Extraction of Brain Networks from Empirical Data
Neural Systems are Complex Networks

Comgi—~>
Networks across scales Networks across modes
= micro (neurons, synapses) = structural (anatomical couplings)
= macro (regions, projections) = functional (dynamic interactions)
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Agenda

Basic data analysis & modeling tools that can be employed in the projects

* Null Hypothesis Test

e Temporal correlation metrics
* Pearson correlation
e STTC

* Kolmogorov-Smirnov Test
* Clustering
k-means

* Regression
* Linear regression
* Lasso & Ridge regression



Proving Your Hypothesis

Mathematics Real World
1. We already know a set of axioms & 1. We already “know” K
theorems, say K 2. We want to show a hypothesis H, e.g.,
2. We want to show the theorem “H: medicine A reduces the mortality of
(hypothesis) H disease B”
3. Weshow: K,—H = False 3. We gather data from the real world.
(contradiction) We show that K, —H makes it
4. Thus, if we trust that K holds indeed, very unlikely to observe our data
—H cannot hold, and 4. We conclude that
H must hold

—H is very unlikely
We reject —H, and acceptH

Symbol “—" indicates the negation of a statement



Notation for the following slides

* Random variables are denoted with a capital letter, e.g., X

* Observed quantities of random variables are denoted with their
corresponding small letter x

Example:
* G is the expression level of a specific gene in a patient
e gis the measured expression level of the game in a specific patient



The Null Hypothesis

* The hypothesis we hope to accept is called the Alternative Hypothesis

Sometimes denoted as H,

* The hypothesis we hope to reject, the negation of the Alternative Hypothesis, is
called the Null Hypothesis

Usually denoted by H

Think of the Ho as the “status quo”



Standard Single Hypothesis Testing

Form the Null & Alternative Hypothesis
Obtain related data

Find a suitable test statistic T

Find the distribution of T given the null

Depending on the distribution of T & the observed t, =T ( x)
decide to reject or not H,

Al S




Test Statistics

 Test statistic is a function of our data X: T(X) ( X: random variable )
e.g., if X contains a single quantity (variable) T(X) the mean value of X

T isarandom variable (since it depends on X, our data which is random variable)

* Denote with t, = T(x) the observed value of T in our data

* Instead of calculating P ( obtaining data similarto X | H,)
Calculate P (T similarto t, [ H,)

*If P(Tsimilartot, [ H,) is very low, reject H,




Statistical significance tests

* Let’s just think about a two-tailed test: “difference” or “no difference”
* Null hypothesis: there is no difference between A vs. B
* Assume that o, & o are “sampled” independently from a “population”
* Test statistic: a function of the sample data on which the decision is to be based
t(0y,0,)=le (o)) - e (o))l
e: evaluation metric
* Find the distribution of t under the null hypothesis
Assume that the null hypothesis is true

* Where does the t( o0,, 0y) lie in this distribution?
If it’s somewhere unlikely, that’s evidence that the null hypothesis is false
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“Welcome to Lake Wobegon, where all the women
are strong, all the men are good-looking, and all

the children are above average.”
- Garrison Keillor, A Praine Home Companion



The Lake Wobegon Example: “Where all the children are above average!”

 Let X represent Weschler Adult Intelligence scores (WAIS)

* Typically, X~ N(100, 15) (4, =100, c = 15)

 Obtain data: 9 children from Lake Wobegon population
Their scores: {116, 128, 125, 119, 89, 99, 105, 116, 118}
Average of the observations X =112.8

Does sample mean provide strong evidence that population mean pu > 100?



One-Sample z Test

. Hypothesis statements
0- M= Ho

: U # Y, (two-sided) or

I U< Yy (left-sided) or

U > Y (right-sided)

d
d

d

. Test statistic

X —
Zorat = SEﬂO where SE, =
X

. P-value: convert z_, . to P value
. Significance statement (usually not necessary)




Example: Two-Sided Hypothesis Test “Lake Wobegon”

1. Formulation of the Hypotheses:
H,: =100

H_: u> 100 (one-sided)

H,: u # 100 (two-sided)



2. Obtain data ...

Obtain data: 9 children from Lake Wobegon population

Their scores: {116, 128, 125, 119, 89, 99, 105, 116, 118}
Average of the observations =112.8



Example: Two-Sided Hypothesis Test “Lake Wobegon”

3. Test statistic

- X—uy 112.8-100
stat SE, 5

Z = 2.56



Classical CLT [edit]

Let 1.X;. ..., X} be a random sample of size n — that is. a sequence of independent and identically distributed
random variahbles drawn from distributions of Gxpecied values given by u and finite variances given by 7. Suppose
we are interested in thé& sample average

of these random variables. By the law of large numbers, the sample averages converge in probability and almost

surely to the expected value u as 1 — oo The classical central limit theorem describes the size and the
distributional form of the stochastic fluctuations around the deterministic number u during this convergence. More
precisely, it states that as n gets larger, the distribution of the difference between the sample average S,, and its
limit ¢, when multiplied by the factor 1 (that is ﬂ-‘E[HH — 1)), approximates the normal distribution with mean 0

and-variance o2 For large enough #, the distribution of S, is close to the normal distribution with mean u and

-

variance %. The usefulness of the theorem is that the distribution of %‘E{S‘ﬂ — u) approaches normality regardless

of thé Shape of the distribution of the individual X;. Formally, the theorem can be stated as follows:



Central Limit Theory

Establishes that, in most situations, when independent random variables are added,
their properly normalized sum tends toward a normal distribution even if the
original variables themselves are not normally distributed.

