Extraction of Brain Networks from Empirical Data
Neural Systems are Complex Networks

Compim S
Networks across scales Networks across modes
*= micro (neurons, synapses) = structural (anatomical couplings)
= macro (regions, projections) = functional (dynamic interactions)
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Challenges in Quantifying Correlation

1. Correlated neurons fire at similar times but not precisely synchronously, so

correlation must be defined with reference to a timescale within which spikes
are considered correlated

2. Spiking is sparse with respect to the recording’s sampling frequency & spike
duration

e.g., spiking rate 1 Hz, sampling rate typically 20 kHz (Demas et al., 2003)

This means that conventional approaches to correlation (such as Pearson’s
correlation coefficient) are unsuitable

* as periods of quiescence should not count as correlated

e correlations should compare spike trains over short timescales, not just
instantaneously.
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e Uy isthe mean of X
« K is the expectation.



Sample Pearson correlation coefficient
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Pearson correlation: widely-used measure of the linear correlation between variables

p=-1 -1< p <0

0< p <+1 p=+1 p=0

No linear correlation

Positivellinear correlation



Examples of Pearson Correlation
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Quantification of Correlation between Neural Spike Trains

* Key part of the analysis of experimental data

* Neural coordination is thought to play a key role in
* information propagation & processing
* self-organization of the neural system during development



Designing the Appropriate Temporal Correlation Metric

* Symmetry
* Treatment of idle periods
* Robustness to variations in the firing rates

e.g., doubling the firing rate of two spike trains with a specific firing
structure, does their correlation remain the same?

* Robust to the recording duration

* Bounded

e Distinction of the correlation vs. no correlation vs. anti-correlation

* Minimal assumptions on the underlying structure/distribution of the events



Ta: the proportion of total recording time which lies within At of
any spike from A. Te calculated similarly.
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Ta is given by the fraction of the total recording time (black) which
is covered (tiled) by blue bars. Here Ta is 1/3.

Pa: the proportion of spikes from A which lie within £At of any
spike from B. Pe calculated similarly.
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Pa is the number of green spikes in A (3) divided by the total
number of spikes in A (5). Here Pa is 3/5.



Directional STTC
Temporal Correlation Metric

Extended STTC metric to take into consideration the order of
the correlation of the spike trains of two neurons



Directional STTC,; represents a measure of the chance that firing events of A will precede firing

events of B
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Pg': fraction of firing events of A that occur within an interval At prior to firing events of B
T p-: fraction of total recording time covered by the intervals At prior to each spike of B
At: specific lag (input in directional STTC)
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Advantages of Directional STTC
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Relative spike-time shifts (lag parameter)
Order between neurons with respect to their firing events

Local fluctuations of neural activity or noise
e accounting the amount of correlation expected by chance

The presence of periods without firing events
* only the firing events contribute



Conditional STTC (A->B |C) represents a measure of the chance that firing
events of A will precede firing events of B, given the presence of firing of C
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Conditional STTC (A->B |C) STTCY,
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Na is the number of firing event in A & Ns is the number of firing event in B.

T 4+ is the fraction of the total recording time which is covered by the tiles +At after each spike of A,
that fall within the tiles At after each spike of C.

T g- is the fraction of the total recording time which is covered by the tiles At before each spike of B.



Slgﬂ ificant Motifs Significant edge: real STTC value
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“A->B” indicates that firing events of A proceed firing events of B by a specific lag



Null distribution test for directional STTC

For a given pair (A,B)
1. Circular shift the spike train of the neuron A (generated spike train A')
2. Estimate the directional STTC(A', B)

Repeat the above steps 100 times (i=1, ..., 100)
3. Estimate the mean & standard deviation of the obtained STTC values
4. The statistical significant threshold (thr) = mean + 3 std dev

Criterion:

If the directional STTC (A, B) > thr, the directional STTC (A,B) is statistically
significant.

The criterion can be strengthen with more repetitions (e.g., 1000), a larger
number of std dev (e.g., 5).
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Strengthen the Criterion of Significant Directional STTC (A,B)

Additional requirements
* The total number of spikes of A within a STTC lag of spikes of B is above 3.
* The total number of spikes of B within a STTC lag of spikes of A is above 3.



Kolmogorov-Smirnov (K-S) Test

* Non-parametric test of the equality of continuous 1D probability distributions
e Quantifies a distance between two distribution functions
* Can serve as a goodness of fit test

* Null hypothesis
H,: Two samples drawn from populations
with same distribution

O
oo

o
o

The maximum absolute difference between
the two CDFs

Cumulative Probability
o
~

Q
N




Kolmogorov-Smirnov (K-S) Test
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where Fl,n and Fg_m are the empirical distribution

The null hypothesis is rejected at level ae if
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Kolmogorov-Smirnov (K-S) Test

Kolmogorov computed the expected distribution of the distance of the
two CDFs when the null hypothesis is true.



Example: Kolmogorov-Smirnov Test

Decision p-value Distance Distance of two
Lag True Null Null Null True Null Null Nuli True Null  Null Null distributions
1 1 0) 0] 0.5427 0.79 0.0076 in sup norm
2 1 0) 0] 0.2126 0.78 0.0100
3 1 0) 0 0.98485 0.75 0.0043
4 1 0) 0 0.9937 0.72 0.0040
5 1 0) 0 0.9769 0.68 0.00453

For all neuron pairs (A, B), populate the following distributions with
Population 1: real STTC of the pair (A,B)
Population 2: random circular shift in one of the two spike trains of (A,B)
Population 3: random circular shift in one of the two spike trains of (A,B)

True Null: Population 1 vs. Population 2
Null Null: Population 2 vs. Polulation 3



