Chapter 1

Introduction

This chapter is a general introduction to graph theory. First we present some basic
graph vocabulary and conventions that will be used throughout the notes. The chapter
ends with the two most common data structures to represent graphs in programs.

1.1 Basic definitions

1.1.1 Edges, vertices and degrees

Geometrically we represent graphs as a set of points in space (which are called vertices)
and lines that connect them (the edges). We denote the set of vertices by V' and the set
of edges by E. The graph is then written as G = (V,E). Figure 1.1 shows a graph,
G= ({ul,uz, [P ,’21,6}, {61, €2y vy 611}).

Figure 1.1: A simple graph with 6 vertices and 11 edges

The number of vertices is denoted by |V | and the number of edges by |E| 1. Each edge
is defined by the two vertices that it connects. These vertices are called the end-points of

'Usually we write |V|=n and |E| =m

the edge. For example, in Figure 1.1 e; = (u1,u2), ex = (u1,u3), ...,e11 = (ug,u3). If an
edge e has u as an end point, we say that e is incident with u. Also if (u,v) € E we say
that u is adjacent to v. In Figure 1.1, e1, e2 and e3 are incident with u; which is adjacent
to ug, ug and ug.

Continuing with the definitions we can define the self-loop and the parallel edge. A self
loop is an edge (u,v) for which v = v. A parallel edge cannot be uniquely identified by its
end points. In Figure 1.2, edge e; is a self loop and e3 is parallel to ey.

Figure 1.2: An example of a graph containing a self loop and parallel edges

The degree of a vertex u, written d(u), is defined as the number of edges incident with
u. In Figure 1.1 d(u1) = 3, d(ug) =3, ...,d(ug) = 2. Theorem 1.1 relates the degrees of
the vertices with the number of edges in a graph.

Theorem 1.1 The sum of the degrees of all the vertices in a graph is twice the number of
the edges.

Proof. Each edge contributes one to the degree of each edge that is incident to. Because
each edge is incident to two vertices, if we add up all the degrees of a graph the result will
be twice the number of the edges:

\4

> d(u;) = 218] (L1)
=1

An important corollary of theorem 1.1 is the following.
Corollary 1.1 The number of vertices of odd degree in a finite graph is even.

Proof. The right hand side of equation (1.1) is an even number as is the contribution to the
left hand side from vertices of even degree. Therefore, the sum of the degrees of odd degree
vertices is even which establishes the corollary.

A graph is called b-regular if d(u) = b, Yu € V. Such a graph has %% edges. A graph

is called complete if it is (n — 1)-regular. This graph has w edges. An arbitrary graph
has at most w edges. In Figure 1.3(a), we see a 2-regular graph and in Figure 1.3(b),

a complete graph.

(a) A 2-regular graph (b) A complete graph

Figure 1.3: Regular and complete graphs

1.1.2 Directed graphs

In some applications it is natural to assign a direction to each edge of the graph. Thus
in a diagram of a graph each edge is represented by an arrow (see Figure 1.4). A graph
augmented in this way is called a directed graph or a digraph. If e = (u;,u;), is an edge of
a digraph then the order of u; and u; becomes significant. The edge e is understood to be
directed from the first vertex u; to the second vertex u;. Thus, if a digraph contains the
edge (u;,u;) then it may or it may not contain the edge (u;,u;). The directed edge (u;,u;)
is said to be incident from u; and incident to u;. For the vertex u the out-degree d*(u) and
the in-degree d~(u) are, respectively, the number of edges incident from u and the number
of edges incident to u. A symmetric digraph is a digraph in which for every edge (u;,u;)
there is an edge (uj,u;). A digraph is balanced if for every vertex u, d¥(u) = d™ (u).

1.1.3 Paths and connectivity

A path from u; to uy is a sequence P = uq, ug, us, ..., ug_1, Uk, for which (u;, ujt1) €
Efori=1, ..., k—1. If uy = ug, then we say that P is a cycle. An example of a path
and a cycle is shown in Figure 1.5. We say that u; is connected to u; if there is a path from
u; to uj. By convention every vertex is connected to itself. Connection is an equivalence
relation? on the vertex set of a graph which partitions it into subsets Vi, Vo, ..., Vi. A
pair of vertices is connected if and only if they belong to the same subset of the partition.
These subsets are called connected components.

2See appendix A for more information on equivalence relations and classes

Figure 1.4: An example of a directed graph

A graph is called connected if from any vertex there is a path to any other vertex (see
Figure 1.6). Another equivalent definition is that a graph is connected if it has only one
component. A graph with more components is called disconnected.

1.1.4 Trees

A tree is a connected acyclic graph (see Figure 1.7(a)). A forest is a graph whose
components are trees. A tree in which a vertex, the root, is distinguished, is called a rooted
tree. In a rooted tree any vertex of degree 1, unless it is the root, is called a leaf. The depth
of a vertex in a rooted tree is the number of edges in the path from the root to the vertex.
If (u,v) is an edge of a rooted tree such that u lies on the path from the root to v, then u is
said to be the father of v and v is the son of u. An ancestor of u is any vertex of the path
from u to the root of the tree. Similarly, if u is an ancestor of v, then v is a descendant of
u. A binary tree is a rooted tree in which every vertex, unless it is a leaf, has at most two
sons (see figure 1.7(b)).

Trees have some very important properties, that are stated by Theorem 1.2.

Theorem 1.2 If T is a tree with n vertices, then
1. Any two vertices of T are connected by precisely one path.
2. T has (n — 1) edges.
Proof.

1. T is connected and so there exists at least one path between any two vertices u and v.
Suppose that two distinct paths, P; and P, exist between u and v. Following these
paths from u to v, let them first diverge at v’ and first converge at v'. That section
of P, from u' to v’ followed by that section of P, from v’ to «' must form a cycle. By
definition, T' contains no cycles and so we have a contradiction.

2. Proof is by induction on the number of vertices n in 7. If |V| =1 or |V| = 2 then,
trivially, the number of edges in T" is (n — 1). We assume that the statement is true

us

Figure 1.5: An example of a cycle and a path

0 NG

@ ()

Figure 1.6: An example of a connected and a disconnected graph

for all trees with less than n vertices. Let T have n vertices. There must be a vertex
of degree 1 contained in T, otherwise we could trace a cycle by following any path
from vertex to vertex entering each vertex by one edge and leaving by another. If we
remove a vertex of degree 1, v, from T we neither disconnect 7" nor create a cycle.
Hence (T — v) is a tree with (|V| — 1) vertices. By the induction hypothesis (7' — v)
has (|V| — 2) edges. Hence replacing v provides T' with (n — 1) edges.

1.1.5 Weighted graphs

Usually with each vertex or edge of a graph, we keep some satellite data, useful for
the applications at hand. For example when modeling a computer network, each vertex
might represent a router and each edge the optical fibers that connect the routers. If we
are interested in connecting all the routers minimizing the cost of the network, we will

(a) A tree (b) A binary tree

Figure 1.7: Trees

assign a number to each edge that represents the length of the optical fiber required for the
connection. Two efficient algorithms for this task will be given in Section 2.4.

Graphs with value assigned edges are called weighted graphs. Formally we define a
function w : E — R defined in the set of edges E and taking values from the real numbers.
The value w(e) is called the weight of the edge e. The weight of a whole graph is defined
to be the sum of the weights of its edges. In Figure 1.8, we see an example of a weighted
graph. In this graph the weight of the edge (a,c) is 10, the weight of the edge (f,d) is 5
and so forth.

Figure 1.8: An example of a weighted graph

1.1.6 Subgraphs

A subgraph of G is a graph which is taken from G by the removal of a number of edges
and/or vertices of G. If we remove a vertex we must remove all the edges that are incident
with it. If H is a subgraph of G then G is called a supergraph of H and we write H C G.

A subgraph of G induced by a subset of the vertices, V' C V, is the graph consisting of V'
and those edges of G with both end points in V.

1.2 Graph representations

There are two standard ways to represent a graph in computer programs: as an array
of adjacency lists or as an adjacency matriz.

