Section 5
Foundations of Shared Memory:
Fault-Tolerant Simulations of read/write objects

Simple Read/Write Register Simulations
✓ We show that registers that may seem more complicated, i.e., multi-writer (MW) multi-reader (MR) multi-valued registers have a wait-free implementation using simpler registers, i.e., single-writer (SW) single-reader (SR) binary registers.

- single-writer single-reader binary
- single-writer single-reader multi-valued
- single-writer multi-reader multi-valued
- multi-writer multi-reader multi-valued
Multi-valued SW SR Registers from Binary SW SR Registers

Basic Objects
- Binary registers, each of which can be read by just one process and written by just one process.

Implemented (or high-level) object
- A k-valued register which can be read by just one process and written by just one process.
- We represent values in unary.
- We use an array of k binary SW SR registers B[0..k-1].
- The value j is represented by a 1 in the jth entry and 0 in all other entries.

A Simple Algorithm

```plaintext
read() {
    for j = 0 to k-1
        if (B[j] == 1) return j;
}

write(v) {
    B[v] = 1;
    for j = 0 to k-1, j ≠ v,
        B[j] = 0;
    return <ack>;
}
```

This algorithm is not linearizable ☹️

Write(1) Write(2) Read() → 1
A Correct Algorithm

Main Ideas

- A write operation clears only the entries whose indices are smaller than the value it is writing.
- A read operation does not stop when it finds the first 1, but makes sure there are still zeroes in all lower indices.

```java
read(R) {
    i = 0;
    while B[i] == 0 do i = i+1;
    up = i;
    v = i;
    for i = up -1 down to 0 do
        if B[i] == 1 then v = i;
    return v;
}

write(R,v) {
    B[v] = 1;
    for i = v-1 down to 0 do B[i] = 0;
    return <ack>;
}
```

Multi-Valued from Binary Registers

Linearizability

- Let a be any admissible execution of the algorithm.
- We say that a (low-level) read r of any B[v] in a reads from a (low-level) write w to B[v], if w is the latest write to B[v] that precedes r in a.
- We say that a (high-level) Read R in a reads from a (high-level) Write W, if R returns v and W contains the write to B[v] that R's last read of B[v] reads from.

- We construct a sequential execution σ containing all the high-level operations in a, such that
 (1) σ respects the order of non-overlapping operations in a, and
 (2) every Read operation in σ returns the value of the latest preceding Write.
Construction of the sequential execution σ

- In two steps:
 1. We put in σ all the Write operations according to the order in which they occur in a:
 - Since we have a unique writer, this order is well-defined.
 2. Consider the Reads in the order they occur in a; since we have a unique reader, this order is well-defined.
 - For each Read R, let W be the Write that R reads from.
 - Place R immediately before the Write in σ just following W (i.e., place R after W and after all previous Reads that also read from W)

- By the defined placement of each Read, every Read returns the value of the latest preceding Write and therefore σ is legal.

We have to prove that σ preserves the real-time ordering of non-overlapping operations.

Lemma 1

Let op_1 and op_2 be two high-level operations in a such that op_1 ends before op_2 begins. Then, op_1 precedes op_2 in σ.

Proof

- By construction, the real-time ordering of Write operations is preserved.
- Consider some Read operation, R_i by p_i.
- If R finishes in a before a Write W begins, then R precedes W in σ, because R cannot read from a Write that starts after R.
- We proceed by case analysis.
 - Case 1: Write before Read.
 - Case 2: Read before Read.
Multi-Valued from Binary Registers

Lemma 2: Consider two values u and v with $u < v$. If Read R returns v and R's read of $B[u]$ during its upward scan reads from a write contained in Write W_i, then R does not read from any Write that precedes W_i.

Proof: Suppose in contradiction that R reads for a Write $W(v)$ that precedes $W_i(v_i)$ (see figure).

- It should hold that (1) $v_i > u$ (since W_i writes 1 in $B[v_i]$ and then does a downward scan), and (2) $v_i < v$ (since otherwise W_i would overwrite W's value to v).
- R’s upward SCAN reads $B[u]$, then $B[v_i]$, then $B[v]$.
- This SCAN should read 0 in $B[v_i]$ (otherwise R would return v_i and not v).
- Thus, there must be another Write $W_2(v_2)$ after W_i that writes 0 in $B[v_i]$ before R reads $B[v_i]$.
- It should be that $v_2 > v_i$ and $v_2 < v$ (for similar reasons as above).
- We apply this argument repeatedly to get an infinite increasing sequence of integers $v_i, v_2, ...$, all of which are less than v. A contradiction!

Multi-Valued from Binary Registers

Proof of Lemma 1 (case analysis continued)

Case 1: Write before Read

- Suppose in contradiction R is placed before W in $\sigma \Rightarrow R$ reads from some Write $W'(v')$ that precedes W.
- $v' < v$: Then W overwrites the write to $B[v']$ by W' before R begins. A contradiction (since then R does not read from W', as assumed).
- $v' > v$: By Lemma 2, R cannot read from W'.

