
Planar Orientations

September 29, 2005

1

1 Introduction

In this chapter we will focus on algorithms and techniques used for drawing planar graphs.
The algorithms we will use are based on numbering the vertices and orienting the edges
from the lower numbered vertices to high numbered vertices. In this way, we can construct
two kinds of geometric representation of a planar graph, the visibility representation and
the tessellation representation. We will first examine the method of numbering the vertices
of a digraph, and focus especially on the st-numbering algorithm. We will then explore
the properties of planar acyclic graphs. Understanding these properties is essential for
understanding how the above geometric representations of graphs work.

We say that two horizontal segments of a given set are visible if they can be joined by
a vertical that does not intersect any other horizontal segment. A visibility representation
of a graph draws vertices as nonoverlapping horizontal segments and edges as vertical
segments drawn between visible vertex-segments (see figure 1).

A tessellation representation of an embedded planar graph draws each vertex, edge
and face as a rectangular tile with horizontal and vertical sides such that

• There is an intersection between the interiors of any two tiles

• The boundaries of two tiles intersect if and only if the corresponding objects in the
graph are incident

• The union of all tiles is a rectangle

Figure 1: A planar graph, its visibility representation (left) and its tessellation represen-
tation (right).

2 Numbering Directed Acyclic Graphs

Let G = (V,E) be a digraph with no cycles. A topological numbering is a function
x : V → R such that

x(v) > x(u) ∀(u, v) ∈ E (2.1)

Respectively, we can talk about topological sorting of a directed acyclic graph when vertices
are assigned distinct integers from the set {1, . . . , n}. Therefore, a topological sorting is a
function y : V → {1, . . . , n} such that

y(v) > y(u) ∀(u, v) ∈ E (2.2)

1

It is easy to see that equation 2.1 defines a linear ordering of all its vertices such that if
G contains an edge (u, v) then u appears before v in the ordering. Note that topological
sorting assigns distinct integers to every vertex of G. Thus, a topological numbering can
easily be derived from a topological sorting.

Additionally, the numberings defined above can be redefined as weighted numberings
if we assign positive weights w(e) for every edge e ∈ E and add to the right part of the
inequalities 2.1, 2.2 the quantity w(e), e = (u, v). Thus a weighted topological numbering
of a directed acyclic graph G = (V,E) with a positive weight function w is a function
r : V → {1, . . . , n} such that

r(v) ≥ r(u) + w(e) ∀e = (u, v) ∈ E (2.3)

Note that the normal numberings can be derived form the weighted numberings if
we set all the weights of the graph equal to zero. Additionally, we say that a weighted
topological is optimal if the quantity maxu,v |r(v)− r(u)| is minimized.

One very clever algorithm for the computation of the topological sorting of a directed
acyclic graph G = (V, E) is based on bucket sorting. The algorithm works as follows.
Our graph has for sure a source with in-degree equal to zero. We build up a list with
n = maxi∈V {deg−(i)} + 1 entries. Each entry 0 ≤ i ≤ n is a linked list of nodes k with
deg−(k) = i. Each node in this list has pointers to its reachable nodes (i.e. nodes t that
can be reached following the outgoing edges (i, t)). The algorithm subtracts one by one
nodes k such that deg−(k) = 0, giving them an increasing topological sorting index and
simultaneously decreasing the in-degree of their out-neighborhood by one. The algorithm
goes on till all nodes get an index. It easy to prove that the algorithm indeed produces
a legal topological sorting as every directed arc (u, v) is processed such as its origin u is
always subtracted before its destination v. Thus v will never get a lower number and the
topological sorting will be legal.

One very important observation is that a topological sorting of a directed graph G is
not unique unless G has a directed path that visits every vertex. It is easy to show that
all the following statements are equivalent:

• G is acyclic

• G admits a topological numbering

• G admits a topological sorting

Topological sortings and topological numberings are defined on directed graphs. What
happens when the graph is undirected? Then, we must compute an st-numbering [1] of
the undirected graph and transform it to a directed one.

3 Properties of Planar Acyclic Digraphs

We define an st-graph, as a planar acyclic digraph with one source vertex s and one single
sink vertex t. If we apply a topological numbering on an st-graph G, we can see that the
way the vertices are numbered, give a sense of direction, from a vertex with a low number
to a vertex with a higher number, to the edges. The following properties hold:

• Given a topological numbering of an st-graph G, each directed path of G visits
vertices with increasing numbers.