The adjacency list representation of a graph G = (V, E) is an array Adj with |V| elements
each representing one vertex u € V. Every element of this array is a linked list, with each
node being a vertex adjacent to u (see figures 1.9(b), 1.10(b)). It is obvious that in an
undirected graph if v is a node in the adjacency list of the vertex u, then u is a node in the
adjacency list of v. On the other hand, this symmetry does not exist in the representation
of directed graphs. Because of that the sum of the lengths of all the adjacency lists in a
directed graph is |E|, and in an undirected graph is 2| E|. In both cases, the adjacency list
representation requires O(maz(|V|,|E|)) = O(n + m) memory.

)

us

(a) An undirected graph (b) The adjacency list represen-
tation

Up [Uz [Uz | Ug [Us
u | 0 1 1 1 0
u | 1 0 1 0 0
uz | 1 1 0 0 1
ug | 1 0 0 0 1
us | 0 0 1 1 0

(c) The adjacency matrix repre-
sentation

Figure 1.9: The two representations of an undirected graph

The adjacency list can be easily modified to represent weighted graphs by storing the
weight w(u,v) of the edge (u,v) with the vertex v in u’s adjacency list. The adjacency list
representation can also be easily modified in order to support many other graph variants.

The disadvantage of the adjacency list is that there is no quick way to tell if u is adjacent
to v. To do that we have to search the list of u for the element v which requires O(deg(u))
steps. For the undirected case, we can do this in parallel for the lists of u and v reducing the
cost to O(min(deg(u),deg(v))). The other method to represent a graph is the adjacency

J PR

u;

“3
“5

a) A directed graph b) The adjacency list represen-
) y
tation

up | U2 [Uz | Ug [Us
u | 0 1 1 0 0
u | 0 0 0 0 0
uz | 0 1 0 0 0
ug | 1 0 0 0 1
us | 0 0 1 0 0

(c) The adjacency matrix repre-
sentation

Figure 1.10: The two representations of a directed graph

matrix (see figures 1.9(c), 1.10(c)). We assume that the vertices are numbered 1, 2, ..., n
in some arbitrary manner. The adjacency matrix representation is a n x n matrix A = (a; ;)
such that

0. =4 1G5 €E,
Y 71 0 otherwise.

The adjacency matrix representation requires O(n?) memory, independently of the number
of edges.

As with the case of adjacency lists, we can observe a kind of symmetry, for undirected
graphs, in the adjacency matrix representation. The transpose of a matrix A = (a;;)
is defined to be the matrix AT = (az-T]-) where aiTj = aj;. For an undirected graph the
adjacency matrix is symmetric along the main diagonal, i.e. AT = A. This property is
important because we can store only the entries on and above the main diagonal, thus the

memory requirements are reduced almost by half.

The main advantage of the adjacency matrix representation is that we can determine if
(u,v) € E in O(1) time, by accesing the element a,,. Therefore, this is the prefered way to
represent reasonably small graphs or dense graphs for which |E| =~ |V|?.

Like the adjacency list representation, the adjacency matrix representation can be used
for weighted graphs. For example, if G = (V, E) is a weighted graph with weight function
w, the weight w(u,v) of the edge (u,v) € E is stored as the entry in row u and column v.
If an edge does not exist, a NIL value can be stored, although for many applications it is

useful to use a value such as 0 or co.

10

Chapter 2

Breadth First Search (BFS)

Breadth First Search is an algorithm for searching graphs. Many important graph
algorithms are based on BFS, like Dijkstra’s single-source shortest-paths algorithm and
Prim’s minimum spanning tree algorithm. Given a directed or undirected graph G = (V, E)
and a distinguished vertex s, which we name source vertex, breadth first search explores
all the vertices of G that are reachable from s. This is done in a systematic way that is
analyzed in the next sections.

2.1 BFS in general

Breadth First Search computes the distance from s to all of its reachable vertices. This
algorithm works on both directed and undirected graphs. The BF'S algorithm is given below
in pseudocode.

BREADTH FIRST SEARCH
Input: A graph G = (V, E) and a source vertex s € V.

Output: A breadth first tree that includes all the vertices from G that are reachable from
s, the distance of each vertex from s and its parent.

BFS(G, s)
1 for each vertex v in V — {s}

2 do color[v] «+ white
3 d[v] ¢ o0
4 w[v] < NIL
5 d[s]+ 0
6 m[s] + NIL
7 color[s] < gray
8 Q<+ s
9 while Q # 0
10 do u < DEQUEUE(Q)
11 for each v in Adj[u]
12 do if color[v] = white
13 then color[v] < gray

11

14 d[v] < du] +1

15 7[v] < u
16 ENQUEUE(Q, v)
17 color[u] < black

2.1.1 Description of the algorithm

The algorithm takes as input a graph G = (V, E) and a vertex s € V, that is called the
source vertez. After the execution of the algorithm for every vertex that is reachable from
s we have its parent in the BFS tree (see Section 2.2)and its distance from the source. The
distance between two vertices is computed in number of edges.

The algorithm uses a FIFO queue @) in order to keep track of the vertices it must visit.
Also, each vertex has one of three colors: white that means that we have not yet visited
the vertex, gray that means that we have visited the vertex itself but not all the vertices
adjacent to it and black that means that we have visited the vertex and all its neighbors.
The color, the parent and the distance from the source can be maintained as attributes in
the adjacency list representation as for the case of a weighted graph(see Section 1.2).

The first four lines of the algorithm initialize the attributes for all the vertices except the
source. Initially the color is white because we have not yet visited the vertex, the distance
is set to oo and the parent is set to NIL because we do not know it. The next four lines are
the initialization for the source vertex. The distance from itself is zero so we set d[s| < 0.
As will be described in the Section 2.2 the source vertex is the root of the BFS tree and
therefore it has no father. Thus, 7[u| <— NIL. Finally, the source is the first vertex we visit
and that is why it is painted gray in line 7 and it is inserted into the (initially empty) queue.

The loop in lines 9-17 is the core of the algorithm. The algorithm will enter the loop
after the initialization because we have inserted s into @ and so @ # 0. In line 10, the first
element of the queue (the head) is removed and assigned to u and the for loop in line 11
examines all the vertices adjacent to it. If there is a vertex v adjacent to u such that its
color is white (i.e. we have not visited it yet), it is painted gray. In line 13, its distance from
s is set to be the distance of u plus one edge in line 14 and u becomes its parent in line 15.
Finally, v is inserted at the end of the queue in line 16.

When all the vertices adjacent to u have been examined, i.e. the algorithm exits the for
loop that begins in line 11, u is painted black. The algorithm ends when the queue, @, is
empty, that is when there are no more gray vertices to be examined.

Figure 2.1: Gray vertices are the ”frontier” between black and white vertices

12

Make the following notes on BFS:
e When a vertex is painted black, the algorithm will never encounter it again.

e The gray vertices as mentioned before are vertices that have been visited themselves
but their adjacency lists are not yet fully examined. We can think of them as the
frontier between discovered (i.e. black and gray) vertices and undiscovered (i.e. white)
vertices. This fact is illustrated in Figure 2.1.

e If a vertex v is not reachable from s (i.e. there is not a path from s to v), it will not
be discovered by the algorithm because it only examines vertices adjacent to already
discovered vertices. For such a vertex the attributes will not be changed and therefore
after the termination of the algorithm d[v] = oo, w[v] = NIL and color[v] = white.

The effect of BF'S for a simple graph is shown in Figure 2.2.

In Figure 2.2(a), the source b has been visited (it is painted gray) and it is inserted
into the queue. In Figure 2.2(b), the vertices adjacent to b i.e. e, f and c¢ are painted gray,
and are inserted into the queue. Because they are adjacent to s their distance from s is 1.
Vertex s is painted black because all the vertices adjacent to have been painted gray, and it
is removed from the queue. Next, in Figure 2.2(c), vertex a, that is adjacent to e is visited,
and inserted into the queue. Its distance from b is d[w] + 1 = 2. The algorithm continues in
the same manner until all the vertices are black and the queue is empty as shown in Figure
2.2(h).

