤ N are identical 

• all neurons receive the same external input Iext  I(t)=Iext(t) 

• the interaction strength wi,j for the connection between (j, i) 

  of pre- & post-synaptic neurons is “statistically uniform” connections 
inside the population as being either absent or “roughly the same,” wi ,j 
≈w0 (w0 is a parameter)  

     w0 = 0: independent neurons 

    w0 > 0 (w0 < 0):  excitatory (inhibitory) coupling 

input current Ii includes both synaptic 

coupling and external drive 

each input spike generates a 

postsynaptic current with some time 

course 



Heterogeneous Populations 
• Strongly heterogeneous population should be split until (nearly) 

homogeneous groups remain. 

  e.g., split the population into two populations, one with all neurons with 

parameters κ1 &  the other with all neurons with parameters κ2  

Stationary firing rate 



Plasticity 
• Synaptic plasticity is the ability of synapses to strengthen or weaken 

over time in response to increases or decreases in their activity 

• Plastic change often results from the alteration of the number of 
neurotransmitter receptors located on a synapse 

 as well as changes in how effectively cells respond to those 
neurotransmitters 

 

Long-term plasticity: from minutes to hours 

Short-term plasticity: tens of milliseconds to a few minutes 

 

 
𝒅𝑾𝒊(𝒕)

𝒅𝒕
 = 1/ (τ [Ca2+]i ) (Ω ([Ca2+]i ) – Wi) 

Synaptic weight of the i-th input axon Wi [Ca2+]i Concentration of calcium 

Ω: function of the concentration of calcium that depends linearly on the number of receptors 

on the membrane of the neuron 



Winner-Takes-All  
a powerful computational paradigm 

Outputs that fire in response to stimulation from 
their firing inputs excite two inhibitors which in 
turn inhibit all the outputs 
 
When more than one outputs fires, both inhibitors 
get excited 
This leads to a high level of inhibition, casing firing 
outputs to stop firing and drop out of the WTA 
competition 

When exactly one output fires, just one of the inhibitors (known as stability 
inhibitor) is excited 
This inhibitor is responsible for maintaining a WTA steady state: once a single 
output fires at a time state, it becomes the winner of the network 
It has a positive feedback self-loop that allows it to keep firing at subsequent 
times, while all other outputs do not fire due to inhibition from the stability 
inhibitor 



Winner-Takes-All  
A powerful computational paradigm 

• The output nodes in the network mutually inhibit each other, while 
simultaneously activating themselves through reflexive connections 

• After some time, only one node in the output layer will be active, namely the 
one corresponding to the strongest input 

• The winner is the node with the largest response 

Serves in learning 
(competitive learning) 



Fluorescence Imaging 



The confocal microscope uses a 
pinhole to block out-of-focus light 

Fluorescence illumination of a single point 

Problem: fluorescence is emitted  along entire 
illuminated cone, not just at the focus 

Limitations of tissue penetration depth: 
Absorption 
Scattering 
• Imaging in near-infrared results in lower scattering and 

minimizes absorption 





Fluorescence Imaging 

• Form of luminescence that results from matter emitting light of a 
certain wavelength after absorbing electromagnetic radiation 

• Absorb light in a certain color and emit light in a different color 

• Fluorophores: Molecules that re-emit light upon absorption of light  



Basic Concepts 
 
• When a certain molecule absorbs light, the energy of the molecule is 

briefly raised to a higher excited state (μεταβάςεισ θλεκτρονίων) 
• The subsequent return to ground state results in emission of 

fluorescent light that can be detected and measured 
• The emitted light, resulting from the absorbed photon of energy hv, 

has a specific wavelength 
• The measuring device needs to know this wavelength to detect light 

production 
• Fluorescent dyes: when the bind to proteins they become more easily 

detectable 
• Other molecules may aborbe light, however the light they emit is in 

different frequency and thus are not get detected  

 



Photon Florescence Microscopy 
One-photon excitation 

Linear process, i.e., if you 
double the laser intensity, you 
will double the fluorescence 
intensity 

 

Two-photon excitation 

• Emission of two laser photons 

• Non-linear process 

The absorption rate depends on 
the second power of the light 
intensity 

In a focus laser, the intensity is 
highest in the vicinity of the focus 
and drops off quadratically with 
distance above and below 

As a result, fluorophores are excited 
almost exclusively in a tiny 
diffraction-limited focal volume 
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GCaMP  a genetically encoded calcium indicator  

