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Are correlations a source of
information or a nuisance for 
representing sensory
stimuli? 
Theoretical work has 
established that the information 
in a population of neurons is 
influenced by the
correlations between neurons





Signal and Noise Correlations

● Signal correlations indicate the similarity of stimulus tuning of different neurons, 
with high signal correlations for neurons tuned to the same stimuli. 

Signal correlations can be defined even for independent population codes and can be 
measured in both simultaneously recorded and pseudo-population responses. 

● Noise correlations measure activity correlations beyond the stimulus tuning 
shared by the neurons and are often quantified as the correlation in individual trial 
responses between neurons for a given stimulus.



Noise Correlations and Information Encoding

Response distributions (ellipses) of populations of neurons (N1, N2) in the space of 
neural population activity (using n=2 or 3 neurons) in response to two stimuli (orange and 
blue).

 

Stimulus-independent noise correlations can decrease (left) 
or increase (right) the amount of encoded information 
about stimulus
 
Οverlapping distributions being harder to discriminate



Noise Correlations and Information Encoding

Response distributions (ellipses) of populations of neurons (N1, N2) in the space of neural population 
activity (using n=2 or 3 neurons) in response to two stimuli (orange and blue).

The properties of the individual 
neurons are the same but noise 
correlations are absent



Interplay between signal and noise can be 
described using the signal axis and noise 
axis

Signal axis connects the average responses 
to different stimuli (solid arrow)

Νoise axis: the direction of maximum 
variability of a response to a fixed stimulus 
(dashed arrow)

Signal–noise angle, which is the 
high-dimensional angle between the signal 
axis and noise axis. 



Information transmission and Βehaviour
● Correlated population codes have typically been studied from the perspective of information 

encoding but, ultimately, the importance of these codes depends on how they are 
transmitted to downstream brain regions and used to guide behaviour. 

● This issue is critical if the reading out of population codes is suboptimal. Thus, a major 
question concerns whether correlations in neural populations help or hinder the propagation 
of signals to downstream networks. 

● In principle, correlations could aid the transmission of information even if they limit the 
encoding capacity.



Three levels for solving information processing tasks (Marr, 1982 )



This hypothesis suggests that a group of neurons should encode information as 
compactly as possible in order to maximize efficient utilization of resources, 
meaning that the information carried by one neuron should not be redundant to 
the information which is carried by the other neurons.

The Efficient Coding Hypothesis assumes that from the response of the neurons in the 
visual cortex, one can reconstruct the original stimulus with some accuracy.



Efficient Coding Hypothesis

● More than 40 years ago, motivated by 
developments in information theory, 
Attneave (1954) suggested that the goal of 
visual perception is to produce an efficient 
representation of the incoming signal. 

● In a neurobiological context, Barlow (1961) 
hypothesized that the role of early sensory 
neurons is to remove statistical 
redundancy in the sensory input. 

● Variants of this “efficient coding” 
hypothesis have been formulated by 
numerous other authors (e.g. Laughlin 1981, 
Atick 1992, van Hateren 1992, Field 1994, 
Riecke et al 1995).

Specification of a probability distribution over 
the space of input signals. 

● Difficult problem in general!
● Easier: empirical statistics computed 

from a large set of example images that 
are representative of the relevant 
environment. 

● Specify time scale over which the 
environment should shape the system. 

● State which neurons are meant to satisfy 
the efficiency criterion, and how their 
responses are to be interpreted.



Efficiency of Neural Code

● Examine the statistical properties of 
environmental signals 

● Show that a transformation derived according 
to some statistical optimization criterion 
provides a good description of the response 
properties of a set of sensory neurons

● Depends both on the transformation that 
maps the input to the neural responses 
and on the statistics of the input. 

● Optimal efficiency of the neural responses 
for one input ensemble does not imply 
optimality over other input ensembles.

The efficient coding principle ≠ optimal compression (i.e. rate-distortion theory) or optimal estimation. 

