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Recurrence Quantification Analysis (RQA)

• Powerful tool that uses theory of non-linear dynamics based on the topological analysis of the 
phase space of the underlying dynamics

• Enables the understanding of the behavior of a complex dynamic system, e.g., deterministic, 
random, chaotic

• Does not make any assumption about the model that governs the system or the data (e.g., 
linearity, convexity, stationarity)

• Can handle short time-series, non-stationary data 

• Is robust to outliers 
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Phase Space Representation
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Time-delay Embedding

 Phase-space reconstruction

 Objective: Unfold the projection back to a multivariate state-space that is representative of the
original system

 Parameters

 Embedding dimension (m)

 Time delay (τ)



Estimating the Optimal m using the False Nearest Neighbors (FNN) algorithm

Εliminate 'false neighbours’ by checking the neighbourhood of points embedded in projection
manifolds of increasing dimension:

Intuition: when we increased the dimension, the vectors capture a richer (or more complete, 
more accurate)  “picture” of the state

 Points lying close together due to projection are further away in higher embedding dimensions

 If two points are genuine neighbours, they become close due to the system dynamics &
separate (relatively) slowly.



False nearest neighbors (FNN) algorithm

 eliminates 'false’ neighbours by checking the 
neighbourhood of points embedded in projection manifolds 
of increasing dimension:

This means that points apparently lying close together due to 
projection are separated in higher embedding dimensions.

Source: 

http://people.virginia.edu/~smb3u/NASPS

PA9506a/node5.html



Estimating the Optimal m (con’t)

 Embed the scalar time series xd in increasingly higher dimensions

 At each stage compare the number of pairs of vectors vd and vd
NN (i.e., the nearest neighbour

of vd) which are close when embedded in Rd but not when in Rd+1.

If two points are genuine neighbours, they become close due to the system dynamics &
separate (relatively) slowly.

However, these two points may have become close because the embedding in Rd has
produced trajectories that cross (or become close) due to the “embedding” structure-formation
rather than the system dynamics.



Estimating the Optimal m

The increase of the distance

Rd :Euclidean distance of two nearest neighbors in the phase space representation of d dimension

Rtol : threshold above which, false neighbors are identified (typically 10 ≤ Rtol ≤ 30 )



Estimating the Optimal m (con’td)

 The output is the percentual amount of FNN 
vs embedding dimension

 Monotonically decreasing

 Choose the smallest m with the FNN 
proportion:

 under a threshold

 converging



Example: Estimating the optimum m

Let’s check if the third element of Xd=1(t) has a FNN

X
d=1

(t)=     (7, 5, 1, 3, 5, 9, 12, 10, 9, 9)

X
d=2

(t) =     ({7,5}, {5,1}, {1,3}, {3,5}, {5,9}, {9,12}, {12,,10}, {10,9}, {9,9})

X
d=1

(3) = 1

X
d=1

NN(3) = X
d=1

(4) = 3

X
d=2

(3) = {1,3}

X
d=2

(4) = {3,5} 

𝑅𝑑=1
= 3 − 1 2 = 2

𝑅𝑑=2 = 3 − 1 2 + 5 − 3 2

= 2.83

2 − 2.83

2
= 0.42

< 10

𝑅𝑡𝑜𝑙
= 10

X
d=1

(3) 

has no FNN



Estimating the Optimal τ

Employ the mutual information (or auto-correlation function)

Intuition: obtain coordinates/”points” for the time delayed trajectory that are as uncorrelated
as possible

 Auto Mutual Information Function AMIF(x(t), x(t + τ)): dependence between the original
time series x(t) & the shifted by τ, x(t + τ)

Select τ that produces the first local minimum in the AMIF



Mutual Information

Quantifies the reduction of uncertainty relative to a X given the knowledge of Y



Mutual Information

(Mutual Information) I(X ; Y) = H(X) – H(X | Y) 

= H(Y) – H(Y | X) 

= I(Y ; X)

Note: I(X ; X) = H(X) – H(X | X) = H(X)

(Conditional Mutual Information)

I(X ; Y | Z) = H(X | Z) – H(X | Y, Z)



Estimating the Optimal τ

 Select time delay τ which gives least 
compression of trajectories (the first 
local minimum in the AMIF). 

 Obtain coordinates/”points” for the time 
delayed trajectory that are as 
independent as possible.



Estimating the Optimal τ

The amplitude distributions are estimated from histograms.