2.1.2 BF'S correctness

In this section we will prove that the distance d[u], of a vertex u € V' from the source s
after the application of BFS on a graph G = (V, E), is either the minimum distance §(s, u)
or oo if there is not a path from s to u. We begin with the definition of §(s,u) for unweighted
graphs.

The sortest path distance §(s,u) from s to u is defined as the minimum number of edges
in any path from the vertex s to the vertex u. If there is not a path from s to w then
d(s,u) = oo. A path of length 6(s,u) is called shortest path from s to u. Now, let’s examine
some useful properties of shortest-path distances, which will help us further down.

Lemma 2.1 Let G = (V, E) be a graph (directed or undirected) and s € V be an arbitrary
vertex. Then for any edge (u,v) € E:

0(s,v) < d(s,u) +1

Proof. If u is reachable from s, then v is also reachable with 1 more edge ((u,v)) at most.
If u is not reachable then of course §(s,v) < oo. Therefore, either way the inequality holds.

13

a b c d 2
o EEE + B
2 2 2 22
e f q e

(8) (h)

Figure 2.2: The effect of BFS algorithm on a simple graph

14

Lemma 2.2 Let G = (V, E) be a graph (directed or undirected) and BFS is applied on G
with source s € V' being an arbitrary vertex. When finished for each vertex v € V the value
d[v] satisfies d[v] > 6(s,v).

Proof. We use induction for each time a vertex is placed in the queue). The hypothesis
is that d[v] > d(s,v). The hypothesis holds at the beginning, when s is placed in Q:
d[s] =0 =4(s,s) and d[v] = 00 > d(s,v), Vv € V — s.

The inductive step is the situation when a white vertex v is discovered from its parent
vertex u. According to the hypothesis d[u] > d(s,u). From the assignment of BFS in line
14 and Lemma 2.1 we obtain:

dlv] =d[u] + 1> d(s,u) + 1> d(s,v)

After that, d[v] never changes because v is colored gray, so the if-statement that changes
d[v] is never again true. Thus, the inductive hypothesis is maintained.

Lemma 2.3 During the execution of BFS on a graph G = (V, E) the queue Q contains the
vertices (vi, vg, ..., vy) where vy is the head of Q and v, its tail. Then

d[v,] <d[vi] + 1 and
d[v;] <d[vit1], fori=1,2, ..., r—1

Proof. We use induction on the times that a vertex is enqueued in). At the beginning the
hypothesis holds. For the inductive step, the lemma must hold after a vertex is dequeued
and after it is enqueued. When dequeuing the head vertex vy, vo becomes the head. We
have dv,] < d[v1] + 1 < d[vg] + 1 (the rest inequalities don’t change) and the inequality
(and the lemma) holds for the new head vo during the dequeuing of ;.

When enqueuing a vertex v it becomes v,11. At that time, we have already removed
vertex u, whose adjacency list is currently being scanned, from the queue (), and by the
inductive hypothesis, the new head v; has d[v1] > d[u]. Thus, d[v,11] = d[v] = d[u] +
1 < d[v1] + 1. From the inductive hypothesis, we also have that d[v,] < d[u] + 1 and so
d[v,] < d[u] + 1 = d[v] = d[vy4+1], and the remaining inequalities are unaffected. Thus, the
lemma follows when v is enqueued.

We can now use Lemmata 2.1, 2.2 and 2.3 in order to prove that BFS correctly finds
shortest path distances.

Theorem 2.1 (BFS correctness) Let G = (V, E) be a graph (directed or undirected) and
suppose that BFS is run on G from a given source vertex s € V. Then, during its execution,
BF'S discovers every vertex v € V that is reachable from the source s, and upon termination,
d[v] = é(s,v),Yv € V.. Moreover, for any vertex v # s that is reachable from s, one of the
shortest paths from s to v is the shortest path from s to w[v] followed by the edge (n[v],v).

Proof. First we examine the case in which vertex v is unreachable from s. From lemma 2.2

we have d[v] > d(s,v) = co. Line 14 is never reached for vertex v: If it was reached, there
should exist an execution of this line (the current execution or a previous, of an ancestor of

15

v) in which d was set to oo, which, by induction, cannot stand. Line 14 is therefore executed
only for vertices with finite d values. Thus, if v is unreachable, it is never discovered.

Now we examine vertices reachable from s. Let Vj; represent the set of vertices at
distance k from s (Vy, = {v € V : §(s,v) = k}). We shall use induction on k. Our inductive
hypothesis will be the assumption that for each vertex v € V}, there is exactly one point
during the execution of BFS at which:

e v is grayed,

e d[v] is set to k,

e if v # s then 7[v] is set to u for some u € V;_; and,
e v is inserted into the queue Q.

As we have noted before there is certainly at most one such point.

The basis is for £ = 0. We have V) = {s}, since the source s is the only vertex at
distance 0 from s. During the initialization, s is grayed, d[s] is set to 0, and s is placed into
@, so the inductive hypothesis holds.

For the inductive step, we notice that the queue) is never empty until the algorithm
terminates and that, once a vertex u is inserted into the queue, neither d[u] nor w[u] ever
changes. By lemma 2.3, therefore, if vertices are inserted into the queue over the course of
the algorithm in the order vy, vg, ..., v,, then the sequence of distances is monotonically
increasing: d[v;| < d[v;+ 1] fori=1, 2, ..., r—1.

Now let us consider an arbitrary vertex v € Vi , where £k > 1. The monotonicity
property, combined with d[v] > k (by lemma 2.2) and the inductive hypothesis, implies
that v must be discovered after all vertices in Vj_; are enqueued, if it is discovered at all.

Since 6(s,v) = k, there is a path of k edges from s to v, and thus there exists a vertex
u € Vi1 such that (u,v) € E. Without loss of generality, let u be the first such vertex
grayed, which must happen since, by induction, all vertices in V;,_; are grayed. The code
for BFS enqueues every grayed vertex, and hence u must ultimately be set to the value of
the head of the queue in line 10. When u acquires the value of the head, its adjacency list
is scanned and v is discovered. (The vertex v could not have been discovered earlier, since
it is not adjacent to any vertex in V; for j < k — 1 -otherwise, v could not belong to V}, -
and by assumption, u is the first vertex discovered in Vj_; to which v is adjacent.) Line
13 grays v, line 14 establishes d[v] = d[u] + 1 = k, line 15 sets 7[v] to u, and line 16 inserts
v into the queue. Since v is an arbitrary vertex in Vi, the inductive hypothesis is proved.
Finally we observe that if v € Vj, then by what we have just seen, 7[v] € Vi_1. Thus, we
can obtain a shortest path from s to v by taking a shortest path from s to 7[v] and then
traversing the edge (w[v], v).

2.1.3 Analysis of the BFS algorithm

In this section we analyze the running time of the BFS algorithm. The initialization in
lines 1-4 takes O(n) time since the loop is executed once for each vertex of the graph. The
for loop in lines 11-16 will be executed one time for each edge of the graph, because each
vertex is painted white once during the initialization and therefore takes O(m) time. Both
ENQUEUE and DEQUEUE operations run in constant time O(1). Finally lines 10 and 17 will

16

be executed one time for each vertex because every vertex is enqueued and dequeued only
one time. Thus they take O(n) time. Therefore the total running time of the algorithm will
be: O(n) + O(n) + O(m) = O(m + n).

2.1.4 BFS and disconnected graphs

As mentioned in the beginning of this chapter, given a graph G and a vertex s BFS
finds all the vertices that are reachable from the source s. If the graph is disconnected, we
can identify all the connected components, by running successively the BFS algorithm on
the (proper) subgraph G’ C G that is induced by the set V' C V of the vertices that are
still white.

The following algorithm takes as input a graph G = (V, E) and a source vertex s and
assigns a number to each vertex that corresponds to the connected component that it be-
longs to.

BFS-CONNECTED COMPONENTS

Input: A graph G = (V, E) and a source vertex s € V.

Output: A number assigned to each vertex u € V that represents the connected component
that it belongs to.

