Extraction of Brain Networks from Empirical Data
Neural Systems are Complex Networks

Networks across scales Networks across modes
* micro (neurons, synapses) = structural (anatomical couplings)
= macro (regions, projections) = functional (dynamic interactions)
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Bullmore & Sporns (2009) Nature Rev Neurosci10, 186 RESEARCH NETWORK

Introductory Lecture on Neuronal Models

Prof. Maria Papadopouli

CS - 588 Analysis and Modeling of Brain Networks

Department of Computer Science
University of Crete

—

©ellowship Froqr IAPYMA ZTAYPOX NIAPXOZXZ

STAVROS NIARCHOS
FOUNDATION



http://www.csd.uoc.gr/

Resources

* Biological Neuron Models Tutorial 1 Videos 1 & 2
by Neuromatch Academy Richard Naud
University of Ottawa

https://www.youtube.com/watch?v=rSExvwCVRYg

 MIT 9.49/9.490/6.5076, Instructor: Professor lla
Fiete

The Hodgkin-Huxley theory of the action
Neuronal potential, Michael Hausser

B U<l  https://www.nature.com/articles/nn1100 1165.
I e
‘ - Neuronal Dynamics: From Single Neurons to

Networks and Models of Cognition By Wulfram

Gerstner, Werner M. Kistler, Richard Naud, Liam

Paninski (available as PDF online)



https://www.nature.com/articles/nn1100_1165.pdf
https://www.nature.com/articles/nn1100_1165.pdf

Roadmap

e Leaky Integrator and Fire Model
e Spiking vs Firing-rate Models



Modeling the Interaction at Different Scales
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If the experimenter
moves the electrode
vertically down from
the cortical surface
to deeper layers, the
location of the
receptive field and
its preferred
orientation does
not change
substantially.



Arrows on the left indicate
inter-layer connection
probabilities between

excitatory I’leUI'OI’llSl i
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Arrows on the right show intra-
layer connection probabilities
between excitatory neurons
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Connectivity patterns inside one column. Examples of shapes of excitatory neurons
in different layers.

Data from a barrel column in the somatosensory cortex of the mouse. After Lefort et al.
(2009)




The cortex Is a rather thin sheet of cells.

Cortical columns extend vertically across the sheet.

The connection probabllity within a column depends on the
layer where pre- and postsynaptic neurons are located.

In addition to this vertical connectivity, neurons make many
horizontal connections to neurons in other, cortical columns in
the same, but also in other, areas of the brain.

Within the same brain area, the probability of making a

connection is often modeled as distance dependent.
Note that distance dependence is a rather coarse feature, because
the actual connectivity depends also on the function of the pre- and
postsynaptic cell.
In the primary visual area, pyramidal neurons with a preferred
orientation for horizontal bars are more likely to make connections
to other columns with a similar preferred orientation (Angelucci and
Bressloff, 2006).



Myelin sheat

Myelinated axon

Inputs

Fig. 1. Neuron and myelinated axon, with signal flow from inputs at =~
dendrites to outputs at axon terminals. The signal is a short electrical
pulse called action potential or 'spike’.

A typical neuron in the mammalian neocortex receives thousands of
synaptic inputs



Dendrites

Neuronal Excitability ;_‘___,//\.*/

From OTHER NeEuINS
: : : e =4
Steps of information processing: ﬂ\\{

—

- Synapses: connection between neurons RS /
+

- Dendrites: receive inputs
- Cell body: sums currents from dendrites
- Axon: sends to action potentials
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(inset)

« Single neuron in a drawing by Ram”on y Cajal. Dendrites, soma, and axon can be
clearly
distinguished.

« The action potential is a short voltage pulse of 1-2 ms duration and an amplitude
of about 100mV.



Mathematical Model for Predicting the Spikes based on the Input Current

electrode
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nodified from: Gerstner, Kistler, Naud and Paninski Neuronal dynamics (2014)



If a neuron is a core computational unit, similar to the transistor,
what is its input and output function?

Input
VBE




Baowka KukAwpatwyv

NMukvwtnA¢ (capacitor): AmtoBnkeveL NAEKTPLKO OPTLO KOl EMOUEVWC
NAEKTPLKN EVEPYELL

Q. to doprio (current load) tou Betikd popTiopEVoU OMALGHOU

Taon nukvwtn V (voltage): n duadopd Suvapikou petaéL Twv
OTIALOUWV €VOC dopTlopeEvou rtukvwtn (Vc)

Xwpntkoétnta (capacity) tou mukvwti C=Q / V

Avtictoon R (resistance): SuokoAia SLEAsLONC TOU PEVUOTOC

R =V /I, tdon tou uAwkoU (V), mpoc to pevipa |

I ‘ Extracellular

.

Ohm's law states that the

E H current through a conductor
between two points is directly

proportional to the voltage

Intracellular across the two points.

RSN
[




Characterization of the input-output
function of a neuron

LA
!

Input }/, Output

Features of input current Features of output
spike trains




Electrical properties of neurons: the passive

membrane. L
A neuron receives a (positive) input current

I(t) which increases the electrical charge inside

the cell.
(a) ()
step current

" u(t): membrane potential

The cell membrane
]’;.-;!;. | " | reacts to a step current
v |y S | \_ with a smooth voltage
— e trace
The cell membrane acts like a capacitor in parallel with a

resistor which is in line with a battery of potential u,




Use the law of current conservation and split the driving current into
two components:  I(t) = Iz + -
From Ohm’s law: |y =u,/R, where u, =u -

urest
C=q/u
Capacity C lc=dq /dt=Cdu/dt
Charge q
Voltage u q
Voltage through resistor u, T, d—L: =-[u(t)—u,,]+RIt)

Capacitive current I
Resistive current I

Leaky Integrator termt,_ =R C



Decay of Membrane Potential

In the absence of input, the membrane potential decays exponentially
to its resting value

Characteristic time of decay: membrane time constant t,, = RC

For a typical neuron, it is ¥10 ms, long compared to the duration of a
spike (~“1ms)



Leaky Integrator Equation for Output
Basic model of a neuron

Input from multiple synapses V: membrane potential
- synapse
/ dv
T —=-V+ Input
dt
change inéring Intrinsic Syﬂaptic
Synaptic rate over time decay input
iInput: H

T,.: depends on neuron n
time___, rate that the neuron leaks

Single neuron
firing rate v: K

n

Tractable model
Exponential decay




Electrical Input—Output Membrane Voltage Models

* Produce a prediction for membrane output voltage as a function of
electrical stimulation given as current or voltage input

* Different functional relationships between the input current &
output voltage and in the level of details

Examples of models:

* Predict the moment of occurrence of output spike (also known as
"action potential")

e Account for sub-cellular processes and can be either deterministic or
probabilistic



Natural Stimulus or Pharmacological Input Neuron Models

* Connect the input stimulus (e.g., pharmacological, natural) to the
probability of a spike event

* Input stage is not electrical but rather has either pharmacological
(chemical) concentration units or physical units that characterize an
external stimulus, e.g., light, sound, physical pressure

e Qutput stage represents the probability of a spike event and not an
electrical voltage



Biophysical description
I(t) Current impinging on excitable membrane patch

V(t) Membrane potential (tadopa duvapikov)

C Capacitance of the membrane (xwpntikoTnTa)

g, Conductance of the membrane (aywyipotnta)
E, Equilibrium potential of “leak”
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Leaky Integrate and Fire Model

2) Replace by a Action potential of
The impinging current will either thre.zsh.old for spike  [ions channels
charge the capacitor or leak Sl other tha/.v the
through the membrane or flow Followed by a stereotypical
through the different ion channels S t(_) a fixed ge{verat/on of :
potential spikes 1) We will
\ PR S— ignore

dV
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Leaky Integrate-and-Fire (LIF)

dV

" dt

A: the time it takes

for the action
potential to be
generated, 1-2ms

If V(t) — vlh then V(t + A) - EL (refractory period)

When the action potential reaches a
threshold, a spike is generated (fire) and

stops the dynamics for time A

Subthreshold current step: Exponential

relaxation to a steady-state.