2

• For every vertex v of an st-graph G, there exists at least one directed path P from
s to t that contains v

The first property holds because of the way the numbers correspond with the directions
of the edges. It is easy to see why the second property is true: if it wasn’t, there would
be either no path from s to v, or from v to t, thus s or t wouldn’t be the source or sink
vertices respectively.

A planar st-graph is an st-graph that is planar and embedded with vertices s and t on
the boundary of the external face. It is customary to visualize a planar st-graph as drawn
upward in the plane (with s at the bottom and t at the top), as shown in figure 2. All
planar st-graphs, being acyclic, admit a topological ordering (numbering).

Let now G be a planar st-graph and F be its set of faces. F contains two representatives
of the external face: the ”left external face” s∗, which is incident with the edges on the
left boundary of G and the ”right external face” t∗, which is incident with the edges on
the right boundary of G. Additionally, for each e = (u, v) we define orig(e) = u and
dest(e) = v. Also, we define left(e) (respectively right(e)) to be the face to the left
(respectively right) of e. Following, we give the definition of the dual graph G∗ of a planar

s

t

Figure 2: A planar st-graph.

st-graph G. The dual graph G∗ is a graph for which the following hold:

• The vertex set of G∗ is the set F of faces of G including the faces s∗ and t∗.

• For every edge e 6= (s, t) of G, G∗ has one edge e∗ = (f, g) where f = left(e) and
g = right(e).

The dual graph of the graph depicted in Figure 2 can be seen in Figure 3. If we rotate G∗

90 degrees, we can see that G∗ is also a planar st-graph.
Given a vertex v of a planar st-graph, the face separating the incoming from the

outgoing edges in the clockwise direction is called left(v), and the other separating face
is called right(v)(see figure 4).

Following, we give some theoretical results.

Lemma 3.1. Each face f of a planar st-graph G consists of two directed paths with
common origin, called orig(f), and common destination, called dest(f).

Proof. Let’s suppose that the lemma is not true for a face f of the graph. Then there
should be two vertices w and u on the boundary edges of f , which create a path directed

3

s

t

s*

t*

Figure 3: Constructing the dual graph from the primal one.

v right(v)left(v)

Figure 4: The left (left(v)) and right (right(v)) faces of a vertex v.

from dest(f) to orig(f). Then, there should also be a directed path P1 from s to w and
a path P2 from u to t. But these two paths must intersect, and since G is planar, there
should be a vertex x at their intersection point. But then, we can clearly see that G has a
cycle, between vertices w, u and x which contradicts the fact that G is a planar st-graph
(see Figure 5).

Lemma 3.2. The incoming edges for each vertex v of a planar st-graph G appear consec-
utively around v, and so do the outgoing edges.

Proof. The lemma is true for vertices s and t. Let’s suppose that the lemma is not true for
a vertex v of G. This means that there are edges, as they appear in Figure 6. Then there
should be a directed path P1 from s to b, and a directed path P2 from c to t. But these
two paths intersect, and since G is planar, there should be a vertex x at their intersection
point. But then a cycle between vertices v, c, x and b is created, contradicting to the fact
that G is a planar st-graph.

Lemma 3.3. For every two faces f and g of a planar st-graph, exactly one of the following
holds:

• G has a directed path from dest(f) to orig(g)

• G has a directed path from dest(g) to orig(f)

4

orig(f)

dest(f)

f

w

u

x

s

t

P1

P2

Figure 5: Proof of Lemma 3.1.