BFS-CONNECTED-COMPONENTS(G,)

1 ¢+ 0

2 G'+G

3 repeat

4 s«veV

5 BFS(G', s)

6 c+c+1

7 for each u in V'

8 do if color[u] = black

9 then component|u] < ¢

10 G' + REMOVE-BLACK-VERTICES(G')
11 until V' = ()

The algorithm works as follows: Lines 1-2 are the initialization. One counter, that
counts the connected components is set to zero and we make a copy of the graph. Note
that this copy should contain pointers to the original vertices of the graph because we want
to assign a number in each of them.

The core of the algorithm, in lines 3-11, is a repeat-loop that applies the BFS to the
remaining graph and then assigns the component number to the vertices colored black by
it and removes them. The black vertices must be removed because the initialization of BFS
colors every vertex white, and this can cause an infinite loop.

The procedure REMOVE-BLACK-VERTICES takes as input a graph colored by BFS and
returns another graph that contains all the vertices of the original graph except those
colored black. Formally, if G = (V, E) is the input graph and G' = (V', E') is the output
graph then u € V—{V'NV} if and only if color[u] = black. The pseudo-code is given below.

REMOVE-BLACK-VERTICES

17

Input: A graph G = (V, E) after it has been colored by BFS.

Output: The original graph without the vertices colored black.

REMOVE-BLACK- VERTICES(G)

1 for eachvinV

2 do if color[v] = black

3 then V « V — {v}
4 return G

The BFS-CONNECTED-COMPONENTS runs in O(c(m +n)) time, where ¢ is the number
of the connected components of the graph. The repeat-loop, in lines 3-11, will be executed
exactly c times because each time BFS finds a connected component, it will be removed by
REMOVE-BLACK-VERTICES. BFS runs in O(m + n) time.

Finally, REMOVE-BLACK-VERTICES needs O(n) time to be executed. If we assume an
adjacency list representation of G’, then we only need to examine if the vertex in the position
1 in the adjacency list array is black. If it is, this means that this vertex was reachable from
the source s when BFS was executed in line 5. Therefore, all the vertices adjacent to it
were reachable and by the theorem 2.1 BFS visited them and painted them black. Thus,
BFS-CONNECTED-COMPONENTS runs in O(c((m + n) + n)) = O(c(m + n)).

2.2 Breadth First Trees

One of the ways to depict the results of the application of BF'S on a graph, is the Breadth
First Tree, that the algorithm produces. Note that the tree is not directly accessible as a
result of BF'S; after the execution of the algorithm for each vertex we have its father and
not its sons. Note that the root of the tree is the source s that is given as an input to BFS.

Breadth first trees have the nice property that every edge of the graph can be classified
into one of three groups. Some edges are in the tree themselves, some edges connect two ver-
tices at the same level of the tree and finally some edges connect two vertices on two adjacent
levels of the tree. For example, in figure 2.3(a) edges (1,2), (1,3), (1,4), (2,5), (2,6) and
(5,7) are edges of the first category, (2, 3) is of the second category and (5,3), (5,4), (6,4)
and (7,6) are of the third category. The edges that are not in the tree (i.e. those of the two
last categories) are called crossedges. In the Figure 2.3(b), the crossedges are shown with
dashed lines.

Formally, for a graph G = (V, E) with source s, we define the predecessor subgraph of G
as G = (Vi, E;), where

Ve ={u eV :7u] # NIL} U {s}
and
E; = {(r[u],u) € E:u €V, —{s}}

In simple words the predecessor subgraph is the connected component of the graph that
includes the source s and does not include the crossedges. The predecessor graph G is a
breadth first tree if V. consists of the vertices reachable from s and, for all u € V; there is a
unique simple path from s to u in G; that is also a shortest path from s to u in G. Lemma
2.4 shows that the predecessor subgraph that results from applying BFS on a graph is in
fact a breadth first tree.

18

(a) A graph (b) The Breadth First Tree that
results from the graph in 2.3(a)

Figure 2.3: A graph and the resulting Breadth First Tree

Lemma 2.4 When applied to a graph G = (V, E) (directed or undirected), procedure BFS
constructs m so that the predecessor subgraph G = (Vy, E;) is a breadth first tree.

Proof. Line 15 of BFS sets n[v] = u only if (u,v) € E and 6(s,u) < oo - i.e. if v is reachable
from s. Therefore V; consists of the vertices in V reachable from u. Since G, forms a tree,
it contains a unique path from s to each vertex in V. By applying Theorem 2.1 inductively,
we conclude that every such path is a shortest path.

There is an easy way to print the path from s to u, assuming that BF'S has already been
executed to compute the breadth first tree.

PRINT-PATH

Input: A graph G = (V, E) after BFS has been executed on it, a source vertex s and a
destination vertex wu.

Output: Prints the path from s to wu.

PRINT-PATH(G, 3, u)

1 ifu=s

2 then PRINT(s)

3 else if 7ju] = NIL

4 then PRINT("no path from ” s ” to ” u 7 exists.”)
5 else PRINT-PATH(G, s, w[u])

6 PRINT(u)

This procedure runs in linear time in the number of vertices in the path printed, since
each recursive call is for a path shorter by one vertex.

19

2.3 Single Source Shortest Paths (Dijkstra’s Algorithm)

Assume we have a weighted directed graph G = (V, E) such that every edge (u,v) € E
has a nonnegative weight (w(u,v) > 0). There are some applications where we want to find
the shortest path from a source s to every other vertex u of G. Dijkstra’s algorithm solves
this problem.

D1JKSTRA
Input: A graph G = (V, E), a weight function w : E + R and a source vertex s.

Output: For each vertex u other than s the shortest path from s to u.

DUKSTRA(G, w, s)
1 for each vertex v in V —{s}

2 do d[v] + oo

3 w[v] < NIL

4 d[s]+ 0

5 S+ s

6 Q+V-S8

7 while Q £ 0

8 do u < EXTRACT-MIN(Q)

9 S+ SuU{u}
10 for each v in Adj[u]
11 do if d[v] > d[u] + w(u,v)
12 then d[v] + d[u] + w(u,v)
13 m[v] < u

2.3.1 Description of the algorithm

The input of Dijkstra’s algorithm, is a graph G, a source vertex s and a function w that
assigns a weight to every edge (u,v) € E. The output of the algorithm is the shortest path
from s to every vertex u € V, if there is a path from s to u or oo otherwise. For all vertices
v € S we have d[v] = §(v, s) where

5(u,v) = min{w(p) : u v} if there is a path from u to v
’ 00 otherwise

We can see that lines 1-4 of the algorithm are for the initialization of d[-] and «[-]. d[u]
corresponds to the distance of u from s, while 7[u] corresponds to the vertex v that is the
"parent” of u, meaning that v is the previous vertex from u in the shortest path from s to
U.

Lines 5-6 perform the initialization of the two sets S and @ that we are going to use at
the next steps of the algorithm. Lines 7-13 are the basic segment of the algorithm. Each
time the loop is executed, a vertex u is removed from @ and it is added to the set S.
Following the relaxation takes place in order to adjust the d[-] and =[-] attributes of the
vertices that are adjacent to u. Since every vertex is being removed from () exactly once,
this while loop is executed exactly |v| times.

20

(c) (d)

Figure 2.4: The operation of Dijkstra’s algorithm (part 1)

21

(8)

Figure 2.4: The operation of Dijkstra’s algorithm (part 2)

22

In Figure 2.4, we can see an example of the operation of Dijkstra’s algorithm. In Figure
2.4(a), vertex a is under examination. We compute the value d of every vertex adjacent to
a, we paint the vertex a black and the algorithm continues examining the next minimum
vertex in @), which in our example is f (see Figure 2.4(b)). In this way we continue until all
the vertices of the graph are painted black and until all the edges of the desired minimum
spanning tree are painted black too (see Figure 2.4(d)).

Dijkstra’s algorithm is a greedy algorithm, because it always chooses the ”closest” vertex
in V —§ to be inserted into the set S. Greedy algorithms do not always yield optimal results
in general, but as it will be shown by the next theorem, Dijkstra’s algorithm does indeed
compute shortest paths.

Theorem 2.2 (Correctness of Dijkstra’s algorithm) If we run Dijkstra’s algorithm on a
weighted, directed graph G = (V, E) with nonnegative weight function w and source s, then
at termination, d[u] = 0(s,u) for all vertices u € V.