V() = (gi + Ep)|1 — e

L

Current

(1)

Membrane Potential

e
L >
T = Cm "rgL Time



dV Current
sz =—=g(V—-E)+1 1)
V(o) N
f V=V, then V(t+A)=E, \ v,
=
" Time
Current
(1)
Spike S| = interspike
V(1) S| interval (inverse
frequency)

Suprathreshold
current step
Regular firing

Vlh




Leaky Integrate and Fire Model

. Spik
The firing frequency depends on the - l—p' e
magnitude of the current being injected ) - |
A7
- | / A | // ",'
_} " 1‘ '/' | "/ ’/' ‘ l
il r S v UL
Current / G AR (V—-E)+1 TE e r—éf?aito
Input " dt - - period

Output
> fV(1) = V,, then V(t+ A)=E, >

The refractory period of a neuron is the time in which a
nerve cell is unable to fire an action potential




Do spikes always have the same shape?

Yes! Spikes follow stereotypical time course within 1-2 ms of onset
Notable exception: spikes late in a high frequency burst

.. Voltage reset
Spiking threshold > \
é { Variability ACross>
10N cnikeg

If the shape of an action potential is always the same, the shape cannot

be used to transmit information:
Rather information is “carried” with the presence or absence of a spike

Therefore action potentials are reduced to “events” that happen at a
precise moment in time




rest 3

The shape of postsynaptic potentials (dashed lines) depends on the time t = ¢/,
that has passed since the last output spike of neuron i.
The postsynaptic spike has been triggered at :/me

A presynaptic spike that arrives at tinrf | shortly after the spike of the postsynaptic neur:
has a

smaller effect than a spike that arrives much later.
(Data is courtesy of Thomas Berger. Berger et al., 2009).



If the shape of an action potential is always the same, the
shape cannot be used to transmit information:

Rather information is “carried” with the presence or absence
of a spike

Therefore action potentials are reduced to “events” that
happen at a precise moment in time
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Simple RC model for subthreshold voltage

Well below “AP threshold”, cell membrane dynamics well-modeled by a simple RC circuit.

dV
Equivalent RC circuit:
V(t) = Vin(t) — Vout
Vin®

—C' % gm 8 I With appropriate choice of |, this includes HH and other models.
m
[ m




Single voltage variable V(t) in model: ignoring spatial
dynamics

Simplest spatial models: multiple discrete equi-
voltage compartments, resistively coupled.

Image: from Genesis project

Modeling software for biophysically detailed and spatially extended neurons: NEURON.



Numerical integration of subthreshold voltage

Membrane Trans-membrane )
Membrane capacitance conductance voltage drop Resting voltage Input currents

dVv
ij — —gm(V(t) — Vm) + Iapp

— G

Tm = Cm/gm ~ 10 ms-

o I,
V = Vm _I_ e
1 9m

voltage (mV)




Leaky integrate-and-fire (LIF) model

Replace complex, detailed AP currents with a simple condition
dV
Cm dr = —gm(V(t) — Vi) + Lopp
Vv ‘/th,

V — Vr'eset



Single voltage variable V(t) in model: ignoring spatial dynamics

// Simplest spatial models: multiple discrete equi-
: voltage compartments, resistively coupled.

EpL gpL
| = e 2
500 pm |
3 E
Ex gk
IENa : ) «gm
|ESL . SsL :
| 1C
|

Image: from Genesis project

Modeling software for biophysically detailed and spatially extended neurons: NEURON.



Single voltage variable V(t) in model: ignoring spatial dynamics

Simplest spatial models: multiple discrete equi-voltage compartments, resistively coupled.

A, Characterized Neuron

dendrite

Image: f

Modeling software for biophysically detailed and spatially extended neurons: NEURON.



Simple RC model for subthreshold voltage

dv
O = =gm(V(t) = Vin) + 1

Equivalent RC circuit:

V(t) = Vin(t) — Vour

Vin® Cpn =1 pF/cm?
1/gm ~ 10000 Q cm?
e, gm Q1 = Tm = Cm/gm ~ 10 ms
T Vm

Vot L Take note of the short single-neuron time-constant (memory of single cells).
ou



Add spike mechanism

Hodgkin-Huxley model for both subthreshold voltage and AP generation

av

Om_ — _gm(v(t) — Vm) =+ Iapp +ISPF€(V(t): t)

dt

Equivalent RC circuit:

Complex, nonlinear voltage-dependent currents for
AP generation (see Hodgkin-Huxley model for details)

Vin®

|
- 1 2 3 V
- Cm 8 a,;o;o V) Zg3(V)

1 ‘ =V, =V, —V




Leaky integrate-and-fire (LIF) model

Replace complex, detailed AP currents with a simple condition
dV .
— _ + - -
Cm dt gm(V(t) = Vin) + Iopp  *SPike-and-
reset condition
Vv ‘/th,

V — Vr'eset



Leaky integrate-and-fire (LIF) model

Replace complex, detailed AP currents with a simple condition
dV V/ Vin
dt
‘ Vm:;55 mV
Vin = —40 mV |

Vieset = —65 mV

voltage (mV)

As |, increases, firing rate will increase



Synaptic activation model

Each synapse is a linear, low-pass filter of the presynaptic neuron’s
spikes; activation is a dimensionless variable than can be thought of as
“fractional activity”

ds

— = O(t — tspk.o

dt Tsyﬂ T 52 ( pk,a)

Simple Upward increment whenever
exponential there is a spike (whent =t )

decay



Aside: Dirac delta function

S(—b/2,b/2)

b

<+

/ O(x)dxr =1 |
—€ 1/b

/ f(x)0(x —a)dx = f(a) ifaeT 5

d(x) = blim S(—=b/2,b/2)

/ f(x)d(x —a)dr =0 ifadl



Aside: Kronecker delta

1 ifi=j
0 ifij



Synaptic Activation Model Numerical Integration

d
= = +52M—tsm)

dt Tsyn

t+ At
/ dt’ 25 — topk.a)

where the b superscript in tspk,oz indicates

—_S(t)+£§5b Lo e : o
At t,tspk,a the spike time bin in place of the precise spike time

)s(t) + 8 Z O 0 o



Synaptic Activation Model

Each synapse is a linear, low-pass filter of the presynaptic neuron’s
spikes; activation is a dimensionless variable than can be thought of as
“fractional activity”

ds S
at | /3§ :5(t_t5’ﬁ'k7&)
g 0.3
=2 Tsyn = 20 Ms
> es
i)
(@)
(.U 0.15
=
H o.1
Q.
40)
C 0.05
>
P k

| "
100 200 300 400 500 600 700 800 900 1000

Time (ms)

o



Conductance-based Model
The efficacy of synaptic input depends on postsynaptic neuron voltage

av

Cma = —gm(V(t) — Vm) + Iﬂpp _I_I.apk(v(t)a t)
7, ,app — Z sz S] Current-based model
OR:
Liapp = ZWZJSJ — Vk) —I_ZWZJSJ t)(Vi(t) — Vi)

Jjer g€l



The Hodgkin-Huxley (H-H) theory
of the action potential

* The Hodgkin-Huxley (H-H) theory of the action potential, formulated
50 years ago, remains one of the great success stories in biology, and

ranks among the most significant conceptual breakthroughs in
neuroscience.

