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Abstract

Technology mapping is the process of describing a circuit with a netlist that consists of only gates
that belong to a specified technology library. Typically, the problem is formulated as a DAG covering
problem and most of the mapping algorithms are applied on a forest of trees which originates from the
original DAG. This work describes and compares three technology mapping approaches; DAGON, NOA
and DOT. Each of them is described in detail and compared against the others. Based on this review,
the advances in technology mapping can be derived.

1 Introduction

Technology mapping is the process of transforming a technology independent netlist into a technology
dependent one. A technology independent netlist is a set of generic gates like AND, OR, XOR gates
with the appropriate connections among them so that they describe an arbitrary circuit. The process of
technology mapping transforms this set of technology independent gates into an equivalent netlist, which
has the same functionality and uses only gates that belong to a given technology library. The library gates
sets may have an arbitrary size and contain any set of gates. Typically, gate libraries contain gates such
as 2-input NAND gates, inverters and any other suitable gate.

Keutzer in [5] proposed an algorithm which performs technology mapping using a tree-covering tech-
nique. Keutzer assumes a subject graph, which is the circuit to be mapped with the constraint that it
is described only with NAND and NOT gates. This transformation, called decomposition