1. Asampleis obtained containing a large number of observations, each
observation being randomly generated in a way that does not depend on the values
of the other observations.

2. If step 1is performed many times, the computed values of the average will
be distributed according to a normal distribution.

Example: Flip a coin many times. The probability of getting a given number of heads in
a series of K flips will approach the normal distr. with mean =K/2



P-value: P=Pr(Z> 2.56) = 0.0052

Sample distribution follows the
Normal distribution
according to the Central Limit Theorem

P =.0052 = it is unlikely the sample came from this null distribution =
strong evidence against H,



Example - Two-Sided P-value: Lake Wobegon

* H,: p#100

Considers random deviations “up” & “down”
from p, = tails above & below *z_,

Thus, two-sided P

=2 X 0.0052
=0.0104
0052 0052
I I I |
mirror ~2 - 0 1 2 Zom
image of 2.56
Zomt = -2.50

Z-stat-two-sided.ai



Conditions for z Test

1. Population approximately Normal or large sample (central limit theorem)
2. The population variance is known!

If the population variance is unknown (and therefore has to be estimated from

the sample itself) & the sample size is not large (n < 30),
the Student's t-test may be more appropriate.




Another Example



* Background knowledge: Breast Cancer is related to mutations in genes BRCA1 & BRCA2

* Hypothesis: Gene G is expressed differently in breast cancer patients with mutation in BRCA1

than BRCA2

e Data: Obtained 7 patients with BRCA1 mutation & 8 with BRCA2 mutation

Patient number

Expression Level,of
Gene G X

Have mutation in

BRCA1 or not X’

1 (xy)

98.2244

69.6810

118.4339

115.2322

150.7729

117.7385

80.6921

142.8455

156.8692

151.9287

147.3357

131.2094

150.3127

147.0670

15 (%:s)

122.3306

[ I O I I O B U U U S T I B T T e B

Hedenfalk et al. N Engl J Med. 2001

Feb 22;344(8):539-48.



1. Form the Null Hypothesis

* Gene G is expressed differently in breast cancer patients with mutation in
BRCA1 than BRCA2

Mathematically

* U, : be the mean expression level of gene G in patients with BRCA1 mutation
* U,: be the mean expression level of gene G in patients with BRCA2 mutation

Hot Uy = U,
H,:pu, # W,



2. Obtain data....

DATA: BY THE NUMBERS




3. Find a suitable test statistic T (Example)

* The larger the difference of the two means, the larger the statistic
* The larger our sample, the larger the statistic

* The smaller the sample variance, the larger the statistic

So T will be quite large (in absolute value), when we can confidently say H,does not hold



3. Find a suitable test statistic T (cont’'d)

T(X) = Unpaired Two Sample t-test

T

k =t#{x. : X :1} | :#{x. X° =2}

m= Yk, m=r Yx me= oYX

{x;:x?=1} {x X7 =2} K+1 {x}

:\/k+|—1z(x‘ K




3. Find the distribution of T (cont’d)

For the test of this specific example, we will make the following assumptions:
a) The data in both groups are distributed normally around a mean value u,, u, respectively
b) Their variance is the same in both groups
c) Each patient was sampled independently

and most importantly that THE NULL HYPOTHESIS HOLDS

This is an assumption for ALL tests!

Then

T(X) has a probability density function of:

where the degrees of freedom of the test V is
15 -2 =13 (number of patients — 2)



The t-statistic was introduced in
1908 by William Sealy Gosset,
a chemist working for

the Guinness brewery in Dublin.
"Student" was his pen name.




Sampling distribution [edit] One sample T-distribution

Let xy, .... X, De the numbers observed in a sample from a continuously distributed population with expected value p
- ZT1te At D
T
1 i
2 =\ 2
8 = Ly —T) .
n—1 ;( ' )

The resulling f-value Is

_E—p
G

The -distribution with n - 1 degrees of freedom is the sampling distribution of the f-value when the samples consist
distributed population. Thus for inference purposes f 15 a useful "pivotal quantity” in the case when the mean and vai

B T 1 T e - e e | e i e

t
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Student t-distribution (basics)

Probability density function [edit]

Student's t-distribution has the probability density function given by

-1 1

where p is the number of degrees of freedom and I' is the gamma function. This may also be written as

41

78 = ﬁﬂzé, ) (1 " g)_T’




t-distribution

(basics)

Density of the t-distribution (red) for 1, 2, 3, 53, 10, and 30 degrees of freedom compared to the standard normal distribution
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3. Find the distribution of T

Frobahility density function of our statistic

Example 04

0.35F
0.3F

0.25 |

p(t)

0.15F

01F Observedivalue T{x)

0.05 F x
T —————



4. Decide on a Rejection Region

* Decide on a rejection region Iin the range of our statistic
*If t, € I', then rejectH,

*If t_, [, then do not reject H,
acceptH,?