* Together with the artificial neural networks of McCulloch and Pitts,
the quantal theory of Katz, and the cable theory of Rall, all
developed at around the same time, the H-H theory provided the
foundation for modern computational neuroscience



1.

The History of the H-H Theory

Cole and Curtis demonstrated that the action potential is associated with a
large increase in membrane conductance

Hodgkin and Huxley made the first intracellular recording of an action
potential

Hodgkin and Katz explained the overshooting action potential by showing
that it results from an increase in sodium permeability (validating the
neglected work of Overton)

Hodgkin, Huxley and Katz (following Cole and Marmont) developed a
voltage-clamp circuit to enable quantitative measurement of ionic current:
from squid axon

Hodgkin and Huxley then showed that step depolarizations of the squid
axon trigger an inward current followed by an outward current.

Using ionic substitution, they demonstrated that this net current could be
separated into two distinct components, a rapid inward current carried by
Na+ ions, and a more slowly activating outward current carried by K+ ions.

From experiments using ingenious voltage-clamp protocols, they concluded that
these two currents result from independent permeability mechanisms for Na+
and K+ with conductances changing as a function of time and membrane
potential.



H - H da 2 (mSiemz2)
— AP "
S— g o
model s
8« s
The first
intracellular NG 10
recording of an N — "
_ _ ~—2  —9—3
action potential, t
ime (ms)
from squid axon. Separation of ionic conductances
Time calibration, 2 underlying the action potential (AP) in

ey the H-H model.

Total ionic current: sum of separate Na+, K+ & leak currents

I = E_WHF‘FI[F — Ey,) + Zpn(V — Ep)
+ Bleak |V — Ejeat)

where separate equations for the gating variables m and h (for
activation and inactivation of g,,) or n (for activation of g,) describe all
the smoothly varying voltage and time dependence of the kinetics.
Thus, the H-H model links the microscopic level of ion channels to the
macroscopic level of currents and action potentials.



Integrate and fire models are useful
approximations of the real neuronal
dynamics



H)

Each channel type is
represented by a resistor

13 k|

Io 'l' E-:.

Hodgkin-Huxley (H-
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! Inside "
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The value of the resistance is not fixed but changes depending on whether the ion channel
is open or closed. Because of active ion transport through the cell membrane, the ion
concentration inside the cell is different from that in the extracellular liquid.

I:I Nernst potential generated by the difference in ion concentration

* The unspecific channel has a leak resistance R, the sodium channel a
resistance R, and the potassium channel a resistance R,.
* Separate batteries for sodium, potassium &the unspecific third
channel, with battery voltages E,_, E, and E, respectively
(since the Nerst potential differs depending the ion type)



Leakage channel: described by a voltage-independent conductance
g.= 1/R

u: total voltage across the cell membrane

E, : voltage of the battery

Leak current: I, =g,(u- E,)

If all channels are open, they transmit currents with a maximum
conductance g,, or g, respectively. Normally, however, some of the
channels are blocked.

The breakthrough of Hodgkin and Huxley was that they succeeded in
measuring how the effective resistance of a channel changes as a
function of time and voltage.




Nernst potential

From thermodynamics: the probability of a molecule taking a state of energy E is

proportional to the Boltzmann factor P(E) ~ exp ( -E / k T), where k: Boltzmann
constant, T temperature.

Consider positive ions with charge ( in a static electrical field.
Their energy at location x: E(X) = @ u(X), where U(X) the potential at x.

Probability of finding an ion around x is proportional to €XP[ =q Uu(X) / k T]

Since the number of ions is huge, we may interpret the probability as an ion density.
For ions with positive charge g>0, the ion density is higher in regions with low potential u.

n(x): ion density at point x

A difference in electrical potential AU = U(X1)=U(X2) generates a difference in

ion density;

Since this is a statement about an equilibrium state, the reverse must also be true. A

difference in ion density generates a difference Au in the electrice! ““*““E?L
Consider two regions of ions with concentration n1 and n2, respe Au | In
At equilibrium, the concentration difference generates a voltage q f

']




lon Concentration of Potassium

The ion concentration of potassium is higher inside the cell (= 140
mM) than in the extracellular liquid (= 5mM)

Potassium ions have a single positive charge q = 1.6x10-19 C
Application of the Nernst formula yields E, ==83mV at room
temperature (with the Boltzmann constant k = 1.4x10-23 J/K

The reversal potential for K+ ions is therefore negative



Sodium ions (Na+) & Reversal Potential

At equilibrium:
the difference in concentration causes a Nernst potential £, ~ +67mV.
the interior of the cell has a positive potential w.r.t the surround.

The interior of the cell and the surrounding liquid are in contact through
ion channels where Na+ ions can pass from one side of the membrane
to the other.

If Au < E,,, more Na+ ions flow into the cell so as to decrease the
concentration difference.

If Au>E,,, ions would flow out the cell.

Thus, the direction of the current is reversed when the voltage Au
passes k..

For this reason, E,, is called the reversal potential.



lonic Currents

-9 mV
Enm
—— -65 mV
K current
19 (B) 10% Na
I <A = AR N Sy
(mA/cm?)
=4 (A) 100% Na
I (C) Difference current
Na Na current
L 1 1 L 1 |
0 1 2 3 4 5

Time after start of the test pulse (ms)



Membrane ionic current

intracellular

Our equation for our model becomes:

mtﬂ(dlubr

IL +1 -1 =0 l. -L :

extrac




Our equation for our model becomes:

intracellular
I +1 —1 =
L c e O ILl Icl l
V R —— V.,
I, + Cd— = I > C : T
dt == :
R,
extracellular
V dVv

<
+
e
®
|
I

RL ] ¢
Rewrite as:

V”‘;_V-% where T=RC V.=R L

e — | —



Simplified Hodgkin—Huxley Model

l.: current from the i-th pre-synaptic neuron
V: membrane voltage

* Relationship between the flow of ionic currents across the neuronal
cell membrane and the membrane voltage of the cell

* Set of nonlinear differential equations describing the behaviour of
ion channels that permeate the cell membrane

Cell membrane of capacity C_,

dV(t)
Cl'ﬂ -_— — = I} t? V .

Time derivative of the law of capacitance, Q = CV where the change of
the total charge must be explained as the sum over the currents.



Hodgkin-Huxley model of action potential
generation

dVi(r)
dt

lm e IN«: + IK + Il. lm(')+ ( - 1,(’)

lv =Gu(V)V-E,) I.,=G,V)V-E,) 1I,=G,(V-E,)



The algorithm that the neuron uses to generate
a spike

Start with V' :
m




I,.=1y+1+1, I,=G,-(V—-Ey)

l,=G.WV.)V-E,) I1,=G,Vt)V-E,) I,=G,(V—-E,)

The sodium conductance is The potassium conductance The leak conductance is
time-dependent and is time-dependent and neither time-dependent
voltace-dependent voltage-dependent nor voltage-dependent



Electrical Circuit Idioms for Modeling Neurons

d vV
I(t) > u _ﬂ_ | Integrate-and-fire
TEC ‘; - The entire neuron is reduced to
+ a single spatial compartment.
The summed synaptic input is
b described by a net current I(t).
v
[0) L
CSR r - . Leaky integrate-and-fire
i

The state of the neuron is given by the voltage across a capacitance,

with each synaptic input adding to or subtracting from the charge
accumulating across the membrane



)
1) > }\ feg(V)
- 5 .f"J
. b
-
r Rate neuron
= : g
e v

In rate neuron: these discrete pulses are replaced by a continuous output

rate.
The monotonically increasing relationship between V & output rate

f = g(V) can be thought of as the discharge function of a population of
spiking cells.