Mutual information:

Equivalently:

where



Estimating the Οptimal τ

Mutual information (or auto-correlation function)

 Οbtain coordinates/”points” for the time delayed trajectory that are as independent as
possible

Auto Mutual Information Function AMIF(x(t), x(t + τ)): dependence between the original time
series & corresponding time shifted



Estimating the optimum τ

Example – Calculate the AMI between x(t) and x(t+1)

 x(t) =      (7, 5, 1, 3, 5, 9, 12, 10, 9, 9),         

 x(t+1) = (5, 1, 3, 5, 9, 12, 10, 9, 9, 0)

p
i=1

=0.4 p
i=2

=0.6 p
j=1

=0.5 p
j=2

=0.5p
ij

p
j=1

p
j=1

p
i=1

0.3 0.1

p
i=2

0.2 0.4



Example: Estimate the Optimum τ

Calculate the Auto Mutual Information (AMI) between x(t) & x(t+1)



Recurrence Plot (RP)
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Recurrent points



Time Series

Vertical/horizontal lines: Laminar 
states; State changes slowly 

Uncorrelated 
stochastic data (white 
noise)

Harmonic oscillation 
with two frequencies

Chaotic data 
with linear 
data

Corresponding recurrence plots

Diagonal lines: State evolution is similar at distinct times; 
the duration of similar local evolution 



RQA Measures

Laminarity (LAM) Trapping time (TT) 

LAM decreases if the RP consists of more 
single recurrence points than vertical 

structures (e.g., chaos-order transitions) 

Mean time that the system 
remains at a specific state 

Recurrence Rate (RR) based on 
recurrence density 



Line Of Synchronization (LOS)

RP reveals the time instants where the dynamics of the timeseries are somehow constant

• To identify these instants, apply a specific algorithm which produces the Line of Synchronization  

This line is distorted, in comparison to the main diagonal



Construction of the LOS

Start at the recurrence point (1, 1) next to the axes origin (first point of the LOS)

Apply iteratively the following steps:

1. At the recurrence point, look for recurrences in a squared W x W window (initially W=2)

2. If the squared window contains recurrence points 

a. Increase the window in the horizontal (vertical) direction by a predefined δx<dx (δy<dy) parameter OR
until no new recurrence points are met

a. Estimate the centroid of the cluster of recurrence points 

b. Set this centroid as the next point of the LOS

Go to step 1

Else, increase the size of the window to W+1 and go to step 2



A step by step illustration (1 of 7)

Suppose the Recurrence Plot below has been produced by applying RQA to our timeseries

We set dx = dy = 2 for the algorithm estimation
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A step by step illustration (2 of 7)

• Set the first recurrence point as (1,1)
• Look if the edge of a squared 2 x 2 window (in blue) contains recurrence points 
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A step by step illustration (3 of 7)

• Set the first recurrence point as (1,1)
• Look if the edge of a squared 2 x 2 window (in blue) contains recurrence points 
• Increase the window in the x-direction until a predefined δx < dx (δx=1) or until no new recurrence 

points are met
• Similarly, do this in the y-direction
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A step by step illustration (4 of 7)
• Set the first recurrence point as (1,1)
• Look if the edge of a squared 2 x 2 window (in blue) contains recurrence points
• Increase the window in the x-direction until a predefined δx < dx < 2 (δx=1) or until no new recurrence 

points are met
• Similarly, do this in the y-direction
• Determine the centroid of the cluster of points & set it as the next recurrence point
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A step by step illustration (5 of 7)

• Start from the previously set recurrence point
• Follow again the aforementioned steps in order to determine the next recurrence point
• Do this iteratively until you reach the end of the Recurrence Plot
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A step by step illustration (6 of 7)

Connect all the recurrence points which have been defined by the algorithm

Then, the Line of Synchronization is produced (below in red)
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In addition, the LOS vector that contains the position of each centroid in the RP is derived
• Each position of the vector is connected to the x-dimension of the RP
• Each value of the vector is connected to y-dimension of the RP

The LOS vector for our example is (1, 2, 2, 4, 5, 5)

A step by step illustration (7 of 7)



Interpretation of the LOS (1 of 2)

We can say that:
• The state of time instant 1 is similar to itself
• The state of time instant 2 is similar to itself
• The state of time instant 3 is similar to the state of time instant 2, etc.
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Interpretation of the LOS (2 of 2)

If we now subtract each element of the LOS vector with its predecessor (calculate pairwise differences), 
some segments are formed which contain zero differences.

(1, 2, 2, 4, 5, 5)  (1, 0, 2, 1, 0)

During these segments, obviously the LOS is constant
• Implying that the dynamics of the timeseries during these time instants, are also constant

In other words, they are mapped to a specific event
• The length of these segments is connected to the duration of the event
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