• G∗ has a directed path from f to g

• G∗ has a directed path from g to f

Proof. Before we prove lemma 3.3, we must give two more definitions that we will use
in this proof. We call the leftmost path from a vertex u the path that always takes the
leftmost outgoing edge. Similarly, the rightmost path of a vertex u is the path that always
takes the rightmost edge. Now let’s assume that G is topologically sorted and that the
number of dest(f) is less than the number of orig(g). The rightmost and leftmost paths
from dest(f) to t are called P1 and P2 respectively. Similarly, the leftmost and rightmost
paths from orig(g) to t are called P3 and P4 respectively. The lemma is obviously true
if there is a directed path from dest(f) to orig(g). Otherwise P2 and P3 or P1 and P4

intersect. Let’s assume that P2 intersects P3 at a vertex x. Then from lemma 3.2, every
edge incident to every vertex on P2, from the right, is incoming, as it also happens with
every edge incident to P3 from the left. If we construct G∗, we will see that there is a
directed path in G∗ from f to g. (see Figure 7)

In the above lemma we deal with a special case of a more general property of planar
st-graphs. We can make the abstraction and call an element of the set V ∪ E ∪ F of a
planar st-graph G an object. The definitions of orig(), dest(), left(), right() can then be
extended as follows. For a vertex v we define orig(v) = dest(v) = v and for a face f we
define left(f) = right(f) = f . Lemma 3.3 can then be generalized as follows:

Lemma 3.4. For any two objects o1 and o2 of a planar st-graph G, exactly one of the
following holds:

• G has a directed path from dest(o1) to orig(o2)

• G has a directed path from dest(o2) to orig(o1)

• G∗ has a directed path from right(o1) to left(o2)

• G∗ has a directed path from right(o2) to left(o1)

5

s

t

a b

c
d

v x

P1

P2

Figure 6: Proof of Lemma 3.2.

dest(f)

orig(g)

f

g

t

x

P1

P2

P3

P4

Figure 7: Proof of Lemma 3.3.

4 Tessellation Representations

4.1 Plane Tessellation Representation

A tessellation representation on the plane for a planar st-graph G is a partition of the plane
into disjoint tiles, each associated with vertex, edge or face of G, such that the topological
incidencies correspond to geometric adjacencies between tiles.

A tile is a rectangle with sides parallel to the coordinate axes. A tile can be unbounded
or can degenerate to a segment or a point. Two tiles are horizontally or vertically adjacent
if they share a portion of a vertical or horizontal side. The coordinates of a tile θ will be
denoted by xL(θ), xR(θ), yB(θ), yT (θ).

Let G be a planar st-graph. As usual, we denote the sets of vertices, edges and faces
of G by V , E and F , respectively. A tessellation representation Θ for G maps each object
(vertex, edge, or face) o of G into a tile Θ(o), such that:

• The interiors of tiles Θ(o1) and Θ(o2) are disjoint whenever o1 6= o2

• The union of all tiles Θ(o), o ∈ V ∪ E ∪ F is a rectangle

6

• Tiles Θ(o1) and Θ(o2) are horizontally adjacent if and only if o1 = left(o2) or
o1 = right(o2) o2 = left(o1) or o2 = right(o1)

• Tiles Θ(o1) and Θ(o2) are vertically adjacent if and only if o1 = orig(o2) or o1 =
dest(o2) or o2 = orig(o1) or o2 = dest(o1)

Let now G be a planar st-graph. We want to construct a tessellation representation Θ
of G. To do so, we firstly compute the dual planar st-graph G∗. Then, we compute a
topological numbering Y of G and a topological numbering X of G∗. Finally, for each
object o ∈ V ∪ E ∪ F , we let the coordinates of tile Θ(o) be

xL(o) = X(left(o))

xR(o) = X(right(o))

yB(o) = Y (orig(o))

yT (o) = Y (dest(o))

Theorem 4.1. Let G be a planar st-graph with n vertices. The algorithm described above
constructs a tessellation representation of G in O(n) time.

Proof. The tiles of any two distinct objects are separated either by a vertical or by hori-
zontal line, according to Lemma 3.4. Each step of the algorithm takes linear time, so the
above algorithm constructs the plane tessellation representation in O(n) time.

An example of a run of the plane tessellation representation algorithm is shown below
in Figure 8.

Notice that the above algorithm constructs a tessellation representation on the plane,
in which the tiles associated with the faces and the vertices (except s and t) are degenerate.
In particular, the external face is associated with a tile at infinity. It is possible to modify
the construction so that only one tile is degenerate, namely the one associated with the
external face.