Neuron 1

T C R 2 W,

V
I(t)> < * * > Neuron 2
e W, f Y

The summed synaptic input is described by a net current I(t).

d) In most neural networks, interactions within neurons are linear.

The necessary nonlinearity is provided by the sigmoidal g(V) function.
Here, the output of neuron 1 is unidirectionally connected to neuron 2
with synaptic weight w,,.



Non-linear saturating interactions can be mediated in a passive
dendritic tree by synapses that increase the postsynaptic conductance.
The interaction between excitation and inhibition of the shunting type is
of the AND-NOT type and is specific in space and in time,

e.g., the inhibitory synapse i, vetos excitation e; or e, but has only a
negligible effect on e,.



Electrical Circuit Idioms for Modeling Neurons

Integrate-and-fire

a

I Lvl T
C «

b Leaky mtegrate -and-fire

1(t) > : I

Rate neuron

I(t) > _L : i> f=g(V)

/‘1,/ g

S

.-"'/

S V

The entire neuron is reduced to a single spatial compartment.
The summed synaptic input is described by a net current I(t).

(a) If the voltage V > a fixed threshold, a unit pulse is
generated, and all charge on the capacitance is removed
by resetting V to zero (solid arrow).

(b) Leaky integrate-and-fire model: charge leaks away with
a time constant (given by the product of the capacitance C
and the resistance R) is a series of asynchronous spikes.

(c) In rate neuron: these discrete pulses are replaced by a
continuous output rate.

The monotonically increasing relationship between V &
output rate f = g(V) can be thought of as the discharge
function of a population of spiking cells.

The state of the neuron is given by the voltage across a capacitance, with each synaptic input
adding to or subtracting from the charge accumulating across the membrane



Neural Models: Spiking vs Firing-rate Models

Spiking models involve dynamics over time scales ranging from
channel openings (less than 1 ms) to collective network processes
that may be several orders of magnitude slower.

Firing-rate models avoid the short-time scale dynamics required to
simulate action potentials and thus are much easier to simulate on
computers.

Firing-rate models also allow us to present analytic calculations of
some aspects of network dynamics that could not be treated in the
case of spiking neurons.

Spiking models tend to have more free parameters than firing-rate
models, and setting these appropriately can be difficult.
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Modeling the Interaction at Different Scales

MICROSCOPIC
Biophysical level

Llll:)nm

Morphological level
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Single population

x\‘

|f-

MACROSCOPIC 3
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If the experimenter
moves the electrode
vertically down from
the cortical surface
to deeper layers, the
location of the
receptive field and
its preferred
orientation does
not change
substantially.



Arrows on the left indicate
inter-layer connection
probabilities between

excitatory I’leUI'OI’llSl i
1=

Arrows on the right show intra-
layer connection probabilities
between excitatory neurons

L2

L1

L4

L5A

L&

| 1o0um

Connection probabality: 005 010 015 0.0 .25

Connectivity patterns inside one column. Examples of shapes of excitatory neurons
in different layers.

Data from a barrel column in the somatosensory cortex of the mouse. After Lefort et al.
(2009)




The cortex Is a rather thin sheet of cells.

Cortical columns extend vertically across the sheet.

The connection probabllity within a column depends on the
layer where pre- and postsynaptic neurons are located.

In addition to this vertical connectivity, neurons make many
horizontal connections to neurons in other, cortical columns in
the same, but also in other, areas of the brain.

Within the same brain area, the probability of making a

connection is often modeled as distance dependent.
Note that distance dependence is a rather coarse feature, because
the actual connectivity depends also on the function of the pre- and
postsynaptic cell.
In the primary visual area, pyramidal neurons with a preferred
orientation for horizontal bars are more likely to make connections
to other columns with a similar preferred orientation (Angelucci and
Bressloff, 2006).



Interconnections in Cortex - Columns

* In the neocortex, which forms the convoluted outer surface of the human
brain, neurons lie in six vertical layers highly coupled within cylindrical
columns.

e Such columns “act” as basic functional units, cortical columns and
stereotypical patterns of connections both within a column and between
columns are repeated across cortex.

Top view onto the surface of the visual

Side view of a pinwheel (dashed
circle)

Orientation selectivity is indicated by
thick bars. Neurons with the same
orientation form vertical columns.
Schematic representation following
experimental data shown in Bressloff
and Cowan (2002).

Neurons that are optimally activated by a moving
grating with an orientation of, say, 60-, form bands.
The direction of the hash-line texture indicates the
preferred orientation. Iso-orientation contour lines
converge to form pinwheels. One of the pinwheels is




Interconnections in Cortex (cont’d)

* Feed-forward connections bring input to a given region from another
region located at an earlier stage along a particular processing
pathway

* Recurrent connections interconnect neurons within a particular
region, considered to be at the same stage along the processing

pathway, e.g., connections within a cortical column as well as
connections between both nearby and distant cortical columns within

a region
* Top-down connections carry signals back from areas located at /ater
stages

Neurons within a given region send top-down projections back to the areas from
which they receive feed-forward input, and receive top-down input from the areas to
which they project feedforward output



Pathways & Assemblies

* The sensory pathways create abstract representations

* Top-down attention can modify these representations

* Higher areas selectively represent task-relevant information
* Information often is coded sparsely and dynamically

Donald Hebb (1949) introduced the notion of neuronal assemblies, I.e., groups of cells
which get activated together so as to represent a mental concept such as the preparation
of a movement of the right arm toward the left.

Assembly: group of neurons, distributed across one or several brain areas (thus not
necessarily a local group); homogeneous population that is activated whenever the
corresponding mental concept is evoked.

Important: the assignment of a neuron to a population is not fixed but can depend on the
stimulus.




Prominent Examples of Columns

In the somatosensory and visual cortex (Mountcastle, 1957; Hubel
and Wiesel, 1962)

Pools of motor neurons (Kandel et al., 2000).

Given the large number of neurons within such a column or pool, it is
sensible to describe the mean activity of the neuronal population
rather than the spiking of individual neurons



A fully connected population of
neurons

(not all connections are
shown).

g I; an
arbitrary
neuron
in the
network

| receives input spikes from the whole
population. Hence it is driven by the population
activity A(t). The same is true for all other
neurons.



Homogeneous Networks

* all neurons 1<i<N are identical
 all neurons receive the same external input I, 1(t)=I_,(t)
* theinteraction strength w;; for the connection between (j, i)

of pre- & post-synaptic neurons is “statistically uniform” connections
inside the population as being either absent or “roughly the same,” w; ;
=W, (W, is @ parameter)

w, = 0: independent neurons

w, >0 (w,< 0): excitatory (inhibitory) coupling

each input spike generates a
postsynaptic current with song(r — ;:r_f ]
course
N
input current I,- includes both synaptic ‘r.‘ - E E wa"r'ﬂ-' “- - r_:"-I 4+ IIr-.':r.t{rﬁl
L R & i

coupling and external drive i=1 F



Heterogeneous Populations

» Strongly heterogeneous population should be split until (nearly)
homogeneous groups remain.

e.g., split the population into two populations, one with all neurons with
parameters 8, & the other with all neurons with parameters 6,

Stationary firing rate Vi = 2a.(1)

S an

T
I.-"'-F_ ___"'-.I -'r.'ﬂ.ﬂ
............ 4 N
I"‘I- S R
i “al iy
A ' | :
Py LAy et
L T A B Y 1

Iy N |

All neurons in group I'y are coupled with synaptic efficacy wjj = Sy /Ny.