In order to identify the cells that fire, cells that are genetically 
engineered with GCaMP dye, when the density of calcium ions 
increases, the light from the 2 photons from the laser gets absorbed 
and results in the emission of a light in  frequency that can be 
detected and estimated from the microscope from the cells that have 
fired 

 

When bound to Ca2+, GCaMP fluoresces green with a peak 

excitation wavelength of 480 nm and a peak emission 
wavelength of 510 nm 

https://en.wikipedia.org/wiki/Calcium_imaging
https://en.wikipedia.org/wiki/Calcium_in_biology
https://en.wikipedia.org/wiki/Calcium_in_biology


  

• Ο νευροδιαβιβαςτήσ είναι 
αποθηκευμζνοσ ςε κυςτίδια είτε 
κοντά ςτθν μεμβράνθ του 
τερματικοφ του άξονα είτε 
προςδεμζνα πάνω ςτο κυτταρο-
ςκελετό 

• Συγκεκριμζνεσ πρωτεΐνεσ 
ςχθματίηουν πόρουσ ςυγχώνευςθσ 
των δφο μεμβρανών δθλ. του 
κυςτιδίου και του κυττάρου, ώςτε 
να γίνει θ ζνωςθ τουσ & θ 
απελευθζρωςη του 
νευροδιαβιβαςτή ςτο εξωκυττάριο 
περιβάλλον 

Για την επιτυχή ζκλυςη νευροδιαβιβαςτή 
   Απαιτείται θ ζκλυςθ δυναμικοφ ενζργειασ από το   προςυναπτικό κφτταρο 
• Το δυναμικό ενζργειασ προκαλεί την ενεργοποίηςη διαφλων αςβεςτίου 
• Αφξθςθ ενδοκυττάριασ ςυγκζντρωςησ αςβεςτίου 
• Το μζγεθοσ του ειςερχόμενου ρεφματοσ αςβεςτίου επθρεάηει την ποςότητα 

νευροδιαβιβαςτή που θα εκλυθεί, και κατά επζκταςθ το μζγεκοσ του 
μεταςυναπτικοφ δυναμικοφ 

 



Neural Population Decoding 

• Neural decoding predict stimuli/behavior 

 

      f(neural activity)  stimulus 

 

 Decoding has been used for 30 years 

Georgopoulos et al 1986 



Neural Population in Primate Motor Cortex 

• Although individual neurons in the arm area of the primate motor 
cortex are only broadly tuned to a particular direction in 3D-space, 
the animal can very precisely control the movement of its arm.  

• The direction of movement was found to be uniquely predicted by 
the action of a population of motor cortical neurons.  

• When individual cells were represented as vectors that make 
weighted contributions along the axis of their preferred direction 
(according to changes in their activity during the movement under 
consideration) the resulting vector sum of all cell vectors (population 
vector) was in a direction congruent with the direction of movement.  

• This population vector can be monitored during various tasks, and 
similar measures in other neuronal populations could be of heuristic 
value where there is a neural representation of variables with 
vectorial attributes. 



Developing the classifier 



Decoding basics: a simple example 









Is information contained in a dynamic population code? 

Meyers et al 2008, King and Dehaene 2014, Meyers 2018 

Dog Image 
Cat Image 
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Introduction of Neural Codes 
• How do neurons process information received from a stimulus 

• Measures electrical activity between neurons and how it carries 
information 

• How is information encoded in a series of action potentials? 

Neural Coding: Which features of 
neural activity carry this information 

Predict the stimuli/behavior 
from the neuronal activity 

f (neuronal activity)  stimuli 



From the talk:  https://www.youtube.com/watch?v=m3OQwz9PhcA 

Images presented 

Combined 
signal from 
all neurons 

Firing events  
of different  
neurons 





Population Coding: Why Use It? 
• Difficult to differentiate information from a single neuron 

• Better explains behavioral performance 

• Responses of many neurons may be combined to determine some 
value about the inputs 



Population Coding: Primary Visual Cortex (V1) 

• One of the best area to examine the population coding, since the 
relationships between the characteristics of stimuli and activation 
of neurons is well documented 

• Similar structure across mammalian species 

• Pyramidal neurons: tuned to retinal location, orientation, contrast, 
speed, spatial and temporal frequency 



Orientation   Mean Firing Rate 

Stimulus Orientation 

When we have the tuning curve  of a single neuron, and record its firing 
rate, we cannot estimate precisely the stimulus orientation 
(e.g., the edge present in the visual field of the neuron) 

Tuning curve of a neuron 

Motivation for Population Coding 



 
Examples in our datasets 



Orientation   Mean Firing Rate 

Stimulus Orientation 

When we have the tuning curve of a single neuron, and record its firing rate, 
we cannot estimate precisely the stimulus orientation (e.g., the edge present 
in the visual field of the neuron) 