We can modify the plane tessellation representation algorithm to support user-defined
constraints on the size of the edge-tiles. Namely, let h(e) and w(e) be non-negative numbers
associated with each edge e of G. By replacing the first two steps of the plane tessellation
representation algorithm with the following ones, we obtain a tessellation representation
of G, such that the tile of each edge e has height at least h(e) and width at least w(e):

• Assign weight h(e) to each edge e of G and compute an optimal weighted topological
numbering Y of G.

• Assign weight w(e∗) to each edge e∗ of G∗ and compute an optimal weighted topo-
logical numbering X of G∗.

The plane tessellation representation algorithm can also be further modified to support
user-defined constraints on the size of the vertex-and face tiles. Namely, we construct from
G a new planar st-graph G′ as follows:

• Let G′ = G.

• For each vertex v of G′, we expand v into vertices v′ and v′′, joined by an edge eu

from v′ to v′′, such that v′ contains the incoming edges of v and v′′ contains the
outgoing edges of v.

7

(b)

(c)

(a)

0

0

4

1

2

5
2

3
3 1

2

3

4

0 1 2 3 4 5
0

1

2

3

4

Figure 8: Example of a run of the plane tessellation representation algorithm: (a) a planar
graph G; (b) planar st-graphs G and G∗ labelled by topological numberings Y and X,
respectively; (c) tessellation representation Θ of G constructed by the plane tessellation
representation algorithm

• For each face f of G′, we add an edge ef into face f from orig(f) to dest(f).

Every object of G is associated with an edge of G′. We then simply apply Plane tessellation
representation algorithm to G′ and represent each object of G with the tile of the associated
edge of G′. We conclude:

Theorem 4.2. Given a planar st-graph G with n vertices and nonnegative numbers h(o)
and w(o) for each object o of G, a minimum-area tessellation representation Θ for G, such
that each tile Θ(o) has height at least h(o) and width at least w(o) can be constructed in
time O(n). In particular, if h(o) = w(o) = 1 for each object o of G, then Θ has integer
coordinates and area O(n2).

Proof. We construct a plane tessellation representation such that each tile Θ(o) has height
and weight, by expanding each vertex into two new vertices. The only essential difference
between the initial graph G and graph G′ obtained by the changes we apply, is that the
second one has more objects. So, according to theorem 4.1, we can construct a tessellation
representation on the plane in O(n) time for a graph G. If h(o) = w(o) = 1, then the
objects o of G will have integer dimensions. So Θ will have integer coordinates. Also Θ
will have area O(n2), because vertices and faces will be represented as rectangles and not
as lines.

8

4.2 Sphere Tessellation Representation

A sphere S is the locus of points at the same distance from a point, called the center
of the sphere. The intersection of S with the horizontal plane that passes through the
center of S defines a circle, called the equator. Similarly, the intersection of S with planes
parallel to the plane of the equator defines the parallels. The line that passes through the
center of S and is orthogonal to the plane of the equator, called the axis of the sphere,
intersects the sphere into two points, the North Pole and the South Pole. Every plane
that is orthogonal to the plane of the equator and passes through the two Poles defines a
circle called a meridian. Every point p of S will be denoted by a pair (x, y) where x is the
latitude measured with respect to the South Pole, and y is the longitude measured with
respect to a reference meridian. The notion of horizontal and vertical is extended to the
sphere by considering horizontal the parallels and vertical the meridians.

A spherical st-graph is an embedded planar acyclic digraph with exactly one source s

and exactly one sink t. It is convenient to visualize a spherical st-graph as drawn on a
sphere with s at the ”South Pole” and t at the ”North Pole”. A tile on the sphere is the
portion of the sphere delimited by two parallels and two meridians. On the sphere, we
allow tiles containing one or both Poles.

Now we consider a spherical st-graph G. Let p be a path in G from s to t, which does
not contain its extreme vertices s and t. We construct from G a new planar st-graph Gp

by ”cutting” G along path p and duplicating the vertices and edges of p. Note that the
graph Gp is a planar st-graph. The two copies of p, denoted p′ and p′′ are the left and
the right boundary of Gp, respectively. Also, we denote by o′ and o′′ the two copies of a
vertex or edge o of p in p′ and p′′, respectively. For any other object o of G which is not
in p, both o′ and o′′ denote the unique object of Gp associated with o.