Plasticity

* Synaptic plasticity is the ability of synapses to strengthen or weaken
over time in response to increases or decreases in their activity

* Plastic change often results from the alteration of the number of
neurotransmitter receptors located on a synapse

as well as changes in how effectively cells respond to those
neurotransmitters

Long-term plasticity: from minutes to hours
Short-term plasticity: tens of milliseconds to a few minutes

[CaZ*]. Concentration of calcium  Synaptic weight of the i-th input axon Wi

e
WO 1 e 1car),) @11, - W

€): function of the concentration of calcium that depends linearly on the number of receptors
on the membrane of the neuron



Winner-Takes-All

a powerful computational paradigm

20 O

A\Y ; *.9,0
i 7?: "% their firing inputs excite two inhibitors which in

\
M ~ turn inhibit all the outputs

‘ Qutputs that fire in response to stimulation from

o \““*“’ W (s

When more than one outputs fires, both inhibitors
get excited

M- inpd- :‘;"":‘;‘% This leads to a high level of inhibition, casing firing
UL (A, outputs to stop firing and drop out of the WTA
competition

When exactly one output fires, just one of the inhibitors (known as stability
inhibitor) is excited

This inhibitor is responsible for maintaining a WTA steady state: once a single
output fires at a time state, it becomes the winner of the network

It has a positive feedback self-loop that allows it to keep firing at subsequent
times, while all other outputs do not fire due to inhibition from the stability
inhibitor



Winner-Takes-All

A powerful computational paradigm

I

 The output nodes in the network mutually inhibit each other, while
simultaneously activating themselves through reflexive connections

* After some time, only one node in the output layer will be active, namely the
one corresponding to the strongest input

 The winner is the node with the largest response



Fluorescence Imaging



Fluorescence illumination of a single point

Camera

Tube lens Excitation

Emission light

Objective lens

Sample

Problem: fluorescence is emitted along entire
illuminated cone, not just at the focus

Limitations of tissue penetration depth:
Absorption
Scattering

* Imaging in near-infrared results in lower scattering and

minimizes absorption

The confocal microscope uses a
pinhole to block out-of-focus light

Detector A

Pinhole

Tube lens
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Fluorescence Imaging

Form of luminescence that results from matter emitting light of a
certain wavelength after absorbing electromagnetic radiation

Absorb light in a certain color and emit light in a different color
Fluorophores: Molecules that re-emit light upon absorption of light

Internal

(o A ! .
1 1 7 conversion




Basic Concepts

When a certain molecule absorbs light, the energy of the molecule is
briefly raised to a higher excited state (pnetaaocelc nAektpoviwv)

The subsequent return to ground state results in emission of
fluorescent light that can be detected and measured

The emitted light, resulting from the absorbed photon of energy h,,
has a specific wavelength

The measuring device needs to know this wavelength to detect light
production

Fluorescent dyes: when the bind to proteins they become more easil
detectable

Other molecules may aborbe light, however the light they emit is in
different frequency and thus are not get detected

Internal
S, A ¥ conversion




1P excitation

2P excitation

Photon Florescence Microscopy

One-photon excitation Two-photon excitation

Linear process, i.e., if you * Emission of two laser photons
double the laser intensity, you .
will double the fluorescence

intensitv

Non-linear process
The absorption rate depends on

s, - T Intomel jche seFond power of the light
intensity
”y {0 In a focus laser, the intensity is
| highest in the vicinity of the focus
So Z = and drops off quadratically with
; distance above and below
S i : nternal
1 o o As a result, fluorophores are excited
"y r almost exclusively in a tiny
A ) diffraction-limited focal volume
Y




GCaMP a genetically encoded calcium indicator

When bound to Ca%*, GCaMP fluoresces green with a peak
excitation wavelength of 480 nm and a peak emission
wavelength of 510 nm

In order to identify the cells that fire, cells that are genetically
engineered with GCaMP dye, when the density of calcium ions
increases, the light from the 2 photons from the laser gets absorbed
and results in the emission of a light in frequency that can be
detected and estimated from the microscope from the cells that have
fired


https://en.wikipedia.org/wiki/Calcium_imaging
https://en.wikipedia.org/wiki/Calcium_in_biology
https://en.wikipedia.org/wiki/Calcium_in_biology
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Neural Population Decoding

* Neural decoding predict stimuli/behavior

f(neural activity) = stimulus w

Decoding has been used for 30 years

v\

J#\,
Georgopoulos et al 1986 ' 4@
—



Neural Population in Primate Motor Cortex

* Although individual neurons in the arm area of the primate motor
cortex are only broadly tuned to a particular direction in 3D-space,
the animal can very precisely control the movement of its arm.

* The direction of movement was found to be uniquely predicted by
the action of a population of motor cortical neurons.

* When individual cells were represented as vectors that make
weighted contributions along the axis of their preferred direction
(according to changes in their activity during the movement under
consideration) the resulting vector sum of all cell vectors (population
vector) was in a direction congruent with the direction of movement.

* This population vector can be monitored during various tasks, and
similar measures in other neuronal populations could be of heuristic
value where there is a neural representation of variables with
vectorial attributes.




Developing the classifier

‘ Pattern Classifier



Decoding basics: a simple example

: ] i 132 neurons recorded from IT
500 0 500

Time (ms)

Zhang, Meyers, Bichot, Serre, Poggio, and Desimone, PNAS, 2011



Face identification invariant to head pose

Meyers, Borzello, Freiwald, Tsao, J Neurosci, 2015



Face identification invariant to head pose

Stimulus set: 25 individuals, 8 head poses per individual

[WOrpeoe



Face identification invariant to head pose

Train Test Test
Left Profile Same Pose Pose Invariance

e £ A
€

ML/MF AM

| I lelm ’Zf-llljll.l;.

LASRRUDES LASIKRRUDEB LASRKRRUDES

Classification Accuracy
o o



Is information contained in a dynamic population code?

Dog image Cat image

Bl =

Time 1
70 o

B0 =

C 50
. i} =
3 =
[ =)
20 =
10 -
g = B

20 = a0 5'1, G
Neuro c0 2o fiing
n - B O 2

I firing rq ta reuro”

Time 3

Neuron 3 firing rate

Time
Mevyers et al 2008, King and Dehaene 2014, Meyers 2018



Introduction of Neural Codes

* How do neurons process information received from a stimulus

* Measures electrical activity between neurons and how it carries
information

* How is information encoded in a series of action potentials?

Neural Coding: Which features of
neural activity carry this information

Execute behavior Y

if (X == Cat) do Y
. YJ",,

Predict the stimuli/behavior
from the neuronal activity

J (neuronal activity) > stimuli



Population Coding: An Overview

Images presented —

N . /F'Lring events

“The quantitative study of which of different
Newron 8 nn " " " I & N LI L | 1

algorithms or representations are used 1] SRR |\ § . gk ., ,heurons
by the brain to combine together and )

/ TIER LI TN RN 1 roron e om0 ucomb|ned
evaluate the messages carried by . | f
different neurons” 2 gy Wna il

~all neurons
TRENDS » Coprttee Scwnces

Figure 2: A population of four neurons are exposed to different
stimuli and the resulting action potentials are used to determine
fluxuations in the state of the network ?