Tuning curve of a neuron 

Motivation for Population Coding 



Using a number 
of neurons to 

resolve the 
ambiguity 

Orientation   Mean Firing Rate 

Stimulus Orientation 

Stimulus Orientation 

When we have the tuning curve  
of a single neuron, and record its 
firing rate, we cannot estimate 
precisely the stimulus orientation 
(e.g., the edge present in the visual 
field of the neuron) 

Tuning curve of a neuron 

Motivation for 
Population Coding 



Retinal Stimulus 

Stimulus 

Firing rate of the 
“red” neuron 

Firing rate of the 
“blue” neuron 

Each tuning curve corresponds to a different neuron (indicated 
with blue, red, dark green, yellow, and light green color) 
 
The wide bars indicate how much the corresponding neurons 
respond to the presentation of the stimulus. 
 

Example of Population Coding using Five Neurons 

If the brain gets 
these firing rates 
from each neuron, 
it can then deduce 
the orientation of 
the stimulus 
without ambiguity 

Stimulus Orientation 



Retinal Stimulus 

Stimulus 
Firing rate of the 
“red” neuron 

Firing rate of the “yellow” 
neuron, which now fires 
more 

Each tuning curve corresponds to a different neuron (indicated 
with blue, red, dark green, yellow, and light green color) 
 
The wide bars indicate the firing rate of the corresponding 
neuron at the presentation of the stimulus. 
 

Example of Population Coding using Five Neurons (con’t) 

If the brain gets these firing 
rates from each neuron, 
it can then deduce the 
orientation of the stimulus 
without ambiguity 

Stimulus Orientation 



Retinal Stimulus 

Firing rate of the 
“red” neuron 

The “yellow” 
neuron still fires 

Example of Population Coding using Five Neurons (con’t) 

If the brain gets these firing 
rates from each neuron, 
it can then deduce the 
orientation of the stimulus 
without ambiguity 

Stimulus Orientation 

Now there is a stimulus with 
two orientation (+60 and -30) 

Now neuron 
“blue” fires 
more 

Double peaks 



A. Spike counts of two neurons (recorded from separate tetrodes) during the first 100 ms of spontaneous 
upstates (black), responses to a tone (green), and responses to a natural sound (magenta). Data were 
jittered to show overlapping points.  

D. Contour plot derived 
with responses to individual 
stimuli marked separately. 
Sensory-evoked responses 
again lie within the realm 
outlined by spontaneous 
events. 

Regions occupied by responses to the sensory stimuli differ but are 
both contained in the realm outlined by spontaneous patterns. 





I 

R 

F 

Input I: arrival rate of spikes 
R: input firing rate of the pyramidal to the Interneuron 
F: input firing rate of the interneuron to the pyramidal 
At each neuron, we have an Integrate-and-Fire model 
The firing of the interneuron causes suppression of the Pyramidal neuron 
 
State of a neuron: its membrane potential 
 
Assume: Ni(t): counting process  {Ni(t), t>=0}  number of spikes that have arrived at neuron i 
by time t. Poisson Process of rate λi 
 
If the Interneuron fires, it will instantaneously silence the Pyramidal  
Model the system as discreet Markov-Chain 
What is the equilibrium states? What are its stable solution? 
Compute its limiting probabilities  
 
State of the system: (State of P, State of I), where the state of the Pyramidal neuron (P) is the 
number of spikes that arrive within Dt, and the state of the Interneuron (I) is 1 (fire) or 0 (not 
firing) 
 
 

Pyramidal (P) 

Interneuron (I) 



R 
I 

F 

Input I: arrival rate of spikes 
R: input firing rate of the Pyramidal to the Interneuron 
F: input firing rate of the Interneuron to the Pyramidal 
At each neuron, we have an Integrate-and-Fire model 
The firing of the Interneuron causes suppression of the Pyramidal neuron 
 
Assume: Ni(t): counting process  {Ni(t), t>=0}  number of spikes that have arrived at neuron i by time 
t. Poisson Process of rate λi 
 
If the Interneuron fires, it will instantaneously silence the Pyramidal  
Model the system as Discreet Markov-Chain 
What is the equilibrium states? Which are its stable solutions? Compute its limiting probabilities  
 
State of the system (State of P, State of I): state of the Pyramidal neuron (P) is # spikes that arrive 
within Dt & the state of the Interneuron (I) is 1 (fire) or 0 (not firing);  
 