Now we are going to describe an algorithm that constructs a sphere tessellation rep-
resentation. Input is a spherical st-graph G. The algorithm outputs a tessellation repre-
sentation Θ for Gp on the plane such that for each object o of p the tiles Θ(o′) and Θ(o′′)
have the same y-coordinates.

Initially, the algorithm constructs the planar st-graph Gp. The it constructs its dual
G∗p. Afterwards it computes a topological numbering X of Gp and a topological numbering
Y of G∗p. Then it simply sets

x0 =
2π

Y (t)

and
y0 =

2π

X(t)

Following, for every object o ∈ V ∪ E ∪ F it sets

xL(o) = Y (orig(o))x0

xR(o) = Y (dest(o))x0

yB(o) = X(left(o))y0

yT (o) = X(right(o))y0

The above algorithm constructs a tessellation representation, in which the tiles associated
with the faces and the vertices are degenerate. It is possible to modify the construction,
so that no tile is degenerate.

9

Theorem 4.3. Let G be a spherical st-graph with n vertices. The sphere tessellation
representation algorithm constructs a tessellation representation of G on the sphere in
O(n) time.

Proof. The sphere tessellation representation, essentially, constructs a plane tessellation
representation on the plane for Gp, with the property that for each object o of p tiles
Θ(o′) and Θ(o′′) have the same y-coordinates. So, according to Theorem 4.1, the sphere
tessellation representation algorithm constructs a tessellation representation on the sphere
in O(n) time.

5 Visibility Representations

Let G be a planar st-graph. A visibility representation Γ of G draws each vertex v as a
horizontal segment, called vertex-segment Γ(v), and each edge (u, v) as a vertical segment,
called edge-segment Γ(u, v), such that

• The vertex-segments do not overlap

• The edge-segments do not overlap

• Edge-segment Γ(u, v) has its bottom endpoint on Γ(u), its top end-point on Γ(v),
and does not intersect any other vertex-segment.

A visibility representation of a planar st-graph G can easily be constructed from a tessella-
tion representation of G with degenerate vertex tiles and non-degenerate face-tiles, which
can be produced by the algorithm of theorem 4.2. Indeed, the tessellation representation
provides a floorplan for drawing each vertex-segment as the degenerate vertex-tile itself,
and each edge-segment as any vertical segment spanning its tile (see Figure 9).

In order to construct a visibility representation of a planar st-graph G, we apply the
following algorithm. Initially, we construct the dual graph G∗, we assign unit weights to
both graphs G and G∗ and then we compute their optimal weighted topological numberings
Y , X respectively. Then

1. For each v ∈ V , draw the vertex-segment Γ(v) by setting

y(Γ(v)) = Y (v)

xL(Γ(v)) = X(left(v))

xR(Γ(v)) = X(right(v))− 1

2. For each e ∈ E, draw the edge-segment Γ(e) by setting

x(Γ(e)) = X(left(e))

yB(Γ(e)) = Y (orig(e))

xT (Γ(e)) = Y (dest(e))

The proof of correctness of the above algorithm is based on the following observations. By
Lemma 3.4 and the construction of the algorithm, any two vertex-segments are separated
by a horizontal or vertical strip of at least unit width. Also, any two edge-segments on
opposite sides of a face are separated by a vertical strip of at least one unit width, and
no two faces intersect in the representation constructed by the algorithm, except for their
common edges.

The described algorithm obviously takes time O(n). Hence

10

Figure 9: Construction of a visibility representation (right) from the tessellation represen-
tation (left).

Theorem 5.1. Let G be a planar st-graph with n vertices. The described algorithm
constructs in O(n) time a visibility representation of G with integer coordinates and O(n2)
area.

6 Constrained Visibility Representation

In this section we examine an algorithm that constructs a special case of visibility repre-
sentations, called constrained visibility representations. These geometric representations
of planar st-graphs have many interesting applications.

Let G be a planar st-graph with n vertices. Two paths π1 and π2 of G are said to be
nonintersecting if they are edge disjoint and do not cross at common vertices, i.e., they
are also vertex disjoint paths.