Understanding neural algorithms

How can we convert noisy data into useful information?

From the talk: https://www.youtube.com/watch?v=m30Qwz9PhcA



Neural Decoding
Can you read the mind with fMRI?
Or at least tell what the person saw?

BOLD Response
across Voxels

e classifier

—

|1
1|

I " | neuron 3

l " “ neuron n

Pattern Classifier



Population Coding: Why Use It?

Difficult to differentiate information from a single neuron
Better explains behavioral performance

Responses of many neurons may be combined to determine some
value about the inputs

1 reente Conte

Nt o




Population Coding: Primary Visual Cortex (V1)

* One of the best area to examine the population coding, since the
relationships between the characteristics of stimuli and activation
of neurons is well documented

* Similar structure across mammalian species

 Pyramidal neurons: tuned to retinal location, orientation, contrast,
speed, spatial and temporal frequency

Optic nerve

Pretectal nucieous




Motivation for Population Coding

38 -~ Orientation Mean Firing Rate
| 0° 90 Mz
5 B0 Hz
S 60 10° 60 H2z
§ _:2 40 15° 40 Hz
8‘3 { 15° 40Mz
E G |
L
\ .
vy v A ) —— Tuning curve of a neuron
60° 30° 0e 30¢° 6Q°
S \ : o /

.
Stimulus Orientation -

When we have the tuning curve of a single neuron, and record its firing
rate, we cannot estimate precisely the stimulus orientation
(e.g., the edge present in the visual field of the neuron)



Examples in our datasets

Mouse 3, both Iayersgé;ize: 5054 neurons). Mouse 4, both layers Agize: 4755 neurons). Mouse 5, both layers 96§ize= 5310 neurons).

180°

270° 270° 270°



Motivation for Population Coding

gg' Orientation Mean Firing Rate
0° 90 Mz
5° B0 Hz

60

o
o

| ', 10° 60 Hz
\ 15° 40 Hz
{ \ 15° 40Mz

Tuning curve of a neuron

Finng rate
(spkes/s)

A
60° 300 0° 30° 8Q°
2 8 \ I -~ / <
Stimulus Orientation ——==

When we have the tuning curve of a single neuron, and record its firing rate,
we cannot estimate precisely the stimulus orientation (e.g., the edge present
in the visual field of the neuron)
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Tuning curve of a neuron
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Stimulus Orientation ——==

When we have the tuning curve

of a single neuron, and record its
firing rate, we cannot estimate
precisely the stimulus orientation
(e.g., the edge present in the visual
field of the neuron)

Motivation for
Population Coding

Orientation Mean Firing Rate

Using a number
of neurons to
resolve the
ambiguity

o
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Example of Population Coding using Five Neurons

Retinal Stimulus

\
Firing rate of the Firing rate of the If the brain gets
blue” neuron stmyl el neuron these firing rates
from each neuron,
Each tuning curve corresponds to a different neuron (indicated it can then deduce

with blue, red, dark green, yellow, and light green color) ) _
the orientation of

The wide bars indicate how much the corresponding neurons the stimulus
respond to the presentation of the stimulus. without ambiguity



Example of Population Coding using Five Neurons (con’t

Firing rate
\

‘I
\
\
|
f “l'
—'/ a— -

. \ [
Stimulus Orientation

Stimulus
Firing rate of the

“red” neuron

Each tuning curve corresponds to a different neuron (indicated
with blue, red, dark green, yellow, and light green color)

The wide bars indicate the firing rate of the corresponding
neuron at the presentation of the stimulus.

Retinal Stimulus

/

Firing rate of the “yellow”
neuron, which now fires
more

If the brain gets these firing
rates from each neuron,

it can then deduce the
orientation of the stimulus
without ambiguity



Example of Population Coding using Five Neurons (con’t

Double peaks

Now there is a stimulus with
two orientation (+60 and -30)

o Retinal Stimulus
o
o
£
i #
A\ The “yellow”
neuron still fires
Stimulus Orientation
If the brain gets these firing
Now neuron ¢ H
“blue” fires Firing rate of the rates rom each neuron,
more “red” neuron it can then deduce the

orientation of the stimulus
without ambiguity



A Activity of pair of neurons
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Spontaneous Events Outline the Realm
of Possible Sensory Responses
in Neocortical Populations

Artur Luczak,12 Peter Barth6,? and Kenneth D. Harris!*

D. Contour plot derived
with responses to individual
stimuli marked separately.
Sensory-evoked responses
again lie within the realm
outlined by spontaneous
events.

A. Spike counts of two neurons (recorded from separate tetrodes) during the first 100 ms of spontaneous
upstates (black), responses to a tone (green), and responses to a natural sound (magenta). Data were

jittered to show overlapping points.

Regions occupied by responses to the sensory stimuli differ but are
both contained in the realm outlined by spontaneous patterns.




How are assemblies created?

synaptic
input

inhibitory




‘ Pyramidal (P)

F
w I ‘ Interneuron (1)

R

Input I: arrival rate of spikes

R: input firing rate of the pyramidal to the Interneuron

F: input firing rate of the interneuron to the pyramidal

At each neuron, we have an Integrate-and-Fire model

The firing of the interneuron causes suppression of the Pyramidal neuron

State of a neuron: its membrane potential

Assume: N,(t): counting process {N(t), t>=0} number of spikes that have arrived at neuron i
by time t. Poisson Process of rate A,

If the Interneuron fires, it will instantaneously silence the Pyramidal
Model the system as discreet Markov-Chain

What is the equilibrium states? What are its stable solution?
Compute its limiting probabilities

State of the system: (State of P, State of |), where the state of the Pyramidal neuron (P) is the
number of spikes that arrive within Dt, and the state of the Interneuron () is 1 (fire) or O (not
firing)



W | ‘ Pyramidal (P) ‘ Interneuron (1)
R

Input I: arrival rate of spikes

R: input firing rate of the Pyramidal to the Interneuron

F: input firing rate of the Interneuron to the Pyramidal

At each neuron, we have an Integrate-and-Fire model

The firing of the Interneuron causes suppression of the Pyramidal neuron

Assume: Ni(t): counting process {N.(t), t>=0} number of spikes that have arrived at neuron i by tir
t. Poisson Process of rate A,

If the Interneuron fires, it will instantaneously silence the Pyramidal
Model the system as Discreet Markov-Chain
What is the equilibrium states? Which are its stable solutions? Compute its limiting probabilities

State of the system (State of P, State of I): state of the Pyramidal neuron (P) is # spikes that arrive
within Dt & the state of the Interneuron (l) is 1 (fire) or O (not firing);

The state of the | is the number of spikes that arrive within Dt (from the Pyramidal) and that I fire
with prob. f

Prob[(i, 0) = (0, 1)] = f, fori>1, Prob[(i, 0) = (0, 0)] = 1-f, fori>1,

Prob[(0, 0) = (1, 0)] =A,, Ate-AmPY, Prob[(0, 0) = (n, 0)] = ((A,, At)" /n!) e-AmDt



Input I: firing rate Output O: firing rate

R: input firing rate of the pyramidal to the Interneuron
F: input firing rate of the interneuron to the pyramidal
At each neuron, we have an Integrate-and-Fire model

The firing of the interneuron causes a suppression

State of a neuron is the membrane potential
What is the equilibrium state?

A neuron may give output to another layer... Not all neurons give output to another layer



Networks with Attractor States to Model Associative Memory

* Synaptic connectivity in a recurrent neural network (RNN) is set up in

such a way that the network dynamics have multiple attractor states

Each attractor state:

represents a particular item, stored in memory.

is a specific pattern of activity of the network that is correlated with
the state of the network when the particular item is presented
through external inputs.

