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Example from Epilepsy Analysis
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Stargazin: PV-specific cortical expression
The mutation in panvaloumin _stereazin _ Meree
stargazer mice leads to Rl
loss of the TARP subunit
CACNG2, which results
in mis-trafficking of
dendritic AMPA
receptors in fast-spiking
interneurons in the
neocortex and
thalamus.
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Maheshwari et al, Frontiers in Cellular
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Stargazer: From Disease to Target

DISEASE —

Epilepsy
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Noebels, et al, 1990
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~ NETWORK
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Which cells are
affected in
neocortex?

PV+ Interneurons

2,

How does it
alter the
network?
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However this has not been tested in vivo in the
functioning cortical circuit at cellular resolution



In vivo 2-photon microscopy
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In vivo two-photon microscopy

* The calcium signal is a well-established EEG
surrogate measure of electrical activity
in neurons.
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* We recorded neuron and neuropil

activity profiles chronically, in awake ; I | I
stg/stg mice, using GCamp6, while
simultaneously recording EEG.

Gcamp6-patch validation
L2/3 pyr stg/stg; blue: e-phys, orange: dF/F

3 mm craniotomy over V1
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Approximate location of z-stack




Example of simultaneous EEG and calcium imaging
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The majority of neuronal and neuropil activity is significantly suppressed during
seizures in mouse V1 L2/3
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(Nat Comm, under review)



Patch-clamp recordings in a subset of animals corroborate
the predominant ictal-low character of L2/3 neurons
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Mean+SEM ictal and interictal firing rates calculated from action potentials.
8 of 9 cells were deemed ictal low (A), whereas 1 cell was ictal high (B);
*p<0.005, Mann-Whitney U test.



Patched Pyramidal Neuron summary

157

Spikes Rate (Hz)

Interictal Ictal

 15ictal lows, 2 ictal highs
*  Wilcoxon paired rank-sum p=0.0092



Is this specific for L2/3?
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Ictal Low Neuron Seizure Participation
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Temporal coupling with seizures is loose, spatial arrangements change over time.

The same group of neurons imaged chronically over 8 consecutive days

240 pm

Day 1, 1t recording Day 1, 2" recording Day 4 Day 8

O =ictal high neuron
O =ictal low neuron

= neutral neuron
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Subthreshold oscillations can coincide with seizures
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However neuronal engagement to seizures is flexible



What happens to synchrony?



Pair-wise synchrony drops significantly during seizures, in
both neurons and neuropil patches.

Pooled data from all animals
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Correlation Coefficient
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How do interneurons behave ?



|dentification of Interneurons

Structural and molecular interrogation of
intact biological systems

Kwanghun Chung"?, Jenelle Wallace', Sung-Yon Kim', Sandhiya Kalyanasundaram?, Aaron S. Andalman™?,
Thomas J. Davidson'?, Julie J. Mirzabekov', Kelly A. Zalocusky'?, Joanna Mattis', Aleksandra K. Denisin', Sally Pak’,
Hannah Bernstein', Charu Ramakrishnan', Logan Grosenick', Viviana Gradinaru® & Karl Deisseroth!-22+
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Step 1: hydrogel monomer infusion (days 1-3)
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Post-hoc CLARITY and immunostaining
identifies PV+ interneurons
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Reconstruction of PV+ |[HC

Atul Maheshwari
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Atul Maheshwari



76 SST/PV Interneurons: largely ictal low

Total number of interneurons (mix from all
layers)

— DIx (SST/PV): 47 — 4 neutral, 43 ictal low

— SST: 15 -1 ictal high, 2 neutral, 12 ictal low

— PV: 14 - all ictal low



Conclusions

Cortical activity is suppressed in stargazer mice area V1 during
absence seizures. Both neurons and neuropil, behave similarly.
SST/PV interneurons are also predominantly ictal low.

The coupling of neurons to seizure activity is dynamic on time scales
of minutes to hours, ictal lows are more stable than ictal highs, but
neurons can change their character in long-term recordings.

Surprisingly, pair-wise synchrony between pyramidal neurons is also
lower during seizures (caveat — we cannot exclude that a subgroup
of neurons may intermittently synchronize at a much finer time—
scale, but on average desynchronization seems to be the rule).

This is not due to increased interictal locomotion or generally higher
firing rates between seizures.



Can we start to understand the circuit pathophysiology?

Xiaolong Jiang, Baylor College of Medicine



Jiang et al., \201 5, Science
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Connectivity map changes in stg
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Summary of (preliminary) circuit deficits in stg
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How does this result in ictal low pyramidal,
SST and PV neurons? (preliminary hypotheses)

* Failure of Martinotti to inhibit [BEEEE

L23 MC

interneurons, including the NGF  [esa
cells, who are one of the master [Jeran
regulators and could inhibit most [
other cell types.

L5DC

* Alternatively, lower feed-
forward drive from the
thalamus?




"There are more things in heaven and Earth, Horatio,
than are dreamt of in your philosophy”

CONCLUSIONS

Cortical activity is suppressed and, on average, de-correlated in stargazer
mice area V1 during absence seizures.