Since the pdf of T when the null hypothesis holds is known,
P(T el [ H,) can be calculated



4. Decide on a Rejection Region

*If P(T el [ Hy) is too low, we know we are safely rejecting H,

 What should be our rejection region in our example?



4. Decide on a Rejection Region

0.4

Where extreme values of t, are:

* unlikely to come from when H, is true .|

* could come with high probability, when

H,is false 0.251

02}

P(T el [ Hy) is the area of the shaded
region (can be calculated)

0.1F

0.05 |

0.35

0.15 |

I’ region of

rejection




Rejection Procedure

* Pre-select a probability threshold a
* Find a rejection region I'={t: |t|>c},suchthat P(T el [ H,)=a
* Decide

* Reject H,, ift, el (recall: t, is the observed T in our data)
* Accept H,, otherwise

What values do we usually use for a in science?
0.05 is typical
Smaller ones are also used: 0.01, 0.001

When t, € I we say the finding is statistically significant at significance level a



Issues to be Considered

* When there exist two or more tests that are appropriate in a given situation,

how can the tests be compared to decide which should be used?

« |fatestis derived under specific assumptions about the distribution of the
population being sampled,

how well will the test procedure work when the assumptions are violated?

Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc.



Parametric versus non-Parametric Tests

e Parametric test

Makes the assumption that the data are sampled from a particular class of
distributions

It then becomes easier to derive the distribution of the test statistic

* Non-Parametric test
No assumption about a particular class of distributions



Permutation Testing

e Often in biological data, we do not know much about the data distribution
* How do we obtain the distribution of our test statistic?

* Great idea in statistics: permutation testing

* Recently practical because it requires computing power (or a lot of patience)



Permutation Testing

1. In our first example, we want to calculatep (t [ H,)
If H,,then it does not matter which group each value x! comes from

3. Then, if we permute the group labels, we would get a value for our test
statistic given the null hypothesis holds

4. If we get a lot of such values, we can estimate (approximate) p(t [ H,)



Permutation Testing Revisited

* Decide what can be permuted, if the null hypothesis is true

 For all (as many as possible) permutations of the data, calculate the test statistic
on the permuted data: t,

* Estimated p-value = #{ |t;/ > [t | } / #B



p(t/HD

25

FPermutation Estimate of p(t|HO) using 100 permutations

20

10

Estimated distribution from our
data: 100 permutations
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Does It Really Work?

Probability density function of our statistic Permutation Estimate of p(t|HO) using 1000 permutations
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Does It Really Work?

Probability density function of our statistic

0.4 Permutation Estimate of p(t|HO) using 10000 permutations
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True distribution calculated theoretically A
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p-value is defined as the
probability of obtaining a result
equal to or more extreme than
what was actually observed

distribution of the test statistic
under the null hypothesis

value of test statistic
on the observed data

~

.

significance level




* The area to the right of t(04,0p) is the “significance
level—the probability that some t* > t(04,0p) would be
generated if the null hypothesis were true.

¢ Also called the jp-value)

The
L Smal
Significance "
Level

values suggest the null hypothesis is false, given
hservation of t(o4,0p).

*| Corol

ary: all else being equal, a large difference between

e(04) and e(op) yields a smaller significance level (as
one would hope!).

* Values below 0.05 are typically considered “good
enough.”

So all we have to do is calculate the distribution of t.




The classical approach:

* Keep adding assumptions until we arrive at a known
distribution which we can calculate analytically.

* E.g.: Student’s t-test.

Calculating . Ass.umr_a that e(04) a_nd 'e(g,?) are sample means from
a bivariate Normal distribution with zero covariance.

the ' . Then we know ¢ is distributed according to Student’s

Distribution t-distribution if the null hypothesis is true.

* Back in the stone age, computing with rocks and twigs,
making those assumptions made the problem tractable.

* But the problem with this approach is that you may
falsely reject the null hypothesis if one of the additional
7. assumptions is violated. (Type | error.)



* Simulate the distribution using a randomization test.

* |t's just as good as analytical approaches, even when the
analytical assumptions are met! (Hoeffding 1952)

What you * And it's better when they're not. (Noreen 1989)
SHOULD © Bestofall: dirt simple.

do Intuition:

* Erase the labels “output of A" or “output of B” from all
of the observations.

* Now consider the population of every possible labeling.
(Order relevant.)

* |f the systems are really different, the observed labeling
should be unlikely under this distribution.




Statistical Errors

* Type 1 Errors
-Rejecting H, when it is actually true
-Concluding a difference when one does not actually exist

* Type 2 Errors
-Accepting Hy when it is actually false (e.g. previous slide)
-Concluding no difference when one does exist

Errors can occur due to biased/inadequate sampling, poor experimental design or
the use of inappropriate/non-parametric tests.