Proof. We shall show that for each vertex u € V, we have d[u] = 6(s,u) at the time when
u is inserted into set S and that this equality is maintained thereafter.

For the purpose of contradiction, let u be the first vertex for which d[u] # d(s,u) when
it is inserted into set S. We shall check the situation at the beginning of the iteration of
the while loop in which u is inserted into S and derive the contradiction that d[u] = §(s,u)
at that time by examining a shortest path from s to u. We must have u # s because s is
the first vertex inserted into set S and d[s] = (s, s) = 0. Because u # s, we also have that
S # 0 just before u is inserted into S. There must also be some path from s to u, otherwise
d[u] = é(s,u) = oo, which would violate our assumption that d[u] # (s, u). Because there
is at least one path from wu to s, there is a shortest path p from s to u. Path p connects a
vertex in S, namely s, to a vertex in V — S, namely u. Let us consider the first vertex y
along p such that y € V — 5, and let x € V be y’s predecessor. Thus, as shown in Figure
2.5, path p can be decomposed as s Bg— Y 2w

We claim that d[y] = é(s,y) when u is inserted into S. To prove this claim observe that
z € S. Then, because u is chosen as the first vertex for which d[u] # 6(s,u) when it is
inserted into S, we had d[z] = (s, z) when z is inserted into S. Edge (z,y) was relaxed at
that time, so the claim can be proved.

We can now obtain a contradiction to prove the theorem. Because y occurs before u on
a shortest path from s to u and all edge weights are nonnegative (notably those on path
p2), we have §(s,y) < d(s,u), and thus

dly] = 4(s,y)
< d(s,u) (2.1)
< d[u]

But because both vertices u and y were in V — S when u was chosen in line 5, we have
dlu] < d[y]. Thus, the two inequalities in equation (2.1) are in fact equalities, giving
dly] = 6(s,y) = o(s, u) = d[u].

Consequently, d[u] = 6(s,), which contradicts our choice of u. We conclude that at the
time each vertex u € V is inserted into set S, we have d[u] = d(s,u), and it is being proved
that this equality holds thereafter.

23

(0
Q. w
. O

Figure 2.5: The proof of theorem 2.2

2.3.2 Analysis

The running time of Dijkstra’s algorithm depends on the implementation of the priority
queue (. In this section we will examine two implementations:

e A naive implementation with a linear array

e An implementation with a priority queue using a Min-Heap (see appendix B)

In both cases the initialization in lines 1-3 takes O(n) time because it examines all the
vertices but the source exactly once. Each vertex is extracted exactly once from the queue
since it is inserted only once in line 6, therefore the while loop in lines 7-13 is executed
O(n) times. The loop in lines 10-13 is executed once for every edge in the graph, that is m
times totally.

If we implement the queue with a linear array, the operation EXTRACT-MIN takes O(n)
time because we need to examine all the elements of the array in order to find the minimum.
Thus the total time spent in the operations EXTRACT-MIN will be O(n?). The total time
of the algorithm will be

2 2
o(n + n + Jn) = O(n?)

~~ S~~~
EXTRACT-MIN initialization loop in lines 10-13

On the other hand, if we implement the queue using a Min-Heap data structure, the
operation EXTRACT-MIN takes O(logn) time as shown in Appendix B.1.2 and there are
n such operations. Moreover the assignment in line 12 must be changed to the operation
DECREASE-KEY that also takes O(logn) time. This operation will be executed m times

totally and so we have:
O(nlogn + 7 + mlogn = O((m +n)logn
(g gn) =0(() logn)
EXTRACT-MIN initialization]oop in lines 10-13

= O(mlogn)

2.4 Minimum Spanning Trees

Given a weighted graph G = (V, E), its weighted function w : E — R, the acyclic subset
T C E that connects all the vertices of G whose total weight,

w(T) = Z w(u,v)

(uw)eT

24

is minimized, then it is called a minimum spanning tree. The problem of finding this
spanning tree is called the minimum spanning tree problem.

There are two proposed algorithms for solving this problem: Kruskal’s algorithm and
Prim’s algorithm. Both algorithms are based on BFS and they both use a ”greedy” strategy
in order to solve the problem. A greedy algorithm, when it gets to a point where it has to
choose between several alternatives, it chooses the one that is best at the moment. This
strategy does not necessarily find the globally optimal solution, but it is proven that for the
minimum spanning tree problem, these algorithms produce a spanning tree with minimum
weight.

Let us now give two definitions that will be useful in the next sections:

e A cut (S,V —S) of an undirected graph G = (V, E) is a partition of V into two subsets
Sand V- S.

e We say that an edge (u,v) € E crosses the cut (S,V — S) if one of its endpoints is in
S and the other in V — §S.

o Light edge is called an edge that crosses a cut of a weighted graph and has the minimum
weight of all the edges that cross the cut.

Note that there might be more than one light edges, if more than one edges that cross
a given cut have the same (minimum) weight.

2.4.1 General approach

Here we analyze a first general approach in order to solve the minimum spanning tree
problem. We assume that we have a connected undirected graph G = (V, E) with a weight
function w : £ — R and we want to find a minimum spanning tree for G. The pseudo-code
for this first approach is given below.

MST-GENERIC
Input: A graph G = (V, E) and a weight function w : E — R

Output: A set A containing all the edges of a minimum spanning tree.

MST-GENERIC(G, w)

1 A+0

2 while A does not form a minimum spanning tree
3 do find a safe edge (u,v)

4 A+~ AU{(u,v)}

5 return A

The algorithm takes as input the graph G and the function w and produces as an output
a set A of edges that is a minimum spanning tree. This tree is not unique for a given graph
and a given weight function. During the execution of the algorithm the set A is a subset of
the tree.

In the first line, A is initialized to contain no elements. In lines 2-4, we have the main
loop of the algorithm which is executed until A forms a spanning tree. Inside the loop we
find a safe edge (u,v) and we insert it into A. By the term safe edge we mean an edge (u, v)

25

that does not violate the condition that AU{(u,v)} is still a subset of a minimum spanning
tree. Finally the algorithm returns the set A.

This algorithm faces the problem of finding a safe edge to include into the set A. We
know that this problem can be solved due to the following fact. There must be a spanning
tree T', such that A C 7T, and if there is an edge (u,v) € T such that (u,v) ¢ A, then
(u,v) is safe for A. The problem is to identify this safe edge. Both Kruskal’s and Prim’s
algorithms determine the rule of finding this safe edge for the set A.

2.4.2 Kruskal’s algorithm

In Kruskal’s algorithm the safe edge (u,v) added to A is always a least weight edge
that connects two distinct components. It can be proved that (u,v) is a safe edge. The
pseudo-code of Kruskal’s algorithm is shown below.

MST-KRUSKAL
Input: A graph G = (V, E) and a weight function w: E — R.

Output: A set A containing all the edges of a minimum spanning tree.

MST-KRUSKAL(G, w)

1 A0

2 for each vertex u in V|G|

3 do MAKE-SET(u)

4 sort the edges of E by nondecreasing weight w

5 for each edge (u,v) in E, in order by nondecreasing weight
6 do if FIND-SET(u) # FIND-SET(v)

7 then A < AU {(u,v)}

8 UNION(u,)

9 return A

The implementation of the algorithm uses a disjoint set data structure (see Appendix
B) to maintain the several disjoint sets of elements. Each of these sets contains the vertices
in a tree of the current forest.

In the first line of the algorithm, A is initialized to contain no elements. In lines 2-3
n trees are created, one for each vertex v € V. In line 4 all the edges in E are sorted into
nondecreasing order according to their weight. The main for loop in lines 5-8 is executed
for every edge of E in order of nondecreasing weight. Inside the loop we determine if two
vertices u and v belong to the same tree by testing if FIND-SET(u) and FIND-SET(v) are
equal. If that happens then (u,v) cannot be added to A because this will create a cycle,
so the edge is discarded. If this is not the case then (u,v) is a safe edge and it is inserted
into A. Also, we merge the trees that contain v and v by calling UNION(u,v). Finally, the
algorithm returns the set A.

