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Agenda

Basic data analysis & modeling tools that can be employed in the projects

• Null Hypothesis Test

• Temporal correlation metrics

• Pearson correlation

• STTC

• Kolmogorov-Smirnov Test

• Clustering

k-means

• Regression

• Linear regression

• Lasso & Ridge regression



Proving Your Hypothesis

Mathematics

1. We already know a set of axioms &
theorems, say K

2. We want to show the theorem 
(hypothesis) H

3. We show:     K, H  False 
(contradiction)

4. Thus, if we trust that K holds indeed, 
H cannot hold, and 

H must hold

Real World

1. We already “know” K

2. We want to show a   hypothesis H, e.g., 
“H: medicine A reduces the mortality of 
disease B”

3. We gather data from the real world. 

We show that K,  H makes it 

very unlikely to observe our data

4. We conclude that 

H is very unlikely

We reject H, and accept H 

Symbol  “” indicates  the negation of a statement



Notation for the following slides

• Random variables are denoted with a capital letter, e.g., X

• Observed quantities of random variables are denoted with their 
corresponding small letter x

Example:
• G is the expression level of a specific gene in a patient

• g is the measured expression level of the game in a specific patient



The Null Hypothesis

• The hypothesis we hope to accept is called the Alternative Hypothesis

Sometimes denoted as H1

• The hypothesis we hope to reject, the negation of the Alternative Hypothesis, is 
called the Null Hypothesis

Usually denoted by Ho

Think of the   Ho as the “status quo”



Standard Single Hypothesis Testing

1. Form the Null  & Alternative Hypothesis

2. Obtain  related data

3. Find a suitable test statistic T

4. Find the distribution of T given the null

5. Depending on the distribution of T &  the observed to = T ( x)

decide to reject or not H0



Test Statistics

• Test statistic is a function of our data X: T(X)     ( X: random variable )
e.g., if  X  contains a single quantity (variable) T(X) the mean value of X 

• T   is a random variable (since it depends on X , our data which is random variable)

• Denote with to = T(x) the observed value of T in our data

• Instead of calculating P ( obtaining data similar to X | H0 ) 

Calculate  P ( T similar to to | H0 )

• If   P ( T similar to to | H0) is  very low, reject H0



Statistical significance tests

• Let’s just think about a two-tailed test: “difference” or “no difference” 

• Null hypothesis: there is no difference between A vs. B

• Assume that oA & oB are “sampled” independently from a “population” 

• Test statistic: a function of the sample data on which the decision is to be based

t ( o1, o2 ) = |e (o1) − e (o2)|   

e: evaluation metric

• Find the distribution of t under the null hypothesis 

Assume that the null hypothesis is true

• Where does the  t ( oA, oB ) lie in this distribution? 

If it’s somewhere unlikely, that’s evidence that the null hypothesis is false





The Lake Wobegon Example: “Where all the children are above average!”

• Let X represent Weschler Adult Intelligence scores (WAIS)

• Typically, X ~ N(100, 15) (μ0 = 100, σ = 15)

• Obtain data: 9 children from Lake Wobegon population

Their scores: {116, 128, 125, 119, 89, 99, 105, 116, 118}

Average of the observations x = 112.8

Does sample mean provide strong evidence that population mean μ > 100?

-



One-Sample z Test

1.  Hypothesis statements
H0: µ = µ0
Ha: µ ≠ µ0 (two-sided) or 
Ha: µ < µ0 (left-sided) or
Ha: µ > µ0 (right-sided) 

3.  Test statistic

4.  P-value: convert zstat to P value

A. Significance statement (usually not necessary)
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Example:  Two-Sided Hypothesis Test “Lake Wobegon”

1. Formulation of the Hypotheses: 
H0: μ = 100

Ha: µ > 100 (one-sided)

Ha: µ  ≠ 100 (two-sided)



2. Obtain data …

Obtain data: 9 children from Lake Wobegon population

Their scores: {116, 128, 125, 119, 89, 99, 105, 116, 118}

Average of the observations = 112.8



Example:  Two-Sided Hypothesis Test “Lake Wobegon”

3.   Test statistic
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Central Limit Theory

Establishes that, in most situations, when independent random variables are added, 
their properly normalized sum tends toward a normal distribution even if the 
original variables themselves are not normally distributed. 

1. A sample is obtained containing a large number of observations, each 
observation being randomly generated in a way that does not depend on the values 
of the other observations. 

2. If step 1 is performed many times, the computed values of the average will 
be distributed according to a normal distribution. 

