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We build a linear model                    

where                                 are the coefficients of  each predictor 

Linear regression

One of  the simplest and widely used statistical techniques for predictive modeling

Supposing that we have observations (i.e., targets)

and a set of  explanatory variables (i.e., predictors) 

given as a weighted sum of  the predictors, with the weights being the coefficients



Why using linear regression?

Prediction:

- Additional value of  X is given without a corresponding value of  y

- Fitted linear model is makes a prediction of  y

Strength of  the relationship between y and a variable xi

- Assess the impact of  each predictor xi on y through the magnitude of  βi

- Identify subsets of  X that contain redundant information about y



Simple linear regression

Suppose that we have observations

and we want to model these as a linear function of

To determine which is the optimal β ∊ Rn , we solve the least squares problem:

where β is the optimal β that minimizes the Sum of Squared Errors (SSE)



Example 1

X Y Predicted Y Squared Error

1.00 1.00 0.70 0.09

2.00 2.00 1.40 0.36

3.00 1.30 2.10 0.64

4.00 3.75 2.80 0.90

5.00 2.25 3.50 1.56

SSE = 3.55

Suppose that we have

• target variable y = (1, 2, 1.3, 3.75, 2.25)  

• predictor variable x = (1, 2, 3, 4, 5) 

Fit a linear model by finding the β that minimizes the Sum of  Squared Errors (MSS)

β = 0.7



We can add an intercept term β0 for capturing noise not caught by predictor variable

Again we estimate              using least squares         

with intercept term

without intercept term



Example 2

Predicted Y Squared Error

0.70 0.09

1.40 0.36

2.10 0.64

2.80 0.90

3.50 1.56

Predicted Y Squared Error

1.20 0.04

1.60 0.16

2.00 0.49

2.50 1.56

2.90 0.42

SSE = 2.67SSE = 3.55

Intercept term improves the accuracy of  the model



Multiple linear regression

Attempts to model the relationship between two or more predictors and the target

where are the optimal coefficients β1, β2, ..., βp of  the predictors x1, x2,..., xp

that minimize the above sum of  squared errors



Bias: error from erroneous assumptions about the training data

- High bias (underfitting)  miss relevant relations between predictors & target

Variance: error from sensitivity to small fluctuations in the training data

- High variance (overfitting)  model random noise and not the intended output 

Bias – variance tradeoff: Ignore some small details, to get a more general “big picture” 

Regularization

Shrinks the magnitude of  coefficients



Ridge regression

Given a vector with observations                  and a predictor matrix

the ridge regression coefficients are defined as:

Not only minimizing the squared error, but also the size of  the coefficients!



Ridge regression

Here, λ ≥ 0 is a tuning parameter for controlling the strength of  the penalty

• When λ = 0, we minimize only the loss  overfitting

• When λ = ∞, we get                   that minimizes the penalty  underfitting

When including an intercept term, we usually leave this coefficient unpenalized



Example 3

Overfitting

Underfitting

Increasing size of  λ



In linear model setting, this means estimating some coefficients to be exactly zero

Problem of  selecting the most relevant predictors from a larger set of  predictors

Variable selection

This can be very important for the purposes of  model interpretation

Ridge regression cannot perform variable selection

- Does not set coefficients exactly to zero, unless λ = ∞



Example 4

Suppose that we are studying the level of

prostate-specific antigen (PSA), which is often

elevated in men who have prostate cancer. We

look at n = 97 men with prostate cancer, and p

= 8 clinical measurements. We are interested in

identifying a small number of predictors, say 2

or 3, that drive PSA.

We perform ridge regression over a wide range of  λ

This does not give us a clear answer... 

Solution: Lasso regression



Lasso regression

The lasso coefficients are defined as:

The only difference between lasso & ridge regression is the penalty term

- Ridge uses l2 penalty 

- Lasso uses l1 penalty 



Again, λ ≥ 0 is a tuning parameter for controlling the strength of  the penalty

Lasso regression

The nature of  the l1 penalty causes some coefficients to be shrunken to zero exactly

Can perform variable selection

As λ increases, more coefficients are set to zero  less predictors are selected



Example 5: Ridge vs. Lasso 

lcp, age & gleason: the least important predictors  set to zero



Example 6: Ridge vs. Lasso 



Constrained form of  lasso & ridge

For any λ and corresponding solution in the penalized form, there is a

value of t such that the above constrained form has this same solution.

The imposed constraints constrict the coefficient vector to lie in some

geometric shape centered around the origin

Type of  shape (i.e., type of  constraint) really matters!



Why lasso sets coefficients to zero?

The elliptical contour plot represents sum of  square error term

The diamond shape in the middle indicates the constraint region

Optimal point: intersection between ellipse & circle 

- Corner of  the diamond region, where the coefficient is zero

Instead with ridge:



Matlab code & examples

% Lasso regression

B = lasso(X,Y); % returns beta coefficients for a set of regularization parameters lambda
[B, I] = lasso(X,Y) % I contains information about the fitted models

% Fit a lasso model and let identify redundant coefficients
X = randn(100,5);           % 100 samples of 5 predictors
r = [0; 2; 0; -3; 0;];      % only two non-zero coefficients
Y = X*r + randn(100,1).*0.1;  % construct target using only two predictors
[B, I] = lasso(X,Y); % fit lasso

% examining the 25th fitted model
B(:,25) % beta coefficients
I.Lambda(25) % lambda used
I.MSE(25) % mean square error



Matlab code & examples

% Ridge regression

X = randn(100,5);           % 100 samples of 5 predictors
r = [0; 2; 0; -3; 0;];        % only two non-zero coefficients
Y = X*r + randn(100,1).*0.1;  % construct target using only two predictors

model = fitrlinear(X,Y, ’Regularization’, ’ridge’, ‘Lambda’, 0.4));
predicted_Y = predict(model, X);   % predict Y, using the X data

err = mse(predicted_Y, Y); % compute error

model.Beta % fitted coefficients