Given a collection Π of pairwise nonintersecting paths of G, we consider the problem
of construction a visibility representation Γ of G, such that, for every path π of Π, the
edges of π are vertically aligned. More formally, for any two edges e′ and e′′ of π, the
edge-segments Γ(e′) and Γ(e′′) have the same x-coordinate. An example of a constrained
visibility representation is given in Figure 10

In order to simplify the description of the algorithm, without loss of generality we
assume that the set Π of nonintersecting paths covers the edges of G. Otherwise, each
edge originally not in Π is inserted into Π as a single-edge path.

To construct a constrained visibility representation we apply the following algorithm.
Initially we construct a graph GΠ (which is a planar st-graph) with vertex set F ∪Π end
edge set

{(f, π)|f = left(e) ∧ e ∈ π} ∪ {(π, g)|g = right(e) ∧ e ∈ π}
Then we assign unit weights to the edges of G and compute an optimal weighted topological
numbering Y of G, such that Y (s) = 0. Following, we assign half-unit weights to the
edges of Gπ and compute an optimal weighted topological numbering X of Gπ, such that
X(s∗) = −1/2. Finally, we execute the following for loops:

1. ∀π ∈ Π ∧ ∀e ∈ π do:

x(Γ(e)) = X(π)

yB(Γ(e)) = Y (orig(e))

yT (Γ(e)) = Y (dest(e))

11

Figure 10: Construction of a constrained visibility representation. The paths belonging to
Π are shown with thick lines.

2. ∀v ∈ V do

y(Γ(v)) = Y (v)

xL(Γ(v)) = min
v∈π

X(π)

xR(Γ(v)) = max
v∈π

X(π)

The computations performed by the described algorithm are equivalent to the following
construction. First it modifies G by duplicating each path in Π, thus forming a new face
for each path. Second, it constructs a visibility representation for the modified graph such
that the edge segments of the left side of the boundary of each face are vertically aligned,
and two copies of an original vertex are horizontally aligned. Finally, it removes the right
copy of every duplicated edge and joins the copies of the duplicated vertices. Finally, it
easy to prove that GΠ is a planar st-graph.

The described algorithm computes a correct visibility representation, as each edge e of
a path π is assigned the same x-coordinate x(Γ(e)) = x(π). The area needed is O(n2) and
the algorithm has O(n) time complexity.

7 Polyline Drawings

In the following section, we describe an algorithm that constructs an upward planar poly-
line drawing of a planar st-graph G starting from a visibility representation of G. The
algorithm consists of the following general steps. We draw each vertex v of G at an arbi-
trary point of its vertex-segment, and each edge (u, v) of G as a three-segment polygonal
chain, whose middle segment is a subset of the edge segment of (u, v).

Following we describe the algorithm that computes a polyline drawing. Initially, we
compute a visibility representation Γ of G. Then, for each vertex v, we replace Γ(v) with
an arbitrary point P (v) = (x(v), y(v)) on Γ(v). Then, for each edge (u, v) we distinguish
the following two cases:

1. if y(v) − y(u) = 1 (short edge), then replace the edge segment Γ(u, v) with the
segment with endpoints P (u) and P (v)

2. if y(v)−y(u) > 1 (long edge), then replace the edge segment Γ(u, v) with the polygo-
nal line from P (u) to P (v) with origin (x(Γ(u, v)), y(u)+1) and (x(Γ(u, v)), y(v)−1)

12

A possible choice for the placement of P (v) is the middle point of vertex-segment Γ(v). An
example of polyline drawing obtained with this ”median positioning” from the visibility
representation of Figure 11. Following we give some theoretical results

Figure 11: Construction of a polyline drawing.

Theorem 7.1. Let G be a planar st-graph with n vertices. The algorithm described
constructs in O(n) time a planar upward polyline grid drawing of G with the following
properties:

• The number of bends is at most 6n− 12

• Every edge has at most two bends

Proof. The correctness of the algorithm can be proved with simple geometric considera-
tions. Each edge segment Γ(u, v) is replaced by either a segment or a polygonal line with
at most two bends. Since a planar graph has at most 3n − 6 edges, the total number of
bends is at most 6n− 12.

References

[1] S. Even, R. Tarzan, Theoretical Computer Science 2 (1976) 339-344, Computing an
st - numbering

[2] G. Battista, P. Eades, R. Tamassia, I. Tollis, Graph Drawing - Algorithms for the
Visualization of Graphs, (1999)

13