Multi-Valued from Binary Registers

Case 2: Read before Read

Suppose in contradiction that R_1 follows R_2 in σ ⇒ R_1 reads from a Write $W_i(v_i)$ that follows the Write $W_j(v_j)$ from where R_2 reads.

- $v_1 = v_2$: When W_1 writes 1 to $B[v_1]$ it overwrites the 1 that W_2 wrote to $B[v_2]$ earlier. Thus, R_2 cannot read from W_2. A contradiction!

- $v_1 > v_2$: Since R_1 reads 1 from $B[v_1]$, the write of W_1 to $B[v_1]$ precedes the read of R_1 from $B[v_1]$. The write of 1 to $B[v_2]$ by W_2 precedes the write of W_1 to $B[v_1]$. Thus, from the write of W_1 to $B[v_1]$ until the read of this value from R_2, no write to $B[v_2]$ occurs.

Thus, during the downward scan, R_1 must read 1 in $B[v_2]$, and therefore, R_1 does not return v_1. A contradiction!

Multi-Valued from Binary Registers

Case 2: Read before Read (continued)

$v_1 < v_2$:

- Since R_1 reads from W_j, W_j’s write of 1 to $B[v_j]$ precedes R_1’s last read of $B[v_j]$.

- Since R_2 returns $v_2 > v_1$, R_2’s first read of $B[v_j]$ must return 0.

- So, there must be another Write after W_j containing a write of 0 to $B[v_j]$ that R_2’s read of $B[v_j]$ reads from.

- Lemma 2 implies that R_2 cannot read from W_2. A contradiction!
Multi-Valued from Binary Registers

Theorem

- There exists a wait-free simulation of a K-valued register using K binary registers in which each high-level operation performs $O(K)$ low-level operations.

Multi-Reader from Single-Reader Registers

A Simple Algorithm

Shared Variables: value Val[n]: // an array of n elements, one for each reader

write(v) {
 for (j=1; j ≤ n; j++) Val[j] = v;
}

read { // code for p_i, 1 ≤ i ≤ n
 return(Val[i]);
}

➢ This algorithm is not linearizable 😞
Multi-Reader from Single-Reader Registers

Theorem 3

- In any wait-free implementation of a single-writer multi-reader register from any number of single-writer single-reader registers, at least one reader must write.

Proof: By the way of contradiction!

Since the implementation is linearizable, \(\forall i \in \{1,2\}: \exists j_i, 1 \leq j_i \leq k, \) such that, \(v_j = 0 \) for all \(j < j_i \) and \(v_j = 1 \) for all \(j \geq j_i \).

Why is this TRUE?

- It holds that \(j_1 \neq j_2 \). Wlog, assume that \(j_1 < j_2 \).
- \(R_{j1} \) returns 1, whereas \(R_{j2} \) returns 0.
- This contradicts linearizability!!

A Correct Algorithm

Shared Variables:

- \(<\text{value,seq}>\ Val[i]\); // 1 \(\leq i \leq n \), value written by \(p_i \) for each of reader \(p_i \)
- \(<\text{value,seq}>\ Report[i,j]\); // 1 \(\leq i, j \leq n \), value returned by the most recent Read // operation performed by \(p_i \); // written by \(p_i \) and read by \(p_j \), initially, \(<v_0,0>\)

// code for each reader \(p_r \), 1 \(\leq r \leq n \)

```plaintext
read() {
    <v[0],s[0]> = Val[r];
    for i=1 to n do
        <v[i],s[i]> = Report[i,r];
    let j be s.t. s[j] = max{s[0], s[1], ..., s[n]};
    for i=1 to n do Report[r,i] = <v[j],s[j]>;
    return v[j];
}
```

// code for the single writer \(p_w \)

```plaintext
write(v) {
    seq = seq +1;
    for i=1 to n do Val[i] = <v,seq>;
    return <ack>;
}
```

Construction of σ

- In two steps:
 1. We put in σ all the Write operations according to the order in which they occur in a:
 - Since we have a unique writer, this sequence is well-defined.
 - This order is consistent with timestamps associated with the values written.
 2. Reads are considered, one by one, in the order of their responses in a
 3. A Read operation that returns a value with timestamp T is placed immediately before the Write that follows the Write operation that generated timestamp T.

✓ By the defined placement of each Read, every Read returns the value of the latest preceding Write and therefore σ is legal. 😊

➢ We have to prove that σ preserves the real-time ordering of non-overlapping operations.

Lemma 4: Let op_1 and op_2 be two high-level operations in a such that op_1 ends before op_2 begins. Then, op_1 precedes op_2 in σ.

Proof: By construction, the real-time order of Write operations is preserved.