The state of the I is the number of spikes that arrive within Dt (from the Pyramidal) and that I fires 
with prob. fI 

 

Prob[(i, 0)  (0, 1)] = fI    for i> 1,             Prob[(i, 0)  (0, 0)] = 1- fI    for i>1, 
 

Prob[(0, 0)  (1, 0)] = λm  Δt e- λm Dt,             Prob[(0, 0)  (n, 0)] = ((λm Δt)n   / n! ) e- λmDt  
 

 
 

Pyramidal (P) Interneuron (I) 



I1 

R 

F 

Input I: firing rate           Output O: firing rate 
R: input firing rate of the pyramidal to the Interneuron 
F: input firing rate of the interneuron to the pyramidal 
At each neuron, we have an Integrate-and-Fire model 
The firing of the interneuron causes a suppression 
 
State of a neuron is the membrane potential 
 
What is the equilibrium state? 
 
A neuron may give output to another layer… Not all neurons give output to another layer 

I3 

O2 

O1 

I2 



Networks with Attractor States to Model Associative Memory 

• Synaptic connectivity in a recurrent neural network (RNN) is set up in 
such a way that the network dynamics have multiple attractor states 

 

Each attractor state: 

• represents a particular item, stored in memory.  

• is a specific pattern of activity of the network that is correlated with 
the state of the network when the particular item is presented 
through external inputs.  

The attractor property means that the network converges to the 
stored pattern even when the external inputs are correlated but not 
identical to the pattern (necessary requirement for an associative 
memory model) 
 
This is a potential way that the brain works to “resolve” the noise. 
 



Learning & Retrieval in RNNs with Unsupervised Hebbian Learning Rules 

ξ: synaptic inputs to each 
neuron in the network 

(B) The firing rate pattern produced by the 
synaptic input currents modifies the 
network connectivity according to an 
unsupervised Hebbian Learning rule.   
 
The connection strength is represented by 
the thickness of the corresponding arrow 
(the thicker the arrow, the stronger the 
connection). 

 Synaptic inputs elicit firing rates 
through the static transfer function φ(ξ) 

Some neurons respond strongly (red 
circles), others weakly (white circles) 

(D) Following the presentation, the network goes to an attractor state 
that strongly overlaps the stored pattern (compare with A), which 
indicates retrieval of the corresponding memory 

After learning, a pattern of synaptic inputs that 
is correlated but not identical to the stored 
pattern is presented to the network. 



Non-linear functions, f & g, that characterize the dependence of the learning rule on the post-
synaptic rate (f) and pre-synaptic rate (g), respectively.  



Final connectivity after learning 

Non-linear functions, f & g, that characterize the dependence of the learning rule on the post-
synaptic rate (f) and pre-synaptic rate (g), respectively.  

i j 

k 



Probabilistic Brains: Known & Unknowns 

• Experiments have shown that 
human behavior is highly 
consistent with probabilistic 
reasoning not only in the sensory 
domain, but also in the motor and 
cognitive domains. 

 
• Although it is well-established that 

humans and monkeys (and other 
animals) perform probabilistic 
inference, it is less clear how 
inference is implemented at the 
level of neural circuits. 
 

• An efficient, and under some 
circumstances optimal, way to 
perform tasks involving 
uncertainty is to represent 
knowledge with probability 
distributions and to acquire 
new knowledge by following 
the rules of probabilistic 
inference.  

 
• Cox’s theorem tells us that 

probability theory provides 
the only sensible and coherent 
way to reason under 
uncertainty. 

Pouget, A., Beck, J., Ma, W. et al. Probabilistic brains: knowns and unknowns. Nat Neurosci 16, 1170–1178 (2013).  





Cue Integration. Independent visual and haptic measurements (left) support to 
different degrees the three possible interpretations of object identity (middle). 
Integrating these sources of information according to their respective uncertainties 
provides an optimal probabilistic estimate of the correct object (right).  









Probabilistic Inference for Multisensory Integration 

Problem: Estimate the width of the object 
by touching it and via visual inspection 

Assuming that the noise corrupting the 
visual & tactile measurements is 
independent 

Bayesian rule 



Our intuition: the mean of the posterior distribution is a compromise 
between the mean obtained from vision & the mean obtained from 
touch, weighted by the inverse of the variance (that is, the precision) of 
each cue 

 Combined variance is smaller than both the visual and the tactile variance—as 
it should, given that combining cues increases the information 



Basis functions: the log of the tuning curve, of 15 neurons, to a 
periodic stimulus with value from −180 to 180 

Pattern of spike counts: 
calculated over a 200-ms 
interval, across the same 
neuronal population in 
response to a stimulus  with 
value 0 

To turn spike counts into log prob, multiply each 
basis function by its corresponding spike count. 