Regarding the Choice of a Test

When we cannot reject H, it does not mean H; holds!

* It could be that we do not have enough power, i.e.,

H,is not that “different enough” from H,to distinguish it with the given
sample size

of all possible tests for a hypothesis choose the one with the maximum power

Power analysis methods need to be employed.



EVERYBODY WHO WENT TO
THE MOON HAS EATEN
CHICKEN!

COOD CRIEF.
CRICKEN MAKES
Yyou CO TO
THE MOON!




Extraction of Brain Networks from Empirical Data
Neural Systems are Complex Networks

Comgi—~>
Networks across scales Networks across modes
= micro (neurons, synapses) = structural (anatomical couplings)
= macro (regions, projections) = functional (dynamic interactions)
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Challenges in Quantifying Correlation

1. Correlated neurons fire at similar times but not precisely synchronously, so

correlation must be defined with reference to a timescale within which spikes
are considered correlated

2. Spiking is sparse with respect to the recording’s sampling frequency & spike
duration

e.g., spiking rate 1 Hz, sampling rate typically 20 kHz (Demas et al., 2003)

This means that conventional approaches to correlation (such as Pearson’s
correlation coefficient) are unsuitable

* as periods of quiescence should not count as correlated

e correlations should compare spike trains over short timescales, not just
instantaneously.



cov(X,Y)

oxoy

PXY —

where:

Pearson | |
« cOV I5 the covariance
COrrEIatiOn e Oy isthe standard deviation of X

« 0y is the standard deviation of ¥
of two | .
1e formula for o can be expressed in terms of mean and expectation. Since

variables X & Y  cov(x,v) = E[(X — px)(¥ — py)],®

(p ) e formula for o can also be written as
X,Y
‘ E[(X — pux)(Y — py)]
PXY =
oxXoy
where:

« cov and oy are defined as above

e Uy isthe mean of X
« K is the expectation.



Sample Pearson correlation coefficient

2 i1 (% — ) (v — )

E?_-I (@i — @)* \/ Z:_-I_ (¥ —9)*
Datasets {Xq,....X} & {Y1,---,Yn}

where: containing n values

¢ 71 15 The sample siZe
« I;, Yiare the single samples indexed with |

1 &
s D= — 2-"‘.‘1 -I:tI"IE SE.TT'II:.'IE ITIE!EI'I:I-_: and EIHE."DQDLIEW f:::rﬂ
L =1



Pearson correlation: widely-used measure of the linear correlation between variables

p=-1 -1< p <0

0< p <+1 p=+1 p=0

No linear correlation

Positivellinear correlation



Examples of Pearson Correlation

1 0.2 0.4 o -0.4 -0.8 -1
/ : F"-" '_ '-ig __i iﬁu. '1% I \




Quantification of Correlation between Neural Spike Trains

* Key part of the analysis of experimental data

* Neural coordination is thought to play a key role in
* information propagation & processing
* self-organization of the neural system during development



Desighing the Appropriate Temporal Correlation Metric

* Symmetry
* Treatment of idle periods
* Robustness to variations in firing rate

e.g., doubling the firing rate of two spike trains with a specific firing structure,
does their correlation remain the same?

* Robust to the recording duration
 Bounded
e Distinction of the correlation vs. no correlation vs. anti-correlation

* Minimal assumptions on the underlying structure/distribution of the events



Ta: the proportion of total recording time which lies within At of
any spike from A. Te calculated similarly.

24t

A | [ 11 |
|___—___I

0 Time (s) T

Ta is given by the fraction of the total recording time (black) which
is covered (tiled) by blue bars. Here Ta is 1/3.

Pa: the proportion of spikes from A which lie within At of any
spike from B. Pe calculated similarly.

s 1 11| smoab(Paley Pl
A | m | 1-PaTe 1-Pela
1
0 Time (s) T

Pa is the number of green spikes in A (3) divided by the total
number of spikes in A (5). Here Pa is 3/5.



Directional STTC
Temporal Correlation Metric

Extended STTC metric to take into consideration the temporal order of the
correlation of the spike trains of two neurons



Directional STTC,; represents a measure of the chance that firing events of A will precede firing
events of B

— A+
1, P8 —Tp- PR T,
STTCyp = - (L= +
4B = 2 (1—PA Tp- 1—P;.§.+TA+)
e dgd 8|
I | 1 | I | I 1

At} tz t3 B Ty

Pg_: fraction of firing events of A that occur within an interval At prior to firing events of B
T g-: fraction of total recording time covered by the intervals At prior to each spike of B
At: specific lag (input in directional STTC)



wr LA

10000 pairs

06

0.2 ¢

0.2

0.3

Directional STTC
Synchronous (lag = 0)