Example:  Flip a coin many times. The probability of getting a given number of heads in 
a series of K flips will approach the normal distr. with mean =K/2 



P-value: P = Pr( Z ≥ 2.56 )  =  0.0052

P =.0052  it is unlikely the sample came from this null distribution 

strong evidence against H0

Sample distribution follows the 
Normal distribution
according to the Central Limit Theorem



• Ha: µ ≠100 

Considers random deviations “up” & “down” 
from μ0   tails above & below  ± zstat

Thus, two-sided P 
= 2 × 0.0052 
= 0.0104

Example - Two-Sided P-value: Lake Wobegon



Conditions for z Test

1. Population approximately Normal or large sample (central limit theorem)

2. The population variance is known! 

If the population variance is unknown (and therefore has to be estimated from

the sample itself) & the sample size is not large (n < 30), 
the Student's t-test may be more appropriate.



Another Example



• Background knowledge: Breast Cancer is related to mutations in genes BRCA1 & BRCA2

• Hypothesis: Gene G is expressed differently in breast cancer patients with mutation in BRCA1
than BRCA2

• Data: Obtained 7 patients with BRCA1 mutation & 8 with BRCA2 mutation

Hedenfalk et al. N Engl J Med. 2001 
Feb 22;344(8):539-48.
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1. Form the Null Hypothesis

• Gene G is expressed differently in breast cancer patients with mutation in 
BRCA1 than BRCA2

Mathematically
• μ1 : be the mean expression level of gene G in patients with BRCA1 mutation

• μ2 : be the mean expression level of gene G in patients with BRCA2 mutation

H0 : μ1 = μ2

H1 : μ1 ≠ μ2



2.  Obtain data….



3. Find a suitable test statistic T  (Example)
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• The larger the difference of the two means, the larger the statistic

• The larger our sample, the larger the statistic

• The smaller the sample variance, the larger the statistic

So T will be quite large (in absolute value), when we can confidently say H0 does not hold

Unpaired Two Sample  t-test



3.  Find a suitable test statistic T  (cont’d)

21

}{

1

}2:{

1

2

}1:{

1

1

22

21

)(
1

1

1
,

1
,

1

}2:{#},1:{#

11
)(

22

mx
lk

s

x
lk

mx
l

mx
k

m

xxlxxk

lk
s

mm
xT

i

x

i

xx

i

xx

i

iiii

iiiii






















Unpaired Two Sample  t-test



3.  Find the distribution of T   (cont’d)

For the test of this specific example, we will make the following assumptions:

a) The data in both groups are distributed normally around a mean value μ1 , μ2 respectively

b) Their variance is the same in both groups 

c) Each patient was sampled independently

and most importantly that  THE NULL HYPOTHESIS HOLDS

This is an assumption for ALL tests!

Then

T(X) has a probability density function of:
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where the degrees of freedom of the test v is 

15 – 2 = 13 (number of patients – 2)



The t-statistic was introduced in 

1908 by William Sealy Gosset, 

a chemist working for 

the Guinness brewery in Dublin. 
"Student" was his pen name.



One sample T-distribution 



Student  t-distribution  (basics)



t-distribution  
(basics)



3. Find the distribution of T
Example

x



4. Decide on a Rejection Region

• Decide on a rejection region Γ in the range of our statistic

• If  to  Γ ,  then reject H0

• If  t o  Γ ,  then do not reject H0

accept H1 ?

Since  the  pdf  of  T when the null hypothesis holds is known,

P( T  Γ | H0 )  can be calculated



4. Decide on a Rejection Region

• If  P( T  Γ | H0 )  is too low,  we know we are safely rejecting H0

• What should be our rejection region in our example? 



Γ region of 
rejection

4. Decide on a Rejection Region

Where extreme values of to are:

• unlikely to come from when H0 is true

• could come with high probability, when 
H0 is false

P( T  Γ | H0 ) is the area of the shaded 
region (can be calculated)

X



Rejection Procedure

• Pre-select a probability threshold a

• Find a rejection region Γ = { t: |t|>c }, such that  P( T  Γ | H0 ) = a

• Decide
• Reject H0 ,   if to  Γ (recall: to is the observed T in our data)
• Accept H0 ,  otherwise

What values do we usually use for a in science?
0.05 is typical 
Smaller ones are also used: 0.01 , 0.001

When to  Γ we say the finding is statistically significant at significance level a



Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc.

Issues to be Considered

• When there exist two or more tests that are appropriate in a given situation, 

how can the tests be compared to decide which should be used?

