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1 Introduction

With the advent of microarray chip technology, large data sets are available
and need to be analyzed and useful biological information to be borned. Clus-
tering technology is a common method for analyzing gene expression data.
There are a large number of algorithms for clustering gene expression pat-
terns, such as hierarchical clustering, K-Means clustering and self-organizing
maps. All these algorithms have some basic problems, despite they are staple.
Non of them guarantee to bring forth a globally optimal clustering and some
of them, like K-means clustering, depends on the geometric shape of cluster
boundaries. In this report three different algorithms are being presenting
that are based on the concept of the minimum spanning tree(MST), either
as a clustering by creating an MST by the the original data or as a criterion
to test the inter-cluster property. Firstly some useful definitions are given,
then tree algorithms the expression data clustering analysis, the iterative
algorithm and the dynaimcall growing seif-organizing tree are discribing.

2 Definitions

Here are some useful definitions:
Microarray: is a glass slide onto which single-stranded DNA molecules

are attached at fixed locations(spots). There may be ten of thousands of
spots on an array, each related to a single gene. [1] The DNA microarray
technology enables the massive parallel measurement of gene expression of
thousands genes simultaneously. The usefulness of this technology is the
ability to compare the activity of many genes in diseased and healthy cells,
categorize a disease into subgroups and discover new drug and toxicology
studies.

Clustering: a common technique for data analysis, which is used in many
fields, including machine learning, data mining, pattern recognition, image
analysis, bioinformatics and search engines. Clustering consists of partition-
ing a data set into subsets (clusters), so that the data in each subset (ideally)
share some common trait - often similarity or proximity for some defined dis-
tance measure.

There are essentially two types of clustering methods: hierarchical al-
gorithms and non- hierarchical algorithms. The hierarchical algorithms can
be divided into agglomerative and splitting procedures. The first type of
hierarchical clustering starts from the finest partition possible (each obser-
vation forms a cluster) and groups them. The second type starts with the
coarsest partition possible: one cluster contains all of the observations. It
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proceeds by splitting the single cluster up into smaller sized clusters. The
non-hierarchical algorithms start from a given group definition and proceed
by exchanging elements between groups until a certain score is optimized.
The main difference between the two clustering techniques is that in hier-
archical clustering once groups are found and elements are assigned to the
groups, this assignment cannot be changed. In non-hierarchical techniques,
on the other hand, the assignment of objects into groups may change during
the algorithm application.

Minimum spanning tree(MST): a minimum weighted tree in a weighted
graph which contains all of the graph’s vertices. An MST can be efficiently
computed in O(N2) time using either Prim’s or Kruskal’s algorithm.

Voronoi Diagram: are diagrams that have the property that for each site
every point in the region around that site is closer to that site than to any
of the other sites.

3 Expression Data Clustering Analysis and

Visualization Resource

Xu at al. suggest a new algorithm based on minimum spanning tree(MST)
representation of the data. With the MST representation the multi-dimensional
clustering problem is transformed into a tree partitioning problem. It must
be pointed out that no essential information is lost for the aim of clustering.
A strictly proof that each cluster corresponds to one subtree, which does not
overlap with any other representing subtree is given below.

3.1 Representing the Data Set as a Spanning Tree

But first let’s define the MST representation. Let D = di be a set of ex-
pression data with each di = (e1

i , . . . , e
t
i) representing the expression levels

at time 1 through time t of gene i. We define a weighted, undirected graph
G(D) = (V, E) as follows. The vertex set V = {di|di ∈ D} and the edge set
E = {(di, dj)|fordi, dj ∈ D and i �= j} [3]. Therefore the G(D) is a complete
graph. The weight of each edge is (u, v) ∈ E is the distance ρ(u, v) between
u and v. The distance between two vertices can be defined as the Euclidean
distance, the correlation coefficient or some other distance measure. Xu et
al. have noticed that the data points of the same cluster are connected with
short, in distance, tree edges, while long tree edges connect the clusters to-
gether(Like figure 1). This is an intuition for what a cluster consists of. But
what is the separability condition of a cluster? Let D be a data set and ρ
represent the distance between two data points of D. Then C ⊆ D forms a
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Figure 1: An MST representation of a set of data points.(a) A set of 2D
points (b) An MST connecting all the data points, using the Euclidean dis-
tance.These data points form four natural clusters, based on their relative
distances.