●  ≠ accuracy with which the signals are represented 
● No requirement that the transformation from input to neural responses is invertible. 
● No assumption about the representation or cost of misrepresenting the input (but costs are relevant for real 

organisms!)
● Uncertainty or variability in the neural responses to identical stimuli
● Presence of noise!



Rate-Distortion Theory

● A major branch of information theory that 
establishes the mathematical foundations of 
lossy data compression for any 
communication channel (Shannon, 1959). 

● Formalizes the link between compression 
and communication by determining the 
minimum amount of information that a source 
should transmit (the rate) for a target to 
approximately receive the input signal without 
exceeding an expected amount of noise (the 
distortion) (Shannon, 1959). 

Lossy data compression is reducing the 
amount of information transmitted (rate), 
accepting some loss of data fidelity 
(distortion). Using a rate-distortion model, we 
sought to explain how the macroscale 
connectome supports efficient coding from 
minimal assumptions.



Efficiency of Neural Coding

Take noise into account, by 
maximizing the information that 
the responses provide about the 
stimulus (technically, the mutual 
information between stimulus and 
response). 

Generally difficult to measure but 
there are approximation methods 
Bialek et al (1991) and Rieke et al 
(1995) 



Efficient Coding in 
Single Neurons

● Determine whether the 
information conveyed by this 
neuron is maximal

● Impose a constraint on the 
response values (maximal value 
Rmax) 

   (if they can take on any real value, 
then the amount of information that 
can be encoded is unbounded)

● The distribution of responses that conveys 
maximal information is uniform over the interval 
[0, Rmax]. That is, an efficient neuron should 
make equal use of all of its available response 
levels. 

● The optimal distribution depends critically on 
the neural response constraint: e.g.,

If the variance is fixed, the information 
maximizing response distribution is a 
Gaussian. 

If the mean of the response is fixed, the 
information maximizing response distribution is 
an exponential*.

* Jaynes, E. T. (1957). "Information theory and statistical 
mechanics." Physical Review, 106(4), 620. (proof using Langrage 
multipliers)



Key Result from Information Theory: Maximum Entropy Principle

Among all probability distributions with a fixed variance σ2, the Gaussian 
(Normal) distribution maximizes entropy.

The Gaussian is the least structured distribution given a mean and 
variance, meaning it spreads out the information most efficiently.

Any other distribution with the same variance has lower entropy and thus 
conveys less information.



Experimental Data — Firing Rates

Baddeley et al (1998) showed that the instantaneous firing rates of spiking 
neurons in primary and inferior temporal visual cortices of cats and monkeys 
are exponentially distributed (when visually stimulated with natural scenes), 
consistent with optimal coding with a constraint on the mean firing rate.



Jaynes, E. T. (1957). "Information theory and 
statistical mechanics." Physical Review, 106(4), 620.

Foundational paper on maximum entropy principles.

Shows that if only the mean is constrained, the 
probability distribution that maximizes entropy is 
exponential.



Does the visual system take advantage of the correlational structure of 
natural images ?

Srinivasan et al (1982) measured the autocorrelation function of natural scenes and then computed 
the amount of subtractive inhibition that would be required from neighboring photoreceptors to 
effectively cancel out these correlations. 

They then compared the predicted inhibitory surround fields to those actually measured from 
first-order interneurons in the compound eye of the fly. 

The correspondence was surprisingly good and provided the first quantitative evidence for 
decorrelation in early spatial visual processing



Does the visual system take advantage of the correlational structure of natural images ?

 Another model for retinal horizontal cells, proposed by 
Balboa & Grzywacz (2000),, assumes a divisive form of 
retinal surround inhibition and shows that the changes in 
effective receptive field size are optimal for representation 
of intensity edges in the presence of photon-absorption 
noise.

