Functional organization of the cortex: from functional columns to cell assemblies

Vassilis Kehayas vkehayas@ics.forth.gr https://gitlab.com/vkehayas/functional-organization-of-the-cortex 19/03/2021

https://doi.org/10.1016/j.cub.2012.12.040

Ζ.Ι

Enlargement of the neocortex as a primary focus of mammalian evolution

Maderspacher. Current Biology 26, no. 20 (2016): R945–49. https://doi.org/10.1016/j.cub.2016.09.066.

The neocortex of primates has larger neuronal densities

Herculano-Houzel, Manger, and Kaas. Frontiers in Neuroanatomy 8 (2014). https://doi.org/10.3389/fnana.2014.00077.

Cortical pyramidal cells primarily communicate through plastic synaptic connections between axonal boutons and dendritic spines

Kehayas and Holtmaat 2017, In: *The Rewiring Brain*. Elsevier, pp. 3–26. https://doi.org/10.1016/B978-0-12-803784-3.00001-9

Neuronal processes are tightly packed and highly intermixed

https://doi.org/10.1016/j.cell.2015.06.054

0.1

Synaptic plasticity vastly expands the information storage capacity of cortical neuronal circuits

$$r=rac{N}{N_p}=rac{2}{\pi {
m s} L_d {
m bn}}$$

s: spine length (~ 2μ m) L_d : length of dendrite considered b: inter-bouton distance n: neuron density

f pprox 0.1 - 0.2 across cortical areas and species

 \implies 3 – 4 bits/synapse based on spine remodeling alone

Stepanyants, Hof & Chklovskii 2002. Neuron 34, 275–288. https://doi.org/10.1016/S0896-6273(02)00652-9

Donald O. Hebb (1904-1985)

Hebb, D.O., 1949 (2002). The Organization of Behavior: A Neuropsychological Theory. Routledge. https://doi.org/10.4324/9781410612403

Cell assemblies and the dual trace theory

Features/Requirements:

- Structural trace
- Persistent trace without external stimulation
- Pattern completion

Functional topography in the barrel cortex

Layers of the cortical column: cell density and thalamic input

Oberlaender et al. 2012. Cerebral Cortex 22, 2375–2391. https://doi.org/10.1093/cercor/bhr317 Wimmer et al. 2010. Cerebral Cortex 20, 2265–2276. https://doi.org/10.1093/cercor/bhq068

Layers of the cortical column: synaptic fields of excitatory cell types

Oberlaender et al. 2012. Cerebral Cortex 22, 2375–2391. https://doi.org/10.1093/cercor/bhr317

Layers of the cortical column: inter-layer excitatory connectivity

An extended area of the cortex is activated after sensory stimulation (I)

Ferezou et al. 2007. Neuron 56, 907–923. https://doi.org/10.1016/j.neuron.2007.10.007

An extended area of the cortex is activated after sensory stimulation (II)

Ferezou et al. 2007. Neuron 56, 907–923. https://doi.org/10.1016/j.neuron.2007.10.007

An extended portion of the brain is related to whisker sensation and movement

Bosman et al. 2011. Front. Integr. Neurosci. 5. https://doi.org/10.3389/fnint.2011.00053

Functional topography in the primary visual cortex

Method note: Hubel & Wiesel

Listen to the neurons from their recordings firing here: https://www.youtube.com/watch?v=Cw5PKV9Rj30

Method note: Two-photon microscopy

Further information: Dissecting Two-Photon Microscopy. http://www.signaltonoisemag.com/allarticles/2018/9/17/dissecting-two-photon-microscopy

Method note: Calcium imaging (I)

Method note: Calcium imaging (II)

Chen et al. 2013. Nature 499, 295–300. https://doi.org/10.1038/nature12354 Pnevmatikakis et al. 2016. Neuron 89, 285–299. https://doi.org/10.1016/j.neuron.2015.11.037

Orientation columns in the cat primary visual cortex, revealed with calcium imaging

Correlation in spontaneous activity is greatest for cells with similar orientation or direction preference in cat visual cortex

Orientation columns are absent in the rat visual cortex

Despite absence of orientation columns, tuning similarity correlates with distance

Ringach et al. 2016. Nat Commun 7, 12270. https://doi.org/10.1038/ncomms12270

Correlation in spontaneous activity is greatest for cells with similar orientation preference in rat visual cortex

The tuning width of V1 cells is ≈ 30 degrees

Niell & Stryker 2008. Journal of Neuroscience 28, 7520–7536. https://doi.org/10.1523/JNEUROSCI.0623-08.2008

Structural trace: Cells with similar orientation preference are more likely to be connected

Lee et al. 2016. Nature 532, 370–374. https://doi.org/10.1038/nature17192

Tracing the excitatory and inhibitory presynaptic inputs to an L2/3 pyramidal neuron with Rabies virus

Rossi, Harris, & Carandini 2020. Nature. https://doi.org/10.1038/s41586-020-2894-4

Spatial connectivity shapes orientation and direction selectivity

Rossi, Harris, & Carandini 2020. Nature. https://doi.org/10.1038/s41586-020-2894-4

Persistent trace: Spontaneous events outline the realm of possible sensory responses in neocortical populations (I)

Luczak, Barthó, & Harris 2009. Neuron 62, 413–425. https://doi.org/10.1016/j.neuron.2009.03.014

Persistent trace: Spontaneous events outline the realm of possible sensory responses in neocortical populations (II)

Luczak, Barthó, & Harris 2009. Neuron 62, 413–425. https://doi.org/10.1016/j.neuron.2009.03.014

Imaging of neuronal ensembles

Miller et al. 2014. PNAS 111, E4053–E4061. https://doi.org/10.1073/pnas.1406077111

Cortical ensembles persist in short time-frames and are similar between spontaneous and stimulus-induced conditions

Miller et al. 2014. PNAS 111, E4053–E4061. https://doi.org/10.1073/pnas.1406077111

Neuronal ensembles defined based on temporal similarity respond to specific visual stimuli (I)

Carrillo-Reid et al. 2015. J. Neurosci. 35, 8813–8828. https://doi.org/10.1523/JNEUROSCI.5214-14.2015

Neuronal ensembles defined based on temporal similarity respond to specific visual stimuli (II)

Carrillo-Reid et al. 2015. J. Neurosci. 35, 8813–8828. https://doi.org/10.1523/JNEUROSCI.5214-14.2015

Neuronal ensembles defined based on temporal similarity respond to specific visual stimuli (III)

Carrillo-Reid et al. 2015. J. Neurosci. 35, 8813–8828. https://doi.org/10.1523/JNEUROSCI.5214-14.2015

The use of channelrhodopsin stimulation to control neuronal activity

https://www.youtube.com/watch?v=v7uRFVR9BPU

Population photostimulation generates artificial cortical ensembles

Carrillo-Reid et al. 2016. Science 353, 691–694. https://doi.org/10.1126/science.aaf7560

Pattern completion: Single cell activation results in recall of artificial cortical ensemble

Carrillo-Reid et al. 2016. Science 353, 691–694. https://doi.org/10.1126/science.aaf7560

Conclusion & Outlook

- Hebbian cell assemblies are largely consistent with experimental evidence (structural trace, persistent trace in absence of stimulus, pattern completion)

- Refinement of findings is needed
- Support for Hebbian theory is intricately related to further understanding of cortical function