cluster in D only if for any arbitrary partition C = C1 ∪C2, the closest data
point d to C1, d ∈ D − C1, is from C2. Formally, this can be written as

arg min
d∈D−C1

{min{ρ(d, c)|c ∈ C2}}

where D − C stands for the subset of D by removing all points of C. Now
the proof that each cluster is exactly one subtree of the MST representation
is apposed. In other words:

If c1 and c2 are two points of a cluster C, then all data points in
the tree path, P, connecting c1 and c2 in the MST, must be from
C.

Proof: Let’s assume that the statement is incorrect. Hence there exists a
point α in path P, which does not belong to C. Without lost of generality,
we assume that α is right next to c1 on P so that (c1, α) is an edge in P. We
define a data set A as follows A = {c1}. Then repeatedly A is expanded using
the following operation until A converges: select the data point x from D-A,
which is closest to A;if x ∈ C add x to A. Apparently when A converges,
A = C, based on the separability condition of C being a cluster. This means
that there exists a path, P’, from c1 to c2 that consists of only data points
of C and all its edges have smaller distances (ρ) than ρ(c1, α) (see Figure
2).It is known that at least one edge of P ′ is not in the current MST. For
the simplicity of discussion it is assumed that exactly one edge, e, of P ′ is
not in the current MST. So P ∪ P ′ contains a cycle with another spanning
tree with smaller total distance. This contradicts the fact that a minimum
spanning tree has the the minimum total distance among all spanning trees.
By having this contradiction the statement is proved. [3]
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Figure 2: (a)A path connecting two vertices c1 and c2 of the same cluster C
with one vertex α from a different cluster.(b)A schematic of the result of the
expansion operation.

3.2 Clustering Algorithms based on MST representa-

tion

Xu et al. propose three different algorithms for clustering. All these algo-
rithms are partitioning the minimum spanning tree into K subtrees, for a
given integer K > 0 .

The first algorithm uses the intuition that said above about the clusters,
meaning that two data points with short edge-distance should belong to the
same cluster, therefore to the same subtree, while long edge-distance are
inter-cluster edges. It tries to cut off the K − 1 longest edges and create K
subtree (clusters). Sometimes the given K can be to big and therefore the
cluster will not be optimal. In order to upturn this problem, the algorithm
examines the K-clustering for all K = 1, 2, . . . until K reaches the optimal
number of clusters. Unfortunately this algorithm has one drawback. It works
very well only if the intra-cluster edges are smaller than the inter-cluster
edges.

The second algorithms tries to minimize the distance between the center
of the cluster(subtree) and the data points. This is accomplished with the
use of a more general function, which is:

K∑
i=1

∑
d∈Ti

ρ(d, center(Ti)) (1)
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The algorithm starts with an arbitrary K-partitioning of the MST and for
each pair of adjacent clusters, go through all tree edges within the merged
cluster of the two to find the edge to cut, which globally optimizes the 2-
partitioning of the merged cluster, measured by the objective function (1),
until the process converges.

The last algorithm tries to optimize the K subtrees of the MST repre-
sentation by selecting ”best” representatives from the data set, in order to
group around them the rest data points. The objective function of this is:

K∑
i=1

∑
d∈Ti

ρ(d, di) (2)

where ρ() is the distance function, T1, . . . , TK are the K subtrees and d1, . . . , dK ∈
D a set of data points to be found so as the function (2) is minimized. The
algorithm begins by converting the MST into a rooted by picking up an ar-
bitrary vertex as root. Then for each vertex is defined the minimum value
of the objective function (2) on the subtree rooted at vertex u, as S(u, k, d),
under the constraint that the subtree is partitioned into k subtrees and the
representative of the subtree rooted at u is d. By definition the following
gives the global minimum of the objective function:

min
d∈D

S(root, K, d) (3)