The attractor property means that the network converges to the
stored pattern even when the external inputs are correlated but not
identical to the pattern (necessary requirement for an associative

memory model)

This is a potential way that the brain works to “resolve” the noise.




Learning & Retrieval in RNNs with Unsupervised Hebbian Learning Rules

B |
@ (B) The firing rate pattern produced by the

U’ synaptic input currents modifies the
5 ﬁ network connectivity according to an

unsupervised Hebbian Learning rule.

The connection strength is represented by

. ' y , ) L,
5 > v flol&))glolE;))  the thickness of the corresponding arrow
§: synaptic inputs to each (the thicker the arrow, the stronger the
neuron in the network connection).
Synaptic inputs elicit firing rates Some neurons respond strongly (red

through the static transfer function ¢(§) | circles), others weakly (white circles)

After learning, a pattern of synaptic inputs that
is correlated but not identical to the stored
pattern is presented to the network.

o (D) Following the presentation, the network goes to an attractor state
) O that strongly overlaps the stored pattern (compare with A), which

indicates retrieval of the corresponding memory




a learning rule that changes the synaptic connectivity matrix by a
factor AJ;; o< f (¢ (€)] g [qﬁ» (5;")} when a pattern p is presented to
the network, starting from an initial tabula rasa J;; = 0, and

neglecting the contributions of recurrent connections during
learning. This rule is a generalization of Hebbian rules used in
classic models, such as the Hopfield model (Hopfield, 1982) or the
Tsodyks-Feigel'man model (Tsodyks and Feigel'Man, 1988), with
two important difterences: patterns have a Gaussian distribution
instead of binary, and the dependence of the rule on firing rates is
non-linear instead of linear. In the following, the patterns that
have shaped the connectivity matrix will be termed “familiar,”
whereas all other random patterns presented to the network will

be termed “novel.”

Non-linear functions, f & g, that characterize the dependence of the learning rule on the post-
synaptic rate (f) and pre-synaptic rate (g), respectively.




Final connectivity after learning

Ty =2 £lo(€)] g (¢)]

where ¢;; is a sparse random (Erdos-Renyi) structural connectivity

matrix (¢;; = 1 with probability ¢, ¢;; = 0 with probability 1 — ¢, c<1

o * e

i J

Non-linear functions, f & g, that characterize the dependence of the learning rule on the post-
synaptic rate (f) and pre-synaptic rate (g), respectively.



Probabilistic Brains: Known & Unknowns

An efficient, and under some
circumstances optimal, way to
perform tasks involving
uncertainty is to represent
knowledge with probability
distributions and to acquire
new knowledge by following
the rules of probabilistic
inference.

Cox’s theorem tells us that
probability theory provides
the only sensible and coherent
way to reason under
uncertainty.

Experiments have shown that
human behavior is highly
consistent with probabilistic
reasoning not only in the sensory
domain, but also in the motor and
cognitive domains.

Although it is well-established that
humans and monkeys (and other
animals) perform probabilistic
inference, it is less clear how
inference is implemented at the
level of neural circuits.

Pouget, A., Beck, J., Ma, W. et al. Probabilistic brains: knowns and unknowns. Nat Neurosci 16, 1170-1178 (2013).



One may even say, strictly speaking, that almost all our
knowledge is only probable; and in the small number of things
that we are able to know with certainty, the principle means of
arriving at the truth -induction and analogy- are based on
probabilities.

Pierre Simon Laplace. Theorie analytique des probabilites.
1825.



Cue Integration. Independent visual and haptic measurements (left) support to
different degrees the three possible interpretations of object identity (middle).
Integrating these sources of information according to their respective uncertainties
provides an optimal probabilistic estimate of the correct object (right).

Haptic input Interpretations Cue combination
“ P(shape | haptic)
f P(shape | haptic) =
Pl o1
&7 &
Visual input P(shape | combine
P(shape | visual)
= —t—
272 © ¥

Statistically optimal perception and
learning: from behavior to neural
representations

|6zsef Fiser 1+ 2 &, Pietro Berkes 1, Gerg6 Orban L3 Maté Lengyel *
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Likelihood: the function specifying the probability p(x/y,M) of observing a
particular stimulus x for each possible state of the environment, y, under a
probabilistic model of the environment, M.

Marginalization: the process by which the distribution of a subset of variables,
1, is computed from the joint distribution of a larger set of variables, {yy, yak:
plyi) =1 plwvs, ¥2) dys. (This could be important if, for example, different
decisions rely on different subsets of the same set of variables.) Importantly, in
a sampling-based representation, in which different neurons represent these
different subsets of variables, simply “reading” (e.g. by a downstream brain
area) the activities of only those neurons that represent y, automatically
implements such a marginalization operation.

Maximum a posteriori (or MAP) estimate: in the context of probabilistic
inference, it is an approximation by which instead of representing the full
posterior distribution, only a single value of y is considered that has the
highest probability under the posterior. (Formally, the full posterior is
approximated by a Dirac-delta distribution, an infinitely narrow Gaussian,
located at its maximum.) As a consequence, uncertainty about y is no longer
represented.



Posterior: the probability distribution pl{yx M) produced by probabilistic
inference according to a particular probabilistic model of the environment,
M, giving the probability that the environment is in any of its possible states, y,
when stimulus x is being observed.

Prior: the probability distribution p{y|M) defining the expectation about the
environment being in any of its possible states, y, before any observation is
available according to a probabilistic model of the environment, M.
Probabilistic inference: the process by which the posterior is computed. It
requires a probabilistic model, M, of stimuli x and states of the environment y,
containing a prior and a likelihood. It is necessary when environmental states
are not directly available to the observer: they can only be inferred from stimuli
through inverting the relationship between y and x through Bayes' rule:
pl ¥lx,M) = plxfy.M) plyviM)Z, where £ is a factor independent of y, ensuring
that the posterior is a well-defined probability distribution. Mote, that the
posterior is a full probability distribution, rather than a single estimate over
environmental states, y. In contrast with approximate inference methods, such
as maximum likelihood or maximum a posteriori that compute single best
estimates of y, the posterior fully represents the uncertainty about the inferred
variables.



Probabilistic Inference for Multisensory Integration

Problem: Estimate the width of the object

by touching it and via visual inspection

p(

d
o N
Visual and haptic A\’ /
scene

Noise ’\

Assuming that the noise corrupting the
visual & tactile measurements is

independent
1|'J'_.‘|';|'_|I,'_:l_t.: {Lt}:p(w.g_ Uy |H")p[ﬂ'} :Pl:wi |ﬂl}p(w! |u1)p{w}
/\ P(we, we) plw,, wy)
Bayesian rule
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p(w, |w)
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° o 100

Bar width
b) The posterior distribution over

the width (p(w|w,, w;), green curve) 1s proportional to the product of the visual (p(w,|w),

blue curve) and haptic (p(w,w), red curve) likelihood functions. Note that the posterior

distribution 1s shifted toward the more reliable cue (the one with the smaller variance; in this

case. vision).