• If a test is derived under specific assumptions about the distribution of the 

population being sampled, 

how well will the test procedure work when the assumptions are violated?



Parametric versus non-Parametric Tests

• Parametric test

Makes the assumption that the data are sampled from a particular class of 
distributions

It then becomes easier to derive the distribution of the test statistic

• Non-Parametric test

No assumption about a particular class of distributions



Permutation Testing

• Often in biological data, we do not know much about the data distribution

• How do we obtain the distribution of our test statistic?

• Great idea in statistics: permutation testing

• Recently practical because it requires computing power (or a lot of patience)



Permutation Testing

1. In our first example, we want to calculate p ( t | H0 )

2. If  H0 , then it does not matter which group each value xi
1 comes from

3. Then, if we permute the group labels, we would get a value for our test 
statistic given the null hypothesis holds

4. If we get a lot of such values, we can estimate (approximate)  p( t | H0 )



Permutation Testing Revisited

• Decide what can be permuted, if the null hypothesis is true

• For all  (as many as possible) permutations of the data, calculate the test statistic 
on the permuted data: tB

• Estimated p-value = # { |tB|  |to| } / #B



True distribution calculated 
theoretically

Estimated distribution from our 
data: 100 permutations



Does It Really Work?

True distribution calculated 
theoretically Estimated distribution from our data: 1,000 

permutations



Does It Really Work?

True distribution calculated theoretically
Estimated distribution from our data: 10,000 
permutations



p-value is defined as the 

probability of obtaining a result 

equal to or more extreme than 
what was actually observed



The 
Significance 

Level



Calculating 
the 
Distribution



What you 
SHOULD 
do



Statistical Errors

• Type 1 Errors

-Rejecting H0 when it is actually true     

-Concluding a difference when one does not actually exist

• Type 2 Errors

-Accepting H0 when it is actually false (e.g. previous slide)

-Concluding no difference when one does exist

Errors can occur due to biased/inadequate sampling, poor experimental design or 

the use of inappropriate/non-parametric tests.



Regarding the Choice of a Test

When we cannot reject H0,  it does not mean H1 holds!

• It could be that we do not have enough power, i.e.,

H1 is not that “different enough” from H0 to distinguish it with the given 
sample size 

of all possible tests for a hypothesis choose the one with the maximum power

Power analysis methods need to be employed.
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Challenges in Quantifying Correlation

1. Correlated neurons fire at similar times but not precisely synchronously, so 
correlation must be defined with reference to a timescale within which spikes 
are considered correlated

2. Spiking is sparse with respect to the recording’s sampling frequency & spike 
duration

e.g., spiking rate 1 Hz, sampling rate typically 20 kHz (Demas et al., 2003)

This means that conventional approaches to correlation (such as Pearson’s 
correlation coefficient) are unsuitable 

• as periods of quiescence should not count as correlated 

• correlations should compare spike trains over short timescales, not just 
instantaneously. 



Pearson 
Correlation 

of two 
variables X & Y  

(ρΧ,Υ)



Sample Pearson correlation coefficient

Datasets {x1,...,xn} & {y1,...,yn} 
containing n values



Pearson correlation: widely-used measure of the linear correlation between variables 

No linear correlation

Positive linear correlation



Examples of Pearson Correlation 



Quantification of Correlation between Neural Spike Trains

• Key part of the analysis of experimental data

• Neural coordination is thought to play a key role in 

• information propagation & processing

• self-organization of the neural system during development



Designing the Appropriate Temporal Correlation Metric

• Symmetry 

• Treatment of idle periods

• Robustness to variations in firing rate

e.g., doubling the firing rate of two spike trains with a specific firing structure, 
does their correlation remain the same?

• Robust to the recording duration

• Bounded

• Distinction of the correlation vs. no correlation vs. anti-correlation

• Minimal assumptions on the underlying structure/distribution of the events





Directional STTC 
Temporal Correlation Metric

Extended STTC metric to take into consideration the temporal order of the 
correlation of the spike trains of two neurons



𝑷𝑨
𝑩−: fraction of firing events of A that occur within an interval Δt prior to firing events of B 

𝑻𝑩−: fraction of total recording time covered by the intervals Δt prior to each spike of B
Δt: specific lag (input in directional STTC)

Directional STTCAB represents a measure of the chance that firing events of A will precede firing 
events of B 



Directional STTC 
Synchronous (lag = 0)