26

Figure 2.6: The operation of Kruskal’s algorithm (part 1)

27

Figure 2.6: The operation of Kruskal’s algorithm (part 2)

28

In Figure 2.6, we can see an example of the operation of Kruskal’s algorithm. In Figure
2.6(a), we can see that the edge with the minimum weight has been selected. In the next
steps, the edge with the smallest weight among the non-selected vertices are selected. For
each edge, if its adjacent vertices belong to different trees, we paint it black, e.g. edge (z,w)
in Figure 2.6(c), else it remains white, e.g. edge (x, z) in Figure 2.6(g). Finally the black
edges construct the desirable minimum spanning tree.

The running time of Kruskal’s algorithm depends on the implementation of the disjoint-
set data structure (see Appendix B.2). Initialization takes time O(n) and the time to sort
the edges in line 4 is O(mlogm). There are O(m) operations of the disjoint set forest, that
take O(mlogm) time in total, so the overall time is O(m logm).

2.4.3 Prim’s algorithm

Like Kruskal’s algorithm, Prim’s algorithm is a special case of the generic minimum
spanning tree algorithm. Prim’s algorithm operates with a similar way to Dijkstra’s algo-
rithm. The Prim’s algorithm is given below in pseudo-code.

MST-PriM
Input: A graph G = (V, E), its weight function w : E — R and a source vertex r.

Output: A minimum spanning tree containing all the vertices of G and the key value and
the parent of each vertex.

MST-PrM(G, w,T)
1 Q<+ VG
for each u in @)
do keylu] + oo
keylr] + 0
w[r] < NIL
while Q # 0
do u + EXTRACT-MIN(Q)
for each v in Adj[u]
do if v in @ and w(u,v) < key[v]
then 7[v] < u
key[v] «+ w(u,v)

© 00 O Ui W N

et
- O

The connected graph G, its weight function w and the root r of the minimum spanning
tree are given as input to the algorithm. For each vertex v € V the algorithm holds an
attribute key[v], which contains the minimum weight of any edge connecting v to a vertex in
a tree, and an attribute 7[v], which contains the parent of the vertex v. When the algorithm
is executed, all the vertices that are not included in the tree are stored in a priority queue
Q@ based on their key fields.

In lines 1-3, the algorithm initializes the priority queue @ to contain all the vertices of G,
and sets the key of each vertex to co. In lines 4-5, the attributes concerning the root vertex
r are initialized. Lines 6—11 contain the main while loop of the algorithm which is executed
until @ is empty. In every iteration the minimum vertex (according to each key value) is
extracted from the queue and its adjacent vertices are examined. So if u is the minimum

29

vertex, the algorithm examines for each v € Adj[u] if v € Q and if w(u,v) < key[v]. If
these conditions are met, then we assign to the attributes key[v] and 7[v] the values w(u, v)
and u respectively. Throughout the execution of the algorithm V — @) contains the vertices
in the tree being grown and () contains the remaining vertices that need to be examined.
By extracting the minimum vertex from () we identify a vertex w incident on a light edge
crossing the cut (V — @, Q). Also by removing it from @ we add u to the set V — @ of
vertices in the tree. When the algorithm terminates the priority queue () is empty.

At the end of the algorithm the minimum spanning tree A can be constructed by the
information which was obtained through the execution of the algorithm. So the minimum
spanning tree A for G is

A={(v,7[v]) ;v eV —{r}}

The performance of the Prim’s algorithm depends on the implementation of the priority
queue). There are three possible implementations:

e With a simple implementation of the priority queue @ (i.e. an array), the algorithm
requires O(n?) time.

o If () is implemented as a binary heap we can replace the initialization in lines 1-4
with the procedure of the creation of the heap which takes O(n) time. The while-
loop, in lines 6-11, is executed n times, and since each EXTRACT-MIN operation takes
O(logn) time, the total time for all calls of this operation is O(nlogn). The for-loop
in lines 8-11 is executed O(m) times because the sum of the lengths of all adjacency
lists is 2m. In line 9 we can test the membership of v in @) in constant time by keeping
a bit for each vertex that tells whether or not v € @), and updating this bit when the
vertex is removed. In line 11 we can replace the assignment with a DECREASE-KEY
operation on the heap, which can be implemented in O(logn) time. Hence, the total
time for Prim’s algorithm is O(nlogn + mlogn) = O(mlogn).

e We can achieve O(m + nlogn) time by implementing the priority queue @ with a
Fibonacci heap.

30

parent = NIL parent=a parent=h
key =0 key=3 key =4

(2) (b)

parent = NIL parent=a parent =b

parent = NIL parent=a parent=b

parent =
key =6

parent =d
key=6

parent=c

Figure 2.7: The execution of Prim’s algorithm (part 1)

31

parent = NIL parent=a parent=b parent = NIL parent=a parent=b

parent=C parent=C

parent = NIL parent=a parent=b parent = NIL parent=a parent=b

parent=¢ parent=c

parent= g parent= ¢

(8) (h)

parent=NIL paent=a parent=b
key=0 key =3 key=7

parent= e
key =11

(i)

Figure 2.7: The execution of Prim’s algorithm (part 2)

32

In Figure 2.7 we can see an example of the operation of Prim’s algorithm. We start
from the source edge a and for each edge examined we can see its key value and its parent
value. As the algorithm proceeds these values can change. In Figure 2.7(i) we can see the
final step of the algorithm and we can construct the minimum spanning tree by selecting
the edges, which we have painted black so far.

33

34

Appendix A

Partitions and equivalence
relations

A.1 Mathematical definitions

We know that Q is the set of all rational numbers, that is the numbers that can be
expressed as quotients m/n of integers, where n # 0. It would be a mistake to describe
Q as the set S of all "fractional expressions” m/n where m and n are integers and n # 0.
That is because % and % are of course different fractional expressions, but we know that
they both represent the same rational number. In reality, every element of Q is represented
by infinite different elements of S. When we use the rational numbers in arithmetic, we see
as equivalent all the elements of S that represent the same rational number in Q.

The previous example is typical of situations that we consider different elements of a set
to be arithmetically or algebraically equivalent. In these situations our set is partitioned in
subsets and each of these subsets is a different entity. If b is an element of a such partitioned

set, we usually write b to mean the subset of all the elements that are equivalent with b.

Example A.1 Let_S the set of all the fractional ezpressions m/n, where m,n € Z and
n # 0. The subset % of all the elements of S that are equivalent with the number % €qQ is

— (2 -2 4 —4
2/3=32 = 2 — .
/3 {3’_376’_67 }

2n
3n

Let us now give an exact definition of the partition of a set.

nEZandn;AO}

Definition A.1 (Partition) Partition of a set is called an analysis of the set into subsets
such that, every element of the set belongs to exactly one of the subsets. Those are the
partition subsets.

Example A.2 Let S ={1,2,3,4,5,6}. A partition of S is given by the subsets
{1,6}, {3}, {2,4,5}.

The subsets {1,2,3,4} and {4,5,6} are not a partition of S because 4 is in both subsets. The
subsets {1,2,3} and {5,6} are not a partition because 4 is not in any of them.

35

O

How can we see if two fractional expressions m/n and r/s of the partitioned set S of
the example A.1 belong in the same subset (i.e. they represent the same rational number)?
One way is to reduce the fractions. This might not be easy; for example both 1909/4897
and 1403/3599 represent the same rational number because:

1909 23-83 and 1403 23-61
4897 5983 3599 59-61

This procedure is a difficult task. But we know that m/n = r/s if and only if ms = nr.
This gives us a more efficient way to determine if m/n =r/s:

(1909)(3599) = (4897)(1403) = 6870491

Let the relation a ® b state that a and b belong to the same subset of a given partition
of a set S that contains a and b. The following properties are valid:

e a ®a. Element a belongs in the same subset with itself.

e If a ® b then b® a. If element a is in the same subset with element b, then element b
is in the same subset with element a.

e If a ®band b® c then a ® c¢. If element a is in the same subset with element b and
element b is in the same subset with element c, then element ¢ is in the same subset
with element c.

The following theorem is basic. It states that a relation ® among the elements of a set,
that satisfies the above properties defines naturally a partition of the set.