The algorithm uses a dynamic approach to calculate the S() values at
each tree vertex u, based on the S() values of its children. This means that
for every vertex u with children S() is given from:

S(u, k, d) = min
x⊆Cu

min∑‖Cu‖
i=1

ki=k+‖X‖−1,ki>0

(
∑

uj∈Cu−X

S(uj, kj, d)+
∑

uj∈X

S(uj, kj, d)+ρ(u, d))

(4)
where

S(uj, kj, d) = min
x∈D,x �=d

S(uj, kj, x)

and Cu represents the set of all children of vertex u. For the vertex with no
children the S() value is calculated by:

S(u, k, d) =

{
+∞ for k¿1
ρ(u, d) for k=1

(5)

4 An iterative clustering algorithm

Varma et al. propose an interative algorithm for clustering genes. The
algorithm bases on the concept of minimum spanning tree and as a clustering
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measure the Fukuyama-Sugeno measure. Due to the concept of the MST if an
edge is deleted from the tree it returns two disconnected trees. Let’s assume
that the length of the deleted edge is δ and the two subtrees we get is denoted
as V1 and V2, we have that there are no pairs of (x1, x2), x1 ∈ V1, x2 ∈ V2

such that d(x1, x2) < δ. As a result the separetion between the two subtrees
V1 and V2 is at least δ. So if it is interested in finding out all possible binary
partitions, they can be obtained by deleteing single edges from the MST.

4.1 Clustering Measure

The clustering measure that used in this algorithm for the comparison be-
tween the partitions, which are obtained by the different deletions of the
MST, is the Fukuyama-Sugeno. It is defined as:

FS(S) =
2∑

k=1

Nk∑
j=1

[‖xk
j − µk‖2 − ‖µk − µ‖2] (6)

where S1, S2 are the two partion of the set S, with each Sk contains Nk

samples, denote by µk the mean of the samples in Sk and µ the global mean
of all samples. Also denote by xk

j the j-th sample in the cluster Sk.

4.2 Feature selection

With the feature selection it is measured the gene’s support for a partition
or the gene’s relevant to a partition. By gene’s support of gene’s relevant to
a partiton it means how differently the gene is expressed in samples beloning
to different clusters. In Varma et al. algorithm the feature selection is
measured by the two sample t-statistic with pooled variance. The t-statistic
is calculated for each gene and the genes with absolute t-statistic greater that
a threshold Tthresh are selected. In order to calculate the threshold Tthreash

is needed the percentile threshold parameter Pthresh ∈ (0, 100).

4.3 The algorithm

The algorithm needs as input parameters the gene expression martrix {xs,g},
the maximum number of partitions to be found MaxNp and the percentile
threashold Pthresh. The outer loop runs until the the number of the discoved
clusters are smaller that the given MaxNp. Initially the set of selected genes
is all the given set of genes and the cutoff t is initialized as Tthresh/2. In
the inner loop the MST is created by the set of selected genes, the genes
from F, and for all the binary partitions obtained by deleting an edge from
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the tree the F-S measure is calculated. For the partition P ∗ with the lowest
F-S measure, the genes are selected based on the t-statistic. These genes
form the new gene set Fnew. The next iteration the clustering is done with
these selected genes and the cutoff t is increased, until the the selected gene
subset remains the same betwwen two iterations. Then the current partition
along with the gene set F is output and the number of discoved partitions is
increased and an other interation of the outer loop is performed.

5 A dynamically growing self-organizing tree

In the previous algorithms the minimum spanning tree is constructed on the
original set of data and used to test the intra-cluster quantity, while here
the MST is used as a criterion to test the inter-cluster property. But before
that let’s examine the algorithm of the dynamically growing self-organizing
tree(DGSOT).

5.1 The algorithm

The DGSOT is a tree structure self-organizing neural network, which dis-
covers suitable hierarchical structure of the fundamental data. The DGSOT
grows vertically and horizontally. Each vertically growth step is followed by
a horizontal growth step and this process continues until the heterogeneity
of all leaves is less than the threshold TR.