Spike trains of 100 time unit
with uniform distr [ 10, 30 ] spikes
10,000 pairs



Advantages of Directional STTC

Relative spike-time shifts (lag parameter)

Order between neurons with respect to their firing events

Local fluctuations of neural activity or noise

• accounting the amount of correlation expected by chance

The presence of periods without firing events

• only the firing events contribute

𝑺𝑻𝑻𝑪𝑨𝑩 =
𝟏

𝟐
(
𝑷𝑨
𝑩− −𝑻𝑩−
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CA

Conditional STTC (A->B |C) represents a measure of the chance that firing 
events of A will precede firing events of B, given the presence of firing of C 



Conditional STTC (A->B |C) 



“AB” indicates that firing events of A proceed firing events of B by a specific lag

Null distribution: STTC values for 
the circular shifted neurons (by 
random delays)

Significant Motifs Significant edge: real STTC value 
> 3 std. dev.  of null distribution 

Control (synthetic data)
Each neuron trace is circular shifted by 
random delay
For each pair of ‘shifted’ neurons, 
estimate the directional STTC & null distr.
Identify the significant edges



Control group
Each neuron trace is circular shifted by random delay
For each pair of neurons, estimate the directional 
STTC & null distribution
Identify the significant edges

The real neuron traces appear higher
values of directional STTC & percentage 
of significant edges 

Considering all pairs of neurons in the datasets



Null distribution test for directional STTC 
For a given pair of neurons i and j (i,j)

Estimate the (observed) STTC(i,j)
1. Circular shift the spike train of the neuron j  (generated spike train j1 )
2. Estimate the directional STTC(i1, j)

We will call them synthetic STTC values (called also null or control)

Repeat the above steps a large number of times (k=1, … , T)

T depends on the time horizon of the spike trains – the larger is the T the better
3. Estimate the mean             & standard deviation       of the obtained synthetic STTC values  in step2
4. Based on the mean & std dev of the synthetic values, employ a statistical significant threshold (α) &

criterion 

Criterion: If the directional STTC (A, B) satisfies the above inequality, the directional STTC (A,B) is  
statistically significant. 

The criterion can be strengthen with more repetitions (T) & larger threshold α 



Strengthen the Criterion of Significant Directional STTC (A,B)

Additional requirements

• The total number of spikes of A within a STTC lag of spikes of B is above 3.

• The total number of spikes of B within a STTC lag of spikes of A  is above 3.



Kolmogorov-Smirnov (K-S) Test

• Non-parametric test of the equality of continuous 1D probability distributions
• Quantifies a distance between two distribution functions
• Can serve as a goodness of fit test 

• Null hypothesis
H0: Two samples drawn from populations 
with same distribution

The maximum absolute difference between
the two CDFs



Kolmogorov-Smirnov (K-S) Test

n & m: size of the 
sample datasets



Kolmogorov-Smirnov (K-S) Test

Kolmogorov computed the expected distribution of the distance of the 
two CDFs when the null hypothesis is true.



Example: Kolmogorov-Smirnov Test

Decision p-value Distance
Lag  True Null Null Null True Null Null Null True Null Null Null
1 1 0 0 0.5427 0.79 0.0076
2 1 0 0 0.2126 0.78 0.0100
3 1 0 0 0.98485 0.75 0.0043
4 1 0 0 0.9937 0.72 0.0040
5 1 0 0 0.9769 0.68 0.00453 

For all neuron pairs (A, B), populate the following distributions with
Population 1:  real STTC of the pair (A,B)
Population 2: random circular shift in one of the two spike trains of (A,B)
Population 3: random circular shift in one of the two spike trains of (A,B)

True Null: Population 1 vs. Population 2
Null Null: Population 2 vs. Polulation 3

Distance of two 
distributions
in sup norm
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Data Clustering – Overview 

• Organizing data into sensible groupings is critical for understanding and learning. 

• Cluster analysis: methods/algorithms for grouping objects according to measured or perceived 
intrinsic characteristics or similarity.

• Cluster analysis does not use category labels that tag objects with prior identifiers, i.e., class 
labels. 

The absence of category labels distinguishes data clustering (unsupervised learning) from    
classification (supervised learning). 

• Clustering aims to find structure in data and is therefore exploratory in nature. 



• Clustering has a long rich history in various scientific fields. 

K-means (1955):  One of the most popular simple clustering algorithms

Still widely-used. 

The design of a general purpose clustering algorithm is a difficult task



Clustering



Clustering objectives



k-means: simplest unsupervised learning algorithm

Iterative greedy algorithm (K):

1. Place K points into the space represented by the objects that are being clustered

These points represent initial group centroids (e.g., start by randomly selecting K centroids)

2. Assign each object to the group that has the closest centroid (e.g., Euclidian distance)

3. When all objects have been assigned, recalculate the positions of the K centroids

Repeat Steps 2 and 3 until the centroids no longer move. 

It converges but does not guarantee optimal solutions.

It is heuristic!



Criteria for Assessing a Clustering

Internal criterion analyzes intrinsic characteristics of a clustering

External criterion analyzes how close is a clustering to a reference

Relative criterion analyzes the sensitivity of internal criterion during clustering 
generation

The measured quality of a clustering depends on both the object representation and 
the similarity measure used

Sec. 16.3



Properties of a good clustering according to the internal criterion

• High intra-class (intra-cluster) similarity 

Cluster cohesion: measures how closely related are objects in a cluster

• Low inter-class similarity

Cluster separation: measures how well-separated a cluster is from other clusters

The measured quality depends on the object representation & the similarity 
measure used

Sec. 16.3





Silhouette value measures cohesion compared to separation 

How similar an object is to its own cluster (cohesion) compared to other clusters (separation)

• Ranges from −1 to +1: a high value indicates that the object is well matched to its own cluster 
&  poorly matched to neighboring clusters

• If most objects have a high value, then the clustering configuration is appropriate

• If many points have a low or negative value, then the clustering configuration may have too 
many or too few clusters

α(i) average dissimilarity of i with all other data within the same cluster.

b(i): lowest average dissimilarity of i to any other cluster, of which i is not a member



Silhouette Coefficient



External criteria for clustering quality

• External criteria: analyze how close is a clustering to a reference

• Quality measured by its ability to discover some or all of the hidden 
patterns or latent classes in gold standard data

• Assesses a clustering with respect to ground truth requires labeled data

• Assume items with C gold standard classes, while our clustering algorithms 
produce K clusters, ω1, ω2, …, ωK with ni members.

Sec. 16.3



External Evaluation of Cluster Quality (cont’d)

• Assume items with C gold standard classes, while our clustering produces K
clusters, ω1, ω2, …, ωK with ni members.

• Purity: the ratio between the dominant class in the cluster πi and the size of 
cluster ωi

Biased because having n clusters maximizes purity
• Entropy of classes in clusters 
• Mutual information between classes and clusters

Cjn
n

Purity ijj

i

i  )(max
1

)(

Sec. 16.3



 

 
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 

 

 

 

 



Cluster I Cluster II Cluster III

Cluster I: Purity = 1/6 (max(5, 1, 0)) = 5/6

Cluster II: Purity = 1/6 (max(1, 4, 1)) = 4/6

Cluster III: Purity = 1/5 (max(2, 0, 3)) = 3/5

Purity example
Sec. 16.3



Entropy-based Measure of the Quality of  Clustering



Mutual-information based Measure of Quality of Clustering



Example
Clustering of 
neurons at 
positions A, B and C 
in the conditional 
STTC (A, B|C)

1st cluster: neurons with approximately equal participation at each position
2nd cluster: neurons with high presence in the position B











We build a linear model                    

where                                 are the coefficients of  each predictor 

Linear Regression for Predictive Modeling

Suppose a set of  observations

&  a set of  explanatory variables (i.e., predictors) 

given as a weighted sum of  the predictors, with the weights being the coefficients



Why using linear regression?

Strength of  the relationship between y and a variable xi

- Assess the impact of  each predictor xi on y through the magnitude of  βi

- Identify subsets of  X that contain redundant information about y



Simple linear regression

Suppose that we have observations

and we want to model these as a linear function of

To determine which is the optimal β ∊ Rn , we solve the least squares problem:

where β is the optimal β that minimizes the Sum of Squared Errors (SSE)



An intercept term β0 captures the noise not caught by predictor variable

Again we estimate              using least squares         

with intercept term

without intercept term



Example 2

Predicted Y Squared Error

0.70 0.09

1.40 0.36

2.10 0.64

2.80 0.90

3.50 1.56

Predicted Y Squared Error

1.20 0.04

1.60 0.16

2.00 0.49

2.50 1.56

2.90 0.42

SSE = 3.55

Intercept term improves the accuracy of  the model

SSE = 2.67



where are the optimal coefficients 

β1, β2, ..., βp of  the predictors x1, x2,..., xp respectively, 

that minimize the above sum of  squared errors

Multiple linear regression

Models the relationship between 

two or more predictors & the target



Regularization 
Process of introducing additional information in order to prevent overfitting

λ controls the importance of the regularization 



Bias: error from erroneous assumptions about the 

training data

- Miss relevant relations between predictors & 

target (high bias, underfitting)

Variance: error from sensitivity to small fluctuations in 

the training data

- Model noise, not the intended output (high variance, 

overfitting) 

Bias – variance tradeoff: Ignore some small details to get a more general “big picture” 

Regularization

Shrinks the magnitude of  coefficients



Ridge regression

Given a vector with observations                           &  a predictor matrix

the ridge regression coefficients are defined as:

Not only minimizing the squared error but also the size of  the coefficients!