Theorem A.1 Let S be a non-empty set and ® a relation among the elements of S that
satisfies the following properties for all a,b,c € S.

1. reflexive: a ®a, Ya € S,
2. symmetric: a ©b=b®a, Va,be€ S and
3. transitive: a ®b, andbOc=>a0Oc¢

Then © defines naturally a partition of S, where
a={zeSlzoa}

1s the subset that contains a, for all a € S. Conversely, every partition of S gives naturally
a relation ® that satisfies the reflexive, symmetric and transitive property, if a® b is defined
to mean a € b.

Proof. The ”converse” part of the theorem is already proven.

For the ”straight” part we must prove that the subsets that are defined by @ = {z €
S|z ® a} are indeed a partition of S, that is, every element of S belongs to ezactly one
subset. Let a € S. Then a € a from the reflexive property (1), consequently a belongs to at
least one subset.

36

If we assume now that a belongs also to the subset b, we must prove that @ = b. This
means that a belongs to at most one subset of S. The standard way to prove that two sets
are equal is to prove that each one is a subset of the other.

First we prove that @ C b. Let z € @. Then £ ® a. Because a € b, a ® b. From the
transitive property (3) we get that z©@ b=z €b. ThusVz €a,z €b=a Cb.

Now we prove that b C @. Let y € b. Then y ®b. We also know that a € b consequently
a ® b, and from the symmetric property (2), b ® a. Then using the transitive property (3),
y®a=>y€ea ThusbCa=a=h.

Definition A.2 (Equivalence relation and equivalence class) A relation ® on a set
S that satisfies the reflexive, the symmetric and the transitive properties, as described in
theorem A.1, is called equivalence relation on S. FEwvery subset @ of the natural partition
that is defined by an equivalence relation, is called an equivalence class.

Example A.3 Let us verify that m/n®r/s if and only if ms = nr is an equivalence relation
on the set S of the fractional expressions.

Reflexive. m/n ® m/n because mn = mn
Symmetric. If m/n ®r/s then ms = nr. Therefore nr = ms and r/s © m/n.

Transitive. If m/n®r/s and r/s ® u/v then ms = nr and rv = su. Therefore mvs =
vms = vnr = nrv = nsu = nus. Because s # 0 we have mv = nu thus m/n ® u/v.

Every equivalence class of S is considered to be a rational number.

A.2 Equivalence relations and graphs

In this section we prove that the relations ’connected to’ in an undirected graph and
’strongly connected to’ in a directed graph are equivalence relations on the vertex set.

We first consider the undirected case. As we saw in section 1.1 we say that vertex w;
is connected to vertex u; (we write for conciseness u; © u;)if there is a path from u; to u;.
We must prove that the three properties of the equivalence relations hold for the relation
u; © uj:

Reflexive. As mentioned in Section 1.1 by convention every vertex is connected to itself.

Thus u; ® u;.
Symmetric. If u; © u; then there is a path P = {u;, w1, wit2, ..., uj—1, u;} from u;
to u;. The inverse path P' = {uj, uj_1, ..., it2, Uiy1,u;} connects the vertex u;

to the vertex u;. Thus if u; © u; then u; ® u;.

Transitive. If u; ® u; and u; ® uy then there are paths P; = {u;, wiy1, ..., uj_1, u;}
rom u; to u; and Po = {u;, wjt1, ..., Ug_1, ug} from u; to ug. We now define the
f to u; and P s Ujt1, , , f it W define th
path P3 = {u;, w1, ..., ¥j—1, Uj, Ujq1, --., Ug—1, Ug}y. This path connects u;

with ug. Thus relation ® has all the three properties of an equivalence relation.

37

We now consider the directed case. We say that u; is strongly connected to u; if there
is a (directed) path from u; to u; and a directed path from us to u;. Let us examine if this
relation has the three properties of an equivalence relation. If u; is strongly connected to

uj we write u; ® u;
Reflexive. By convention every vertex is strongly connected to itself. Thus u; ® u;.

Symmetric. If u; ® u; then there are paths P = w;, u;y1, uiyo, ..., uj_1, uj from u; to
uj and P' = wj, wjq1, Ujq2, ..., Ui—1, U; from u; to u;. Thus by definition u; ® u;.

Transitive. If u; ® u; and u; ® uy then there are (directed) paths

Py ={u;, wiy1, ---, u}_l, u;j} from u; to u;
P{ ={uj, uj,q, ..., Ui-1, u;} from u; to u;
Py ={u;, U?H, ceey Ug—1, Uk} from u; to ug
P} ={ug, ugpi1, ..., u?fl, uj} from ug to u;

Note that uj_1 is not necessarily the same vertex in paths P; and P; and that is why
we denote it by u]l-_1 in P; and u?_l in P,. The same is true for the vertex Uji1-

Let us now define the paths

1 2
Py ={u;, wiy1, -y Uj_1, Uj, Uity -, Ug—1, Ug} and

! 2 1
P3 _{uk:a Uk+1y --oy Uj_1s Ujy Ujyqy -o0y Ui—1, ’U,Z}

The existence of these paths proves that u; @ uy, therefore ® is an equivalence relation.

The equivalence classes that are defined by the relation ’connected to’ are called con-
nected components of a graph and the equivalence classes that are defined by the relation

’strongly connected to’ are called strongly connected components. We continue with one
example.

Example A.4 In Figure we see an undirected graph. Fach of the vertices ui,us,us s
connected to the others. Also w4 is connected to us. In this graph there are two connected

components (equivalence classes) one containing the vertices ui,us and ug and the other
containing the remaining vertices.

38

Figure A.1: An undirected graph with two connected components

39

40

Appendix B

Useful data structures

In this Appendix we present some very useful data structures for graph algorithms.

B.1 Heaps and Priority Queues

The (binary) heap is a data structure that can be represented as a complete binary tree
(see Figure B.1(a)) with nodes that follow the same inequality to their parent node: for
each node (except from the root that has not a parent) the value is less or equal to the value
of its parent (Max-Heap) or greater or equal to the value of its parent (Min-Heap). This
rule describes the heap property and leaves us with the root element having the greatest (in
the former case) or the smallest (in the later) value of all.

The data structure can be implemented using an array whose elements are the nodes of
the binary tree (see figure B.1(b)). Let A be such an array. A may contain more elements
than the heap that it implements by using two attributes: the length of the array (length[A])
and the size of the heap implemented by A (size[A]). Obviously, size[A] < length[A].

The root of the tree is the first element of A (A[1]). For an arbitrary node with index
i, we can find the indices of its parent (PARENT(7)), and its two children (LEFT(i) and
RIGHT(7)) as follows:

PARENT(7)
return |i/2]

LEFT(3)
return 2¢

RIGHT(7)
return 2¢ + 1

In order to satisfy the heap property that was described earlier we must have:
A[PARENT(7)] > A[i] for the Max-Heap
or

A[PARENT(i)] < A[i] for the Min-Heap

41

(a) The tree representation of a heap

1 2 3 4 5 6 7 8 9 10

|7|10|8|11|l7|16|12|15|13|20|

(b) The array implementation of a heap

Figure B.1: A heap represented by a binary tree and implemented by an array

The height of a node in a tree is called the number of edges of the longest downward path
from the node to a leaf, and height of the tree is called the height of its root. Thus, a heap
of n elements has height ©(logn) since it is a complete binary tree. The main operations
on heaps run in time at most proportional to its height and therefore take O(logn) time

We will now discuss two basic procedures of the heaps and two accessory procedures
that allow a heap to be used as a priority queue. We will be concerned with Min-Heaps,
although the procedures for a Max-Heap are equivalent.

B.1.1 Heap procedures

The two basic procedures that are defined on a heap are:
e The HEAPIFY which runs in O(logn) time and maintains the heap property, and

e the BUILD-HEAP which runs in linear time and produces a heap from an unordered
array.

The HEAPIFY procedure takes as input an array A and an index i. The procedure
assumes that the sub-trees having roots the elements LEFT(i) and RIGHT(i) are already
heaps, but A[i] is greater than its children, thus violating the Min-Heap property. This
procedure lets the element in A[i] to "float down” in the heap so that the tree rooted at
Al7] becomes a heap.