The coupling of neurons to seizure activity is flexible from minutes to hours.

Decreased PC to PV IN connectivity strength expectations from immuno-
histochemical analysis were supported physiologically in L5 but not L2/3

Circuit analysis revealed multiple connectivity abnormalities, notably increased
PV inhibition of L2/3 Martinotti cells, which fail to suppress other INs.

We mostly observed ictal suppression in all cell types examined so far,
suggesting this is driven by a master inhibitory regulator or the thalamus

An intensive, focused, interdisciplinary approach is required to dissect circuit
function in well-defined epilepsy models, in order to fully understand circuit
malfunction and identify appropriate circuit targets for therapy.
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Anatomy of the Circuits is Complicated
(but important principles can still be extracted)

Principles of connectivity among
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Connectivity among morphologically defined cell types in adult neocortex.
(A) Simultaneous octuple whole-cell recording to study connectivity followed by
morphological reconstruction. (B) Synaptic connectivity between morphologically distinct
types of neurons, including pyramidal (P) neurons. (C) Connectivity from neurogliaform
cells (NGCs) to other cell types. This connectivity is believed to be nonsynaptic and
mediated by volume transmission. Martinotti cell, MC; basket cell, BC; single-bouquet cel-
like cell, SBC-like; bitufted cell, BTC; bipolar cell, BPC, double-bouquet cell, DBC; chandelier
cell. ChC:; shrub cell, SC; horizontally elongated cell, HEC; deep-projecting cell, DC.

morphologically defined cell types in

adult neocortex

Xiaolong Jiang,'™ Shan Shen,! Cathryn R. Cadwell,' Philipp Berens,“%** Fabian Sinz,!

Alexander S. Ecker,">*® Saumil Patel,’ Andreas S. Tolias"?*
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Douglas and Martin — Mapping the ways of the neocortex
(2008)

A | DJ
| P2+3
(4)

Thalamus

Figure 4. Canonical Cortical Circuit Based on

Electrophysiological and Modeling Studies in the Cat Visual
Cortex

From Douglas and Martin (1991).



Area A Area B

Figure 1 Graph of the dominant interactions between significant excitatory cell types in
neocortex and their subcortical relations. The nodes of the graph are organized spatially;
vertical corresponds to the layers of cortex and horizontal to its lateral extent. Directed
edges (arrows) indicate the direction of excitatory action. Thick edges indicate the relations
between excitatory neurons in a local patch of neocortex, which are essentially those described
originally by Gilbert & Wiesel (Gilbert & Wiesel 1983, Gilbert 1983) for visual cortex.
Thin edges indicate excitatory connections to and from subcortical structures and inter-areal
connections. Each node is labeled for its cell type. For cortical cells, Lx refers to the layer in
which its soma is located. P indicates that it is an excitatory neuron (generally of pyramidal
morphology). Thal denotes the thalamus and Sub denotes other subcortical structures, such
as the basal ganglia.

Figure 2 Graph of the temporal interactions between the cell types shown in Figure 1.
Time unfolds toward the right. Each edge represents one synaptic delay. A temporal path
ends when it is no longer unique; that is, further possible paths from that end node can be
traced by selecting other nodes in the graph of the same cell type. For additional description,
see Figure 1.



L3P/L5P
patch

L6P arbor L6P arbor

L
A

Basket arbor

Basket arbor

Figure 3 Approximate sizes of some important axonal arborizations, shown in tangential
(left) and vertical (right) sections. Top: Diameter of layer 3 (or layer 5) patches (light gray disk,
320 pum diameter), compared with that of the basal dendrites of a layer 3 pyramidal cell (dark
gray disk, 200 pm diameter). The inter-patch distance is 680 pum. Patch data were averaged



Computation Flow Between
Groups of Neurons

Douglas Martin // Abeles
/Vaadia

Temporal firing patterns of single

units, pairs and triplets of units
in the auditory cortex.

Vaadia E, Abeles M.

Isr J Med Sci. 1987 Jan-
Feb;23(1-2):75-83.

network space

fime

Figure 6. Schematic Representation of Just-Enough and
Just-in-Time Computation in a Cortical Network

The computation i3 shown evolving n time in a network of neurons,
representad here spatially in one dimension. Two local populations
of neurons located at computational “rendezvous” nodes Ra and Rb
emit messages composad of spatiotemporal spike patems along
the communication edges (“axons") indicated as red amows. The
“widths" of the connection pathways (the number of connections)
and the temporal window during which they can be effective are indi-
cated by the blue-gray paths flanking each amowed edge (widths “je"
and “jit"). Messages A and B are shown passing through a rendezvous
node Rab. As aresult of that local interaction, Rab emits messages B’
and C. C in this case consists of a small number of neurons that hold
ther outputs steady for some interval until the amval of message D
at rendezvous node Red. The interaction of C and D then leads to
the emission of message E from Red. As a result of this interaction,
another possible output, D/, from node Red doss not occur, which
means that a possible interaction between B’ and [ in rendezvous
node Rbd doss not occur, and B"is not emitiad.