Spike trains of 100 time unit
with uniform distr [ 10, 30 ] spikes
10,000 pairs



Advantages of Directional STTC

1

STTCAB —_ _(

P~ —Tp- | PE T+ )
2

1-P5 Tp-  1-PRYT 4

Relative spike-time shifts (lag parameter)
Order between neurons with respect to their firing events

Local fluctuations of neural activity or noise
* accounting the amount of correlation expected by chance

The presence of periods without firing events
* only the firing events contribute



Conditional STTC (A->B |C) represents a measure of the chance that firing
events of A will precede firing events of B, given the presence of firing of C

— e ——
t'C I 1C I IC I ]
11 | cA bz U3 . Not following event of C
: 4 NLa L ! ! ! 7
I 1 B A l I I |
:/’l"—'"i\ : '/""-_I_'*\' ! | I;
I I I | I | I CA
il ool | o
| | | | | |
B



Conditional STTC (A->B |C) STTCY,

B— 4 i A+ R
TT( l( Na TB | Np T'a+ )
\] . N o\ N C'A ' N CA ;
- B— A N ATEH'
1 - —F-ATp-  1— BT,

Na is the number of firing event in A & Ns is the number of firing event in B.

T 4+ is the fraction of the total recording time which is covered by the tiles +At after each spike of A,
that fall within the tiles At after each spike of C.

Tg- is the fraction of the total recording time which is covered by the tiles At before each spike of B.



Slgﬂ ificant Motifs Significant edge: real STTC value

40 | | > 3 std. dev. of null distribution
. doublets (e.g. A->B)
2 C o
2 Null distribution: STTC values for
_ — Control . .
g 30 the circular shifted neurons (by
O)
8 random delays)
e 20 || Control (synthetic data)
© Each neuron trace is circular shifted by
F(é) triplets random delay
c 107 (e.g. A->B|C) || For each pair of ‘shifted’ neurons,
9 estimate the directional STTC & null distr.
2 |dentify the significant edges
[ f—

[t, t+600] Sync [t, t+450]

“A->B” indicates that firing events of A proceed firing events of B by a specific lag



c Considering all pairs of neurons in the datasets
1 | - 0.2 ! !
J/ y [ |Real Data
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0 L —=" L ' - 0
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STTC Values STTC Values

Control group

Each neuron trace is circular shifted by random delay

The real neuron traces appear higher
values of directional STTC & percentage
of significant edges

For each pair of neurons, estimate the directional
STTC & null distribution
Identify the significant edges



Null distribution test for directional STTC

For a given pair of neurons i and j (i,j)

Estimate the (observed) STTC(i,j) STTCY)
1.  Circular shift the spike train of the neuron j (generated spike train j!)
2. Estimate the directional STTC(i?, j)
We will call them synthetic STTC values (called also null or control)

Repeat the above steps a large number of times (k=1, ..., T)

T depends on the time horizon of the spike trains — the larger is the T the better
3. Estimate the mean s7rc;:™ & standard deviation= of the obtained synthetic STTC values in step2

4. Based on the mean & std dev of the synthetic values, employ a statistical significant threshold (a) &
criterion

STTC? — STTCP

l:_Frl il

Criterion: If the directional STTC (A, B) satisfies the above inequality, the directional STTC (A,B) is
statistically significant.

) |

The criterion can be strengthen with more repetitions (T) & larger threshold a



Strengthen the Criterion of Significant Directional STTC (A,B)

Additional requirements
* The total number of spikes of A within a STTC lag of spikes of B is above 3.
* The total number of spikes of B within a STTC lag of spikes of A is above 3.



Kolmogorov-Smirnov (K-S) Test

* Non-parametric test of the equality of continuous 1D probability distributions
* Quantifies a distance between two distribution functions
* Can serve as a goodness of fit test

* Null hypothesis
H,: Two samples drawn from populations
with same distribution

o
oo

o
o

The maximum absolute difference between
the two CDFs

Cumulative Probability
o
~

o
N




Kolmogorov-Smirnov (K-S) Test
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Kolmogorov-Smirnov (K-S) Test

Kolmogorov computed the expected distribution of the distance of the
two CDFs when the null hypothesis is true.



Example: Kolmogorov-Smirnov Test

Decision p-value Distance
Lag True Null Null Null True Null Null Null True Null  Null Null
1 1 0 0 0.5427 0.79 0.0076
2 1 0) 0) 0.2126 0.78 0.0100
3 1 0) 0) 0.98485 0.75 0.0043
4 1 0) 0) 0.9937 0.72 0.0040
5 1 0 0) 0.9769 0.68 0.00453

For all neuron pairs (A, B), populate the following distributions with

Population 1: real STTC of the pair (A,B)

Distance of two
distributions
in sup norm

Population 2: random circular shift in one of the two spike trains of (A,B)
Population 3: random circular shift in one of the two spike trains of (A,B)

True Null: Population 1 vs. Population 2
Null Null: Population 2 vs. Polulation 3



Extraction of Brain Networks from Empirical Data
Neural Systems are Complex Networks

Cosg—~0

(X} W
N Nk \ \ ey Ky e Networks across scales Networks across modes
Ay iy . * micro (neurons, synapses) = structural (anatomical couplings)
2 = macro (regions, projections) = functional (dynamic interactions)
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imaging data
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Data Clustering — Overview

* Organizing data into sensible groupings is critical for understanding and learning.