The algorithm begins with the construction of one leaf-node, the root
of the tree, and the initialization of root’s reference vector with the entire
data. Then the vertical growing of the tree follows. In the vertical growing
for every node that is a leaf and has heterogeneity greater than a threshold
TR, will change the leaf to a node and create two descendent leaves. The
reference vectors of the two new leaves are initialized by their parent’s vec-
tors. After that the learning process, that is described below, takes place.
The heterogeneity can be defined with two ways, as the variability, which is
defined as the maximum distance among the input data associated with the
leaf node, or as the average distortion d of a leaf, which is defined as:

di =
D∑

j=1

d(xjni)

|D|

where D is the total number of input data assigned to the leaf i, d(xj, ni) is
the distance between data j and the leaf i and ni is the reference vector of
the leaf i.
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Figure 3: The DGSOT algorithm.
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Figure 4: Illustration of DGSOT algorithm.

After that the horizontal growing follows. In the horizontal growing the
DSGOT tries to find the optimal number of leaf nodes for every node. This
optimal number is calculated by adding one leaf at the time to the lowest non-
leaf nodes until a certain cluster validation criterion is satisfied(see section
5.2). Then the learning process takes place, like the vertical growing. In
the learning process the data are distributed to the leaves. The best way
to do this is to find the best matching node for the input data, with the
use of K-level up distribution. This mean that the best matching node has
the minimum distance to the input data. After the ”correct” node is picked
up the reference vector of this node and its neighbor will be updated. By
neighborhood of the node we mean the node itself, the parent node and the
siblings that are leaf (For an example of the DGSOT algorithm see figure 4).

5.2 The cluster validation criterion

The cluster validation criterion is used to find the optimal number of clusters
for the input data.In DGSOT the validation criterion is calculated without
human intervention and is based on geometric characteristics of the clusters.
This is accomplished by creating the Voronoi diagram of the input data.
The Voronoi diagram divides a set S of D data into n regions (clusters) V(p),
which are called the Voronoi cell. Each Voronoi cell stands for a centroid
reference vector. Let’s assume that p represents a centroid of a region, then
all data inside that region are nearer to the centroid p rather than any other
centroid q

V (p) = {x ∈ D|dist(x, p) ≤ dist(x, q)∀q}
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So the problem of finding the best number of clusters is transformed into
finding the suitable Voronoi diagram.

The proper Voronoi diagram can be found by studying its geometric prop-
erties through a graph. Let’e define a weighted undirected graph G(V, E).
The vertices of the graph G is the set of the centroids of the Voronoi cell
V(p), while the edge set E is defined as E = {(pi, pj)|pi, pj ∈ V (p)&i �= j}.
The weight for each edge (pi, pj) is the distance between two centroids. The
distance between two centroids can be defined as the Euclidea distance, as
the correlation coefficient or some other distance measure.

The DGSOT uses the minimum spanning tree of the graph G as a mea-
sure to decide the proper partition of the data. This new cluster validation
criterion is named as cluster separation (CS) and is defined as

CS =
Emin

Emax

where Emax is the maximum length edge in the MST of the graph G(V, E),
while Emin is the minimum length edge in the MST of the graph G(V, E).
These means that Emax represents the two centroids that are at the maximum
separation and Emin represents the two centroids that are at the minimum
separation respectively. So the CS represents the relative separation of the
centroids and its value ranges from 0 to 1. A low value of the CS means that
the two centroids are to close to each other and the Voronoi partition is not
valid, while a high CS value means that the Voronoi partition is valid. The
threshold that the CS is described as low of high value is given by the user
of the DGSOT algorithm. The way the DGSOT works is for every lowest
non-leaf node the CS is evaluated, check if it is less than then threshold. If
that is true, then it increases the number of clusters (child leaves nodes) by
1 and test the CS again, until the CS is less than the threshold.

6 Conclusions

The tree algorithms presented in this report have provided comparable result
to those obtained by classic clustering algorithms, without their drawbacks,
and superior to those obtained by standard hierachical clustering. For ex-
ample the DGSOT algorithm provides considerably higher in biological sig-
nificances results that the K-means clustering algorithm.
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