- Consider some Read operation, R, by p_i that returns a value associated with timestamp T.

```
Read R by p_i
\sigma: \ldots \* W \* R \ldots
Write W
\sigma: \ldots \* W \* R \ldots
Read R
```

If R follows W in σ, then the write W' that generates timestamp T is either W or a later Write, implying that W' occurs after R in a. A contradiction!!

Since R occurs after W, R reads from $\text{Val}[i]$ the value written by W or a later Write \Rightarrow R returns a value whose associated timestamp is generated by W or a later Write. Thus R is not placed before W in σ.

Theorem 5: There exists a wait-free implementation of an n-reader register using $O(n^2)$ single-reader registers in which each high-level operation performs $O(n)$ low-level operations.
Multi-Writer from Single-Writer Registers

Main Ideas
- Have each writer announce each value it wants to write to all the readers by writing it in its own SW MR register; each reader reads all the values written by the writers and picks the most recent one among them.
- \(p_1, ..., p_m \): writers, \(p_1, ..., p_n \): readers
- Each timestamp is now a vector of \(m \) components, one for each writer.
- The new timestamp of a processor is the vector consisting of the local timestamps read from all other processors, and its local timestamp increased by one.
- We order timestamps according to the lexicographic order on the timestamps (i.e., according to the relative order of the values in the first coordinate in which the vector differs).
- The algorithm uses the following shared arrays of SW MR r/w registers:
 - vector \(\text{TS}[i] \): \(1 \leq i \leq n \), the vector timestamp of writer \(p_i \)
 - \(\langle \text{vector, value} \rangle \text{Val}[i] \): \(1 \leq i \leq n \), the latest value written by writer \(p_i \), \(1 \leq i \leq n \), together with the vector timestamp associated with that value. It is written by writer \(p_i \) and read by all readers.

read() {
 // code for reader \(p_r \), \(1 \leq r \leq n \)
 for \(i = 1 \) to \(m \) do
 \(\langle v[i], t[i] \rangle = \text{Val}[i]; \)
 let \(j \) be s.t. \(t[j] = \max\{t[1], t[2], ..., t[m]\}; \)
 return \(v[j] \);
}

write(v) {
 // writer \(p_w \) writes \(v \) in \(R \)
 \(\text{ts} = \text{NewTS}(w); \)
 \(\text{val}[w] = \langle v, \text{ts} \rangle; \)
 return \langle \text{ack} \rangle;
}

procedure NewTS(int \(w \)) {
 for \(i = 1 \) to \(m \) do
 \(\text{lts}[i] = \text{TS}[i][1]; \)
 \(\text{lts}[w] = \text{lts}[w] + 1; \)
 \(\text{TS}[w] = \text{lts}; \)
 return \(\text{lts} \);
}

Shared Variables:
- \(\langle \text{value, vector} \rangle \text{Val}[i] \); \(1 \leq i \leq m \), initially \(\langle v_0, (0, ..., 0) \rangle \)
- vector \(\text{TS}[i] \); \(1 \leq i \leq m \), initially \((0, ..., 0) \)
Multi-Writer from Single-Writer Registers

Linearizability

- In a way similar to that we proved linearizability in the previous algorithm.

Construction of σ

- In two steps:
 - We put into σ all the Write operations according to the lexicographic ordering on the timestamps associated with the values they write.
 - A Read operation that returns a value with timestamp VT is placed immediately before the Write operation that follows (in σ) the Write operation that generated timestamp VT.

- **Lemma 6**: The lexicographic order of the timestamps is a total order consistent with the partial order in which they are generated.

- **Lemma 7**: For each i, if VT_1 is written to $Val[i]$ and later VT_2 is written to $Val[i]$, then $VT_1 < VT_2$.

- By the defined placement of each Read, every Read returns the value of the latest preceding Write and therefore σ is legal.

Multi-Writer from Single-Writer Registers

Lemma 8: Let op_1 and op_2 be two high-level operations in a such that op_1 ends before op_2 begins. Then, op_1 precedes op_2 in σ.

Proof: By Lemma 6, the real time order of Write operations is preserved.

Consider a Read operation, R, by p_i that returns a value associated with timestamp VT.

Case 1: Arguments similar to corresponding case of Lemma 4.

Case 2: R reads from $Val[j]$ the value written by W or some later Write. By semantics of max and Lemma 6, R returns a value whose associated timestamp is generated by W or a later write. Thus, R is not placed before W in σ.

Case 3: During R, p_i reads all Val variables and returns the lexicographic maximum. During R', p_j does the same thing.

By Lemma 7, the timestamps appearing in each Val variable are in non-decreasing order. By Lemma 6, they are in non-decreasing order of when they were generated. Thus, R' obtains timestamps from Val that are at least as large as those obtained by R. Thus, the timestamp associated with the value returned by R' is at least as large as that associated with the value returned by R.
Multi-Writer from Single-Writer Registers

Theorem 9: There exists a wait-free implementation of an m-writer register using $O(m)$ single-writer registers in which each high-level operation performs $O(m)$ low-level operations.