Ridge regression as regularization

• If the βj are unconstrained, they can explode …

and hence are susceptible to very high variance!

• To control variance, we might regularize the coefficients

i.e., might control how large they can grow



Example 3

Overfitting

Underfitting

Increasing size of  λ



In linear model setting, this means estimating some coefficients to be exactly zero

Problem of  selecting the most relevant predictors from a larger set of  predictors

Variable selection

This can be very important for the purposes of  model interpretation

Ridge regression cannot perform variable selection

- Does not set coefficients exactly to zero, unless λ = ∞



Example 4
Suppose that we study the level of prostate-specific

antigen (PSA), which is often elevated in men who have

prostate cancer.

We look at n = 97 men with prostate cancer & p = 8

clinical measurements.

We are interested in identifying a small number of

predictors, say 2 or 3, that drive PSA.

We perform ridge regression over a wide range of  λ

This does not give us a clear answer... 

Solution: Lasso regression



Lasso regression

The lasso coefficients are defined as:

The only difference between lasso vs.  ridge regression is the penalty term

- Ridge uses l2 penalty 

- Lasso uses l1 penalty 



λ ≥ 0 is a tuning parameter for controlling the strength of  the penalty

Lasso regression

The nature of  the l1 penalty causes some coefficients to be shrunken to zero exactly

Can perform variable selection

As λ increases, more coefficients are set to zero  less predictors are selected



Example 5: Ridge vs. Lasso 

lcp, age & gleason: the least important predictors  set to zero



Example 6: Ridge vs. Lasso 



Constrained form of  lasso & ridge

For any λ and corresponding solution in the penalized form, there is a

value of t such that the above constrained form has this same solution.

The imposed constraints constrict the coefficient vector to lie in some

geometric shape centered around the origin

Type of  shape (i.e., type of  constraint) really matters!



The elliptical contour plot represents sum of  square error term

The diamond shape in the middle indicates the constraint region

Optimal point: intersection between ellipse & circle 

- Corner of  the diamond region, where the coefficient is zero

Instead 

with ridge:

Why lasso sets coefficients to zero?



Regularization penalizes hypothesis complexity

• L2 regularization leads to small weights

• L1 regularization leads to many zero weights (sparsity)

• Feature selection tries to discard irrelevant features



Matlab code & examples

% Lasso regression

B = lasso(X,Y); % returns beta coefficients for a set of regularization parameters lambda
[B, I] = lasso(X,Y) % I contains information about the fitted models

% Fit a lasso model and let identify redundant coefficients
X = randn(100,5);           % 100 samples of 5 predictors
r = [0; 2; 0; -3; 0;];      % only two non-zero coefficients
Y = X*r + randn(100,1).*0.1;  % construct target using only two predictors
[B, I] = lasso(X,Y); % fit lasso

% examining the 25th fitted model
B(:,25) % beta coefficients
I.Lambda(25) % lambda used
I.MSE(25) % mean square error



Matlab code & examples

% Ridge regression

X = randn(100,5);           % 100 samples of 5 predictors
r = [0; 2; 0; -3; 0;];        % only two non-zero coefficients
Y = X*r + randn(100,1).*0.1;  % construct target using only two predictors

model = fitrlinear(X,Y, ’Regularization’, ’ridge’, ‘Lambda’, 0.4));
predicted_Y = predict(model, X);   % predict Y, using the X data

err = mse(predicted_Y, Y); % compute error

model.Beta % fitted coefficients



Simple Linear Regression 

Suppose that we have n 

pairs of observations (x1, y1), 

(x2, y2), …, (xn, yn).

Deviations of the data from the 
estimated regression model.



Simple Linear Regression - Least Squares

The method of least 

squares is used to estimate 

the parameters, 0 and 1

by minimizing the sum of 

the squares of the vertical 

deviations

Deviations of the data from the estimated regression model.