 Cluster analysis: methods/algorithms for grouping objects according to measured or perceived
intrinsic characteristics or similarity.

* Cluster analysis does not use category labels that tag objects with prior identifiers, i.e., class
labels.

The absence of category labels distinguishes data clustering (unsupervised learning) from
classification (supervised learning).

* Clustering aims to find structure in data and is therefore exploratory in nature.



* Clustering has a long rich history in various scientific fields.
K-means (1955): One of the most popular simple clustering algorithms
Still widely-used.
The design of a general purpose clustering algorithm is a difficult task



Clustering

» given N n-vectors z1,...,TN
» goal: partition (divide, cluster) into k groups

» want vectors in the same group to be close to one another
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Clustering objectives

» G; C{l,...,N}isgroup j,j=1,...,k
> c; is group that z; isin: z; € G,

» group representatives. n-vectors z1, ..., 2

» clustering objective is

1 N
J:ﬁ2|$i_zci

1=1

2

mean square distance from vectors to associated representative
» .J small means good clustering

» goal: choose clustering c¢; and representatives z; to minimize J



k-means: simplest unsupervised learning algorithm

Iterative greedy algorithm (K):

1. Place K points into the space represented by the objects that are being clustered
These points represent initial group centroids (e.g., start by randomly selecting K centroids)
2. Assign each object to the group that has the closest centroid (e.g., Euclidian distance)

3. When all objects have been assigned, recalculate the positions of the K centroids

Repeat Steps 2 and 3 until the centroids no longer move.

It converges but does not guarantee optimal solutions.



Criteria for Assessing a Clustering

Internal criterion analyzes intrinsic characteristics of a clustering
External criterion analyzes how close is a clustering to a

Relative criterion analyzes the sensitivity of internal criterion during clustering
generation

The measured quality of a clustering depends on both the object representation anc
the similarity measure used



Properties of a good clustering according to the internal criterion

* High intra-class (intra-cluster) similarity
Cluster cohesion: measures how closely related are objects in a cluster

* Low inter-class similarity
Cluster separation: measures how well-separated a cluster is from other clusters

The measured quality depends on the object representation & the similarity
measure used



Internal Measures: Cohesion and Scpaml:i(m

O A proximity graph based approach can also be used for

cohesion and separation.
® Cluster cohesion is the sum of the weight of all links within a
cluster.
" Cluster separation is the sum of the weights between nodes in
the cluster and nodes outside the cluster.

cohesion separation



Silhouette value measures cohesion compared to separation

How similar an object is to its own cluster (cohesion) compared to other clusters (separation)

 Ranges from -1 to +1: a high value indicates that the object is well matched to its own cluster
& poorly matched to neighboring clusters

* |f most objects have a high value, then the clustering configuration is appropriate

* If many points have a low or negative value, then the clustering configuration may have too
many or too few clusters

b(i) — a(i)
max{a(i), b(i) }

a(i) average dissimilarity of i with all other data within the same cluster.
b(i): lowest average dissimilarity of i to any other cluster, of which i is not a member

8(i) =



Silhouette Coefficient

O For an individual point, /

Calculate @ = average distance of / to the points in its cluster
Calculate b = min (average distance of / to points in another cluster)
The silhouette coefficient for a point is then given by

s=1-a/b ifa<b, (ors=b/a-1 ifazb, notthe usual case)
b

Typically between 0 and 1.
The closer to 1 the better.

O Can calculate the Average Silhouette width for a cluster or a
clustering



External criteria for clustering quality

* External criteria: analyze how close is a clustering to a reference

* Quality measured by its ability to discover some or all of the hidden
patterns or latent classes in

* Assesses a clustering with respect to requires labeled data

* Assume items with C , While our clustering algorithms
produce K clusters, w;, w,, ..., w, with n, members.



External Evaluation of Cluster Quality (cont’d)

* Assume items with C ol , While our clustering produces K
clusters, w,, w,, ..., w, with n, members.

* Purity: the ratio between the dominant class in the cluster 1, and the size of
cluster w. .
Purity(e,) =—max ;(n;) JeC
ni
Biased because having n clusters maximizes purity
* Entropy of classes in clusters

* Mutual information between classes and clusters



Purity example

Cluster | Cluster Il Cluster I11
Cluster I: Purity = 1/6 (max(5, 1, 0)) = 5/6

Cluster II: Purity = 1/6 (max(1, 4, 1)) = 4/6

Cluster I11: Purity = 1/5 (max(2, 0, 3)) = 3/5



Entropy-based Measure of the Quality of Clustering

Q Entropy of clustering C: ;. Z,,( logpe. Pe =" (. the probability of cluster C)
' n