Recurrent
neuronal circuits
in the neocortex

Rodney J. Douglas and
Kevan A.C. Martin



Figure 1. A quantitative
graph of the connections -
between various classes of L1 f=
excitatory neurons and their
targets in cortex. SA

Only the connections be- L2/3 @
tween the classes of the 2.7 0.8
dominant excitatory cell | 2.6
types are shown in this par- @ L4

tial diagram. Each arrow is

labeled with a number in- \ \ 3.6
dicating the proportion of 06| |09 (05

all the excitatory synapses L5 @
in area 17 that are formed =

between the various classes 2-7' ' o5
of excitatory neurons. Total 2.3 1.4
number of synapses be- L6
tween excitatory neurons is 02
13.6 x 10'°. Additional maps Q:c)
of connections from excita-
tory to inhibitory neurons, XY
and so on, can be found in Current Biology
Binzegger et al. (2004).
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Figure 2. Simple model of recurrently connected neurons with rate coded outputs.

A population of N rate excitatory neurons (blue filled circles) arranged as a spatial array; each receives inhibition from a common
inhibitory neuron (red filled circle), and each of them excites that inhibitory neuron. Each excitatory neuron receives feedforward exci-
tatory input (green arrows from green input neurons), as well as recurrent excitatory input from their close neighbours. The strength of
the recurrent inputs made onto any target neuron is a bell shaped function of the neighbour’s displacement in the array from the target
neuron (example shown for neuron 3). The activation function (right) of all neurons is a thresholded linear function (blue line) rather
than a sigmoid (cyan). Unlike the sigmoid, the linear activation is unbounded above so that the stability of the network must depend
on the integration of excitatory and inhibitory neurons rather than the sigmoidal saturation of individual neurons.



linear

non-linear

Figure 3. Six interesting functional properties of the recurrent network described in Figure 2.

In this multi-part figure, each part shows the response of the array of excitatory neurons (along the x-axis). Top left: Linear Gain.
Above threshold, the network amplifies its hill-shaped input (stipled lines) with constant gain (output, solid lines). Top center: Locus
Invariance. This gain is locus invariant (provided that the connections’ weights are homogenous across the array). Top right: Gain
Modulation. The gain of the network can be modulated by an additional constant input applied to all the excitatory neurons, and su-
perimposed on the hill-shaped input. The gain is least when no constant input is applied (input, red stippled line; output, red solid line),
and largest for a large constant input (blue lines). Bottom left: Winner-take-all. When two inputs of different amplitude are applied to
the network, it selects the stronger one. Bottom center: Signal Restoration. The network is able to restore the hill-shaped input, even
when that input is embedded in noise. Bottom right: Bistability. When separate inputs have the same amplitudes, the network selects

e’

linear analog gain
(above threshold)

locus invariance

non-linear gain control
(by common mode input)

non-linear selection
(<soft> winner-take-all)

signal restoration
(invariance)

one, according to its initial conditions at the time the input is applied.

multi-stability

Current Biology



m: Input m: Input

N N

o? P: Pointer @ @

t

Current Biology P: InDUt

Figure 4. Comparison of standard recurrently connected network left (equivalent to
Figure 2), and the ‘pointer-map’ configuration of recurrence.

Both networks have inhibitory feedback (-p, red). In both cases the overall feedback
between excitatory neurons is the same. In the standard network this feedback is ap-
plied monosynaptically. In the pointer-map, a small, for example two cell, population
of ‘pointer neurons’ is inserted in the feedback loop. In this way, the feedback is de-
composed into two successive stages, each providing gain a. The two pointer neurons
have differently biased connectivities to the map of excitatory neurons. The left pointer
neuron is more strongly connected to the leftmost neurons of the map, and the right
pointer to the nghtmost neurons of the map. If the pointer neurons are not perturbed
by their inputs (p) then the pointer-map behaves like the simple recurrent network at
left. When the ‘feedback’ or ‘top down’ input p is applied, it differentially activates
the pointer neurons, and so biases the distnbution of feedback gain to the map. For
example, if input p is applied only to the left pointer, amplification of ‘bottom up’ map
input m will be increased towards the left of the map, and reduced toward the right, so
providing an attentional focus toward the left.



How does the code remain stable
wrt to internal fluctuations?



Stability of the Code on the Face of internal fluctuations

(Internal gain modulations, but not changes in stimulus contrast, preserve the neural
code. S Lee, J Park, SM Smirnakis)
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but it is invariant wrt internal state
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Principles/Open questions

Inherent ambiguity in neuronal firing — how does this get resolved — why
does it occur in the first place?

What are some of the properties that the representation of information
on the cortical circuit should have?

Canonical Computations? Normalization (Carandini — Heeger)?

Internal Circuit Rhythms // State Dependent modulation of neural
responses— How does the representation of information remain stable?

Transformation of information representation --- projective to Euclidean
geometry — advantages?

When is representation stable and when is flexible? How does the
computation remain stable on the face of flexible representations? How
does information get transmitted through successive stages without
apparent degradation in the brain (von Neumann)?

Many inter-neuronal types — what type of control does each one exert?
What is its impact on decoding or learning?

How do networks behave during learning / forgetting?
What network behavior allows complexity (or “creativity”) to emerge?