Fig. 1b 



Multisensory Integration – Probabilistic Inference 

•  Compute probability distributions over variables of interest s given sensory 

measurements I and prior knowledge p(s). 

•  In probabilistic models, the variable s is referred to as a latent variable (the 
width of the bar in the example) 

Bayesian logic 
 



Encoding Probabilities with Neurons 

• Several groups have proposed that neural activity encodes functions 
of latent variables, as opposed to single values.  

• In the probabilistic framework, these functions are either probability 
distributions or likelihood functions. In that case, neural 
computations must manipulate whole functions, and must do so 
according to the rules of probabilistic inference. 



Proposed Models of Neuronal Codes (1/2)  

• The response of a neuron tuned to a particular image feature (e.g., the 
orientation of a contour) is proportional to the log of the probability that 
the feature is present in the neuron’s receptive field (Barlow) 

• Neuronal responses are proportional to the probability rather than to its 
log (Anastasio) 

• Neuron codes the log probability that a feature takes on a particular value 
• Probability distributions are functions, and, as such, can be encoded using a 

variety of techniques, e.g., as a sum of other functions, where the 
coefficients would be encoded by neural activity 

 
Note: For a code that uses probability, adding probabilities is easy, whereas, 
for one that uses log probabilities, multiplying them is easy.  
As both addition & multiplication are key steps in probabilistic inference, 
neither code has an obvious advantage over the other 

 
 



Basis Functions 

• A common one is to express functions as the sum of other functions 
(called basis functions in this context) 

      e.g., radial basis functions 

      in Fourier analysis, a function is expressed as a linear combination 
of sines & cosines.  

• With the basis function approach, probability distributions would be 
represented as a set of coefficients and the coefficients would be 
encoded by neural activity 



Linear Probabilistic Population Codes 

(5) 

p(r|s) is the distribution of neural variability: the variability in spike 
counts in response to repeated presentations of the same stimulus (s) 

Assuming a flat prior, Bayes’ rule tells us that 



Proposed Models of Neuronal Codes (2/2)  

• Brain may represent probability distributions by the values of a set of 
samples drawn from the encoded distribution 

      e.g., spikes represent samples from a distribution over binary  
random variables (r.v.), whereas the membrane potential values 
represent samples from a probability distribution over real-valued r.v. 

• Whether this type of code is mutually exclusive or complementary to 
other codes is still being debated 



Neural Implementation of Probabilistic Inference 

1. Combining multiple sources of information  
     e.g., in the multisensory experiment, the posterior distribution over the width of the 
bar is the product of the visual & haptic likelihood functions 

•  Can be generalized to the problem of accumulating evidence over time (in decision-
making), instead of across modalities 

• Consistent with responses of neurons in areas, e.g., lateral intraparietal cortex, when 
they are accumulating information about direction of motion 

 
2. Marginalization Recovering the distribution over a variable x, p(x), from a joint 

distribution over x and other variables, e.g., p(x, y, z) 
•  Involves sums of probabilities and is implemented by adding neural activities 
      Marginals: e.g., p(x | y, z) 
    Note:  It is easier to compute p(x |y, z) from samples than p(x, y, z) (dimensionality 
problem) 
 
3.      Estimation of the maximum a posteriori estimate. Given a posterior distribution  
p(s|r), estimate the value of s corresponding to the peak of this distr. (i.e., the most 
probable value of s given the neural activity) 
      Implemented using an attractor network 



Probabilistic computation Linear Probabilistic 
Population codes 

Codes proportional to 
probabilities 

Sampling-
based codes 

Evidence integration: 
Cue combination, temporal 
accumulation of evidence for 
decision making 

Linear: sums across 
populations or over 
time 

Nonlinear: products Nonlinear: 
products of 
histograms of 
samples 

Estimation: 
Maximum likelihood 

Nonlinear: attractor 
dynamics 

Nonlinear: Winner 
Take All 

Nonlinear: avg 
of samples 

Kalman filtering 
Motor control, visual object 
tracking 

Non-linear: quadratic 
nonlinearity with 
divisive normalization 

Nonlinear Nonlinear: 
particle filters 





Related Lectures 

https://www.youtube.com/watch?v=KqqHJrs74_c 

https://www.youtube.com
/watch?v=HDk1hczPky4 

https://www.youtube.com/watch?v
=OYDIy5KgNKo 