QO Entropy of partitioning T: //(7) = - Zm; log pr,

}.‘

=1 ;s
Q Entropy of T with respect to cluster C: H(T|(;) = — Z( ':I"_’ ) log( ':"" )
O Conditional entropy of T with respect to i
clustering C: H(T|C) = Z( ’:; VH (T |C; Z Z Pij l()u( —L Cluster ¢, | G, ||

J The more a cluster’s members aré split into different partltlons
the higher the conditional entropy

- For a perfect clustering, the conditional entropy value is 0, where
the worst possible conditional entropy value is log k "



Mutual-information based Measure of Quality of Clustering

O Mutual information:

3 Quantifies the amount of shared info between Z pijlog(

the clustering C and partitioning T i=1 j=1

O Measures the dependency between the observed joint probability p;
of Cand T, and the expected joint probability p.; . p;; under the
iIndependence assumption

2 When Cand T are independent, p;=p;. py;, I(C, T) = 0. However,
there is no upper bound on the mutual information

O Normalized mutual information (NMlI) N
I(C, T) I(C,T) I(C,T)
NMI(C,T) = : —
i \/ H(C) H(T) /H(C) -H(T)
g 4 Value range of NMI: [0,1]. Value close to 1 indicates a good clustering

Pij

)

Pc; * Pr;

ClusterC; | G, || G




For each neuron we estimate the:

NumofApp: number of times that a neuron i appears at all positions A, B & C
Type 5: percentage of times that a neuron i appears at each position across the NumofApp(i’

Number of tested clusters k = 2:20

Best clustering k = 2
Cluster 1: 143 neurons (83.14 %)

Cluster 2: 29 neurons (16.86 %)

Example
Clustering of
neurons at

positions A, Band C

in the conditional
STTC (A, B|Q)

Table 7: Centroids of the 2 clusters for the positions A, B & C

Interneurons: 10 & 28

A B C
Centroid 1 | 33.95 33.83 32.20
Centroid 2 | 6.46 90.21 3.31

15t cluster: neurons with approximately equal participation at each position
24 cluster: neurons with high presence in the position B

d



K-means clustering example
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K-means clustering example
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K-means clustering example
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r each cluster, the class distribution of the data is caleulated first, i.e., for cluster 3

apute p;;, the ‘probability’ that a member of cluster j belongs to class ¢ as follows:
1;;/m;, where m; is the number of values in cluster 7 and m,; is the number of values
2 ¢ in cluster 7. Then using this class distribution, the entropy of each cluster j is

ted using the standard formula e; = Zilpij log, pij, where the L is the number of
- The total entropy for a =et of clusters is calculated as the sum of the entropies of each

welghted by the size of each cluster, 1.e., e = Eil ~e;, where m; 1s the size of cluster

the number of clusters, and m 1= the total number of data points.



Linear Regression for Predictive Modeling :
“I
Suppose a set of observations X1,...Xp €

& a set of explanatory variables (1.e., predictors)

y=(y1,..-yn) € R”

We build a linear model 1y = X 3" #~

where B* = (B7,...8;) € RP are the coefficient

Y given as a weighted sum of the predictors, with the Weighté being the coetficients



Why using linear regression?

Strength of the relationship between yand a variable x;

- Assess the impact of each predictor x; on y through the magnitude of S,

- Identify subsets of X that contain redundant information about y



Simple linear regression

Suppose that we have observations ¥ = (y1,-.-ya) € R"

and we want to model these as a linear function of = = (x1,...z,) € R"
*
y=p"x

To determine which is the optimal § € R” , we solve the least squares problem:

n

B = argmin Z(g,} — Bx;)* = argmin ||y — Bz||5
R E

where f is the optimal f that minimizes the Sum of Squared Errors (SSE)



An intercept term 5, captures the noise not caught by predictor variable

Again we estimate 3, (3, using least squares

/(;]ﬂ? ﬁl

argmin Z(yi — Po — P -’L':f,)z

fﬁﬂnﬁl

n
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Example 2

Y 5

Predicted Y | Squared Error

0.70
1.40
2.10
2.80
3.50

0.09
0.36
0.64
0.90
1.56

Intercept term improves the accuracy of the model

¥ s

SSE = 3.55

2.25

1.20
1.60
2.00
2.50
2.90

M e

0.04
0.16
0.49
1.56
0.42

SSE = 2.67

Predicted Y | Squared Error



Multiple linear regression
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B = argmin |ly — X 3|3
BERP

where (3 are the optimal coefficients
By By - B, of the predictors xy, X,,..., X, respectively,
that minimize the above sum of squared errors



Regularization

Process of introducing additional information in order to prevent overfitting

A regularization term (or regularizer) R(f) is added to a loss function:
i
min Y V(f(20), %) + AR()
i1

A controls the importance of the regularization



Regularization

1.85

Shrinks the magnitude of coefficients

Bias: error from erroneous assumptions about the
training data

1.840

2
L
-
2
L] ° [ ] E

- Miss relevant relations between predictors &

1.55

target (high bias, underfitting)

50

Variance: error from sensitivity to small fluctuations in

the training data

- Model noise, not the intended output (high variance,

overtitting)
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Bias — variance tradeoff: Ignore some small details to get a more general “big picture”




Ridge regression
Given a vector with observation X € [R"*P & a predictor matrix y € R"

the ridge regression coetficients are defined as:

p
ARdge — aromin — 2l 3%+ N g ;"3?
BERP =

?:_

= argmin [ly — X313 + A ||5l3

BeRP i

Not only minimizing the squared error but also the size of the coefficients!