Our intuition: the mean of the posterior distribution is a compromise
between the mean obtained from vision & the mean obtained from
touch, weighted by the inverse of the variance (that is, the precision) of
each cue

1/o? 1/0?

f 1 " F _
g2 /g2 v la211 /o2
ljos+1/0; ljos+1/0;

Moyt = wy

Combined variance is smaller than both the visual and the tactile variance—as
it should, given that combining cues increases the information




Log firing rate

Log probability

Basis functions: the log of the tuning curve, of 15 neurons, to a
periodic stimulus with value from -180 to 180

Pattern of spike counts:

f_/

-100 0 100
Stimulus

O calculated over a 200-ms
interval, across the same
neuronal population in

-100 0 100
Stimulus

Spike count

O O response to a stimulus with
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To turn spike counts into log prob, multiply each
basis function by its corresponding spike count.
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Taking a product of likelihood functions with probabihstic population codes. Bottom panels,
probabilistic population codes for the two likehhoods shown 1n Figure 1b (the blue and red
curves). Summing the two population codes (neuron by neuron) yields a population code
(top) for the product of the two hikelihoods (the green curve in Fig. 1b), as required for

optimal multisensory integration {equation (1)).



Multisensory Integration — Probabilistic Inference

« Compute probability distributions over variables of interest s given sensory

measurements I and prior knowledge p(s).

* In probabilistic models, the variable s is referred to as a latent variable (the
width of the bar in the example)

Probabilistic inference starts with the generative model, a statistical model of how the
measurements. /. are generated (which has to be learned by the animal). The generative
model consists of a EI‘iDl’ distribution E{s} and a distribution p(/ls) (known as the likelihood
function when viewed as a function of s; Box 1). In the previous example, the prior, p(w)
was assumed to be flat, and the likelihood functions corresponded to the functions p(w,|w)
and p(w,/w). Bayes’ rule then provides a recipe for formulating beliefs about s, in the form of

the posterior distribution

p(1|s)p(s) Bayesian logic
pls = 4
(D=2

The denominator, p(/). ensures that the posterior distribution integrates to 1.



Encoding Probabilities with Neurons

* Several groups have proposed that neural activity encodes functions
of latent variables, as opposed to single values.

* In the probabilistic framework, these functions are either probability
distributions or likelihood functions. In that case, neural
computations must manipulate whole functions, and must do so
according to the rules of probabilistic inference.



Proposed Models of Neuronal Codes (1/2)

 The response of a neuron tuned to a particular image feature (e.g., the
orientation of a contour) is proportional to the /og of the probability that
the feature is present in the neuron’s receptive field (Barlow)

* Neuronal responses are proportional to the probability rather than to its
log (Anastasio)

 Neuron codes the log probability that a feature takes on a particular value

* Probability distributions are functions, and, as such, can be encoded using a
variety of techniques, e.g., as a sum of other functions, where the
coefficients would be encoded by neural activity

Note: For a code that uses probability, adding probabilities is easy, whereas,
for one that uses log probabilities, multiplying them is easy.

As both addition & multiplication are key steps in probabilistic inference,
neither code has an obvious advantage over the other



Basis Functions

e A common one is to express functions as the sum of other functions
(called basis functions in this context)

e.g., radial basis functions

in Fourier analysis, a function is expressed as a linear combination
of sines & cosines.

* With the basis function approach, probability distributions would be
represented as a set of coefficients and the coefficients would be
encoded by neural activity

hi(s) are the basis functions and the constant 1s needed to ensure proper normalization



Linear Probabilistic Population Codes

Expenmental data”l-- suggest that p(ris) belongs to a family of dismbuhons known as the
exponential family with linear sufficient statisties?’, leading to the code shown in equation
(3) 1f the pnor 15 flat. Thus, linear probabilistic population codes have the advantage that
they are consistent with the statistics of neural responses. Moreover, as the hi(s) can be any
set of funchons of 5, equation (3) can represent virtually any postenor distmbution, pis|r).

l()gp(3|1‘):Zr,'hg(3‘)+(‘0115mnt (5)

p(r|s) is the distribution of neural variability: the variability in spike
counts in response to repeated presentations of the same stimulus (s)

Assuming a flat prior, Bayes’ rule tells us that ~ Fl=ir) = pirjs]



Proposed Models of Neuronal Codes (2/2)

* Brain may represent probability distributions by the values of a set of
samples drawn from the encoded distribution

e.g., spikes represent samples from a distribution over binary
random variables (r.v.), whereas the membrane potential values
represent samples from a probability distribution over real-valued r.v.

 Whether this type of code is mutually exclusive or complementary to
other codes is still being debated



Neural Implementation of Probabilistic Inference

1. Combining multiple sources of information

e.g., in the multisensory experiment, the posterior distribution over the width of the
bar is the product of the visual & haptic likelihood functions

® (Can be generalized to the problem of accumulating evidence over time (in decision-
making), instead of across modalities

* Consistent with responses of neurons in areas, e.g., lateral intraparietal cortex, when
they are accumulating information about direction of motion

2. Marginalization Recovering the distribution over a variable x, p(x), from a joint
distribution over x and other variables, e.g., p(x, v, z)

* Involves sums of probabilities and is implemented by adding neural activities
Marginals: e.g., p(x | v, 2)

Note: It is easier to compute p(x |y, z) from samples than p(x, y, z) (dimensionality
problem)

3. Estimation of the maximum a posteriori estimate. Given a posterior distribution
p(s|r), estimate the value of s corresponding to the peak of this distr. (i.e., the most
probable value of s given the neural activity)

Implemented using an attractor network



Probabilistic computation Linear Probabilistic Codes proportional to | Sampling-
Population codes probabilities based codes

Evidence integration:

Cue combination, temporal
accumulation of evidence for
decision making

Estimation:
Maximum likelihood

Kalman filtering
Motor control, visual object
tracking

Linear: sums across
populations or over
time

Nonlinear: attractor
dynamics

Non-linear: quadratic
nonlinearity with
divisive normalization

Nonlinear: products

Nonlinear: Winner
Take All

Nonlinear

Nonlinear:
products of
histograms of
samples

Nonlinear: avg
of samples

Nonlinear:
particle filters



-obabilistic computation

Neural implementation

Linear probabilistic population codes

Codes proportional to
probabilities

Sampling-based codes

1dence mtegration (for example, cue
mbimnation, temporal accumulation of

1dence for decision-making)

fimation (for example, maximum
elthood)

alman filtering (for example, for
otor control, visual object tracking)

mple marginalization (for example,
iear coordinate transforms)

corporating prior knowledge
proximate high dimensional

ference (for example, olfactory
ocessing)

Linear: sums across populations*’ or

over ime’
Nonlinear: attractor dyvnamics®! 42

Nonlinear: quadratic nonhneanty with
divisive normalization”®

Nonlinear: quadratic nonhneanty with
divisive normalization®®

Nonlinear: bias current®’

Nonlinear: for example, divisive
normalization®’

Nonlmear: products

Nonlmnear: winner take
all

Nonlmears ¢
Linear®3&*

Nonlmnear: products

Nonlmear: products
and sums>-

Nonlmnear: products of
histograms of samples’

Nonlmear: average of
samples>*?

Nonlmear: particle filte
Linear: sums over histo

Nonlmear: products of
1stograms of samples’

Nonlmear: Monte Carlc
:.ampling’3




Related Lectures

https://www.youtube.com/watch?v=KqqHJrs74 c

https://www.youtube.com/watch?v
=0YDIy5KgNKo

Neural Decoding

Nancy Kanwisher
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@ . | Minds+
Machines

Neural decoding of spike trains
and local field potentials with
machine learning in python

Omar Costilla-Reyes
Massachusetts Institute of Technology
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Brains
Minds+
Machines
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August 10, 2020
[ |

BMM Virtual Summer Course 2020

Using population decoding to
understand neural content
and coding

Ethan Meyers
Yale University, Hampshire College

https://www.youtube.com
/watch?v=HDk1hczPky4