HEAPIFY

42

Input: An array A and an index i. The heap property must hold for the subtrees rooted
at LEFT(7) and RIGHT(3).

Output: An array A for which the heap property holds for the subtree rooted at i.

HEAPIFY(A, 1)
1 [+« LEFT(7)
r < RIGHT(7)
if | < size[A] and A[l] < A4
then smallest <1
else smallest < 14
if r < size[A] and A[r] < A[smallest]
then smallest < r
if smallest # i
then exchange A[i] > A[smallest]
HEAPIFY(A, smallest)

O © 00O O Wi

[y

This procedure compares the values of the elements i LEFT(i) and R1GHT(4) and finds
the index of the element with the smallest value of the three. If this element is other than
Ali], the procedure interchanges the elements A[i] and A[smallest] and calls recursively
itself for the subtree rooted now at ¢

The HEAPIFY procedure takes O(logn) to run. That is because the operations in the
function take ©(1) time and the function is evoked logn times at most.

We can now use HEAPIFY to get BUILD-HEAP procedure, which builds a heap from a
completely unordered array A[l..n] where n = length[A]. This procedure is designed based
on the observation that when A is a heap the elements A[(n/2 + 1)..n] are the leaves of
the tree and therefore are already heaps. We can start building the heap by applying the
HEAPIFY procedure on the smallest (with the fewest elements) subtrees and then moving to
the grater ones until reaching the root, which will give us a correct heap. This is achieved
by calling HEAPIFY procedure for the subtrees rooted at n/2...1 as follows:

BuiLD-HEAP
Input: An unordered array A.

Output: An array A that represents a heap having as elements the elements of the input
array.

BuiLp-HEAP(A)

1 size[A] < length[A]

2 for i < |length[A]/2] downto 1
3 do HEAPIFY(A,1)

At first glance we note that the required time for the procedure is O(n logn). However
we can observe that the running time of HEAPIFY varies with the height of the node in the
tree and that most nodes have small heights. In fact we can prove that in an n-element heap
there are at most [n/2"*1] nodes of height h. As we saw the time required by HEAPIFY

43

on a subtree with n elements is O(logn) = O(h) where h = logn is the height of the node.
Therefore the total time for BUILD-HEAP is:

|logn| n [logn] h
D (g0 =0{n Y o

We know that

if |z| < 1, therefore

> h1/2)t = % =2

h=0

Thus, the running time of BUILD-HEAP can be bounded as

[logn| h 0o h
h=0 h=0

= 0(n)

B.1.2 Priority queue procedures

If we supply the heap with two more procedures, we can use it to build a priority queue.
These procedures are:

e the INSERT procedure, that inserts an element in the queue and
e the EXTRACT-MIN that removes and returns the smallest element in the queue.

We can also define the procedure MINIMUM that returns the minimum value without re-
moving it from the queue.

One natural way to implement a priority queue is using heaps. The operation HEAP-
MINIMUM returns the first element of the array A in ©(1) time. The HEAP-EXTRACT-MIN
extracts the root element (i.e. the minimum element) of the heap and replaces it with a leaf
(i.e. the last element of the array). Following, we have a tree with the two subtrees of the
root being correct heaps. Therefore the HEAPIFY procedure is applied to the first element
of the array in order to reform the tree to maintain the heap property.

HEAP-EXTRACT-MIN
Input: An array A representing a heap.

Output: The node at the root of the heap. The remaining elements still form a heap.

HEAP-EXTRACT-MIN(A)
1 if size[A] < 1
2 then error “heap underflow”

44

min < A[l]

A[l] « Alsize[A]]
size[A] < size[A] — 1
HEAPIFY(A,1)
return min

~N O O W

The running time of HEAP-EXTRACT-MIN is O(log n) since it performs only a constant
amount of work before the call to HEAPIFY that takes O(logn) time.

The HEAP-INSERT inserts a new element in the heap, by adding one more leaf and then
traversing the path from this leaf to the root until it finds a proper place for the new element
to be placed.

HEAP-INSERT
Input: An array A representing a heap and an element to be inserted.

Output: The heap containing the element.

HEAP-INSERT(A, element)
size[A] « size[A] + 1
i < size[A]
while 7 > 1 and A[PARENT(%)] < element
do A[i] + A[PARENT(%)]
i < PARENT(%)

U W N -

The procedure runs in O(logn) time since the path traced from the leaf to the root of
the heap has O(logn) length.

B.2 Disjoint Sets

A disjoint-set data structure is a data structure that contains disjoint dynamic sets. Let
S ={S1, S2, ..., Sp} be a set of disjoint sets, that is

SiNnS;=0,Vi#jwithl<i<nand1<j<n

Each set S; has a representative which is an arbitrary member of the set but always the
same one if the set is not modified. There are three basic operations on the data structure:

MAKE-SET(z) creates a new set, containing only the element z. The element x may not
be a member of another set because that would prevent the sets from being disjoint.

UNION(z,y) unites the two sets to which = and y belong (S, and Sy) into one new set Syuy
with elements all the elements of both the initial sets. The initial sets may not belong
to S any more (because Sy N Syuy # 0 and Sy N Syuy # 0) and thus, are destroyed.
The representative of the resulting set can be any member of the new set. Actually
one of the two initial representatives becomes the representative of the resulting set.

FIND-SET(z) returns a pointer to the representative of the set containing z.

45

B.2.1 Implementation of disjoint sets with linked lists

We can implement the disjoint-set data structure by using a collection of linked lists.
Each list represents a set and its first element is the representative. Every element points
back to the representative and has a pointer to the next element of the list. The order of
appearance of the elements in the list is not important.

It is easy to observe that the MAKE-SET and FIND-SET operations are easily imple-
mented and run in O(1) time: MAKE-SET(z) creates a new list containing only one element,
z. FIND-SET(z) returns the pointer from z to the representative of the list.

However UNION(z,y) has more things to do: this function not only has to connect S
at the end of the list S, (operation that requires O(1) time) but it also has to change the
representative pointers of all S;’s elements to point to the representative of Sy. Therefore
this procedure takes time linear in the number of elements of S.

|

|

o
|,

ﬂu% Ll el

(a) Two disjoint sets represented by linked lists

Sg)

1

A A

A

@Wl%l W\ [=] hl% ﬁ\] ﬁ\‘l%l h\\l:l h\ l?l'\

(b) The union of the disjoint sets

Figure B.2: Two disjoint sets represented by linked lists and their union

An obvious change that we can make in the above implementation is to keep information
about the length of each list in the representative. This way we can append the shorter
list at the end of the longer, with ties broken arbitrarily. Using this technique, which is
called weighted union heuristic, a single UNION still takes () time if both sets have Q(m)
members. We can prove, however, that a sequence of m MAKE-SET, UNION and FIND-SET
operations, n of which are MAKE-SET operations takes O(m + nlogn) instead of ©(m?)
time!.

One of the many applications of the disjoint set data structure is to compute the con-

nected components of a graph. The algorithm is given below.

CONNECTED-COMPONENTS

!See [1] chapter 22 for more information about the running time of the operations on a disjoint set data
structure

46

Input: A graph G = (V, E).

Output: A collection of disjoint sets, each one representing a connected component of G.

CONNECTED-COMPONENTS(G)

1 for each vertex v in V

2 do MAKE-SETu

3 for each edge (u,v) in E

4 do if FIND-SET(u) # FIND-SET(v)
5 then UNION(u,v)

Initially the above procedure places each vertex v in a different set. Then, for each edge
(u,v), it unites the sets containing u and v if they are different. We observe that there
are n MAKE-SET operations, 2m FIND-SET operations, and at most m UNION operations.
So in total there are 3m+n operation, n of which are MAKE-SET. As stated earlier, this
sequence of operations takes O(n + 3m + nlogn) time, thus the complexity of the algorithm
is O(m + nlogn).

47

48

Bibliography

[1] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algo-
rithms. MIT Press, Cambridge Massachusetts, 1990.

[2] Alan Gibbons. Algorithmic Graph Theory. Cambidge University Press, Cambridge,
1985.

49