Atick & Redlich (1991, 1992) on the problem of whitening the 
power spectrum of natural images (equivalent to decorrelation) 
in the presence of white photoreceptor noise:

showed that both single-cell physiology and the 
psychophysically measured contrast sensitivity functions are 
consistent with the product of a whitening filter and an optimal 
lowpass filter for noise removal (known as the Wiener filter). 
Similar predictions and physiological comparisons were made by 
van Hateren (1992) for the fly visual system. The inclusion of the 
Wiener filter allows the behavior of the system to change with 
mean luminance level. Specifically, at lower luminance levels 
(and thus lower signal-to-noise ratios), the filter becomes more 
low-pass (intuitively, averaging over larger spatial regions in 
order to recover the weaker signal).



Does the visual system take advantage of the correlational structure of natural images ?

Atick & Redlich (1991, 1992) on the problem of 
whitening the power spectrum of natural images 
(equivalent to decorrelation) in the presence of white 
photoreceptor noise:

showed that both single-cell physiology and the 
psychophysically measured contrast sensitivity 
functions are consistent with the product of a 
whitening filter and an optimal low pass filter for 
noise removal (known as the Wiener filter). 

Similar predictions and physiological comparisons 
were made by van Hateren (1992) for the fly visual 
system. The inclusion of the Wiener filter allows the 
behavior of the system to change with mean 
luminance level. 

Specifically, at lower luminance levels (and thus 
lower signal-to-noise ratios), the filter becomes more 
low-pass (intuitively, averaging over larger spatial 
regions in order to recover the weaker signal).

 Another model for retinal horizontal cells, proposed by 
Balboa & Grzywacz (2000),, assumes a divisive form of 
retinal surround inhibition and shows that the changes in 
effective receptive field size are optimal for representation 
of intensity edges in the presence of photon-absorption 
noise.



How neurons might represent probabilities?

Several proposals for how neurons might represent probabilities have been 
presented (Pouget et al., 2013), the simplest of which directly relate neural 
activity to the probability of a feature being present in the neuron's 
classical RF (Barlow, 1969; Anastasio et al., 2000; Rao, 2004).



Many authors assume that at the earliest stages of processing (e.g. retina and V1), it is desirable for the 
system to provide a generic image representation that preserves as much information as possible 
about the incoming signal.

The success of efficient coding principles in accounting for response properties of neurons in the retina, 
LGN, and V1 may be seen as verification of this assumption. 

However, a richer theoretical framework is required. A commonly proposed example of such a framework 
is Bayesian decision estimation theory, which includes both a prior statistical model for the 
environment and a loss or reward function that specifies the cost of different errors, or the desirability of 
different behaviors.



https://www.youtube.com/watch?v=vJG698U2Mvo



 ● High Bias (Low Complexity Model):

 If a coding scheme is too simplistic (e.g., 
using a highly compressed representation with 
strong assumptions), it may discard valuable 
details and fail to capture true variations in 
the signal.

● High Variance (High Complexity Model):  

If a coding scheme tries to capture every small 
fluctuation, it becomes highly sensitive to 
noise, making it inefficient in generalizing 
across different contexts.

The Bias-Variance Dilemma



The Bias-Variance Dilemma
● High Bias (Low Complexity Model): If a coding scheme is too simplistic (e.g., using a highly 

compressed representation with strong assumptions), it may discard valuable details and fail to 
capture true variations in the signal.

● High Variance (High Complexity Model): If a coding scheme tries to capture every small 
fluctuation, it becomes highly sensitive to noise, making it inefficient in generalizing across 
different contexts.

In neural coding, this trade-off is seen in:

● Sparse vs. Redundant Representations: Sparse coding in the visual and auditory systems 
reduces redundancy (higher bias), while more distributed coding (higher variance) captures fine 
details at the cost of noise sensitivity.

● Predictive Coding Models: The brain is thought to minimize prediction errors by adjusting bias 
and variance dynamically. It keeps high bias when stimuli are predictable and lowers bias 
(increasing variance) when encountering unexpected inputs.