Ridge regression as regularization

* If the B, are unconstrained, they can explode ...
and hence are susceptible to very high variance!
* To control variance, we might regularize the coefficients
i.e., might control how large they can grow
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Variable selection

Problem of selecting the most relevant predictors from a larger set of predictors

In linear model setting, this means estimating some coetficients to be exactly zero

This can be very important for the purposes of model interpretation

Ridge regression cannot perform variable selection
- Does not set coefficients exactly to zero, unless A = o©



Example 4

Suppose that we study the level of prostate-sp
antigen (PSA), which 1s often elevated in men who
prostate cancet.

We look at n = 97 men with prostate cancer & |
clinical measurements.

We are interested in identifying a small numbc
predictors, say 2 or 3, that drive PSA.

We perform ridge regression over a wide range of A

This does not give us a clear answer...
Solution: Lasso regression

Coefficients
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Lasso regression

The lasso coefficients are defined as:

p
Blasso — argmin ||y — XB|12+ 1) |5;]
BERP j=1
= argmin |ly — X33 + A 8]

,SEIRP N— — N’
Loss Penalty

The only difference between lasso vs. ridge regression is the penalty term

- Ridge uses épenalty 18113

- Lasso uses [, penalty || 8]



Lasso regression

A = 01s a tuning parameter for controlling the strength of the penalty

The nature of the [, penalty causes some coefficients to be shrunken to zero exactly

As A increases, more coefficients are set to zero = less predictors are selected

@ Can perform variable selection



Example 5: Ridge vs. Lasso

Coefficients

Icavol Icavol
©
o -
s
o
wn .
t SVi
-2 Iweight
% o
§ s
o gleasor\
C). N IlI
lllll.f' III. |
If I/
s ! s !
I [ I I [ I [
0 200 400 600 800 1000 0

A

lcp, age & gleason:

60

80

the least important predictors = set to zero




Example 6: Ridge vs. Lasso
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Constrained form of lasso & ridge

Bridge = argmin ||y — Xﬁ||% subject to ||BH% <t
pERP

(125 = argmin [ly — XS]|3 subject to [|8]ly <t
BERP

For any A and corresponding solution in the penalized form, there 1s a
value of 7 such that the above constrained form has this same solution.
The imposed constraints constrict the coetficient vector to lie in some
geometric shape centered around the origin

Type of shape (i.e., type of constraint) really matters!



Why lasso sets coefficients to zero?

The elliptical contour plot represents sum ot square error term

The diamond shape in the middle indicates the constraint region

Optimal point: intersection between ellipse & circle

- Corner of the diamond region, wherethe coetficient is zero

Instead

with ridge:

B, t

Ill.




Regularization penalizes hypothesis complexity

* L2 regularization leads to small weights
L1 regularization leads to many zero weights (sparsity)
* Feature selection tries to discard irrelevant features



Matlab code & examples

% Lasso regression

B = lasso(X,Y); % returns beta coefficients for a set of regularization parameters Lambda
[B, I] = lasso(X,Y) % I contains information about the fitted models

% Fit a Llasso model and lLet 1identify redundant coefficients

X = randn(100,5); % 100 samples of 5 predictors

r=1[0; 2, 0; -3; 0,]; % only two non-zero coefficients

Y = X*r + randn(100,1).*0.1; % construct target using only two predictors
[B, I] = lasso(X,Y); % fit lasso

% examining the 25t" fitted model
B(:,25) % beta coefficients
I.Lambda(25) % Lambda used
I.MSE(25) % mean square error



Matlab code & examples

% Ridge regression

X = randn(100,5); % 100 samples of 5 predictors
r=1[0; 2, 0; -3; 0;]; % only two non-zero coefficients

Y = X*r + randn(100,1).*0.1; % construct target using only two predictors
model = fitrlinear(X,Y, ’Regularization’, ’ridge’, €‘Lambda’, 0.4));
predicted Y = predict(model, X); % predict Y, using the X data

err = mse(predicted Y, Y); % compute error

model.Beta % fitted coefficients



Simple Linear Regression

L

Suppose that we have n
pairs of observations (X4, ¥,),

(X21 Y2)s +es (Xns Yi)- Obzarved '.'alue
Data (y)

Deviations of the data from the o /\/l/

estimated regression model. Estimated
. regressizn line



Simple Linear Regression - Least Squares

The method of least
squares Is used to estimate
the parameters, B, and B,

by minimizing the sum of Obeared val'u]:a_:L/
the squares of the vertical Data (y]

deviations . \
i L]

i
%
E=timatsd
regression line

Lo

Deviations of the data from the estimated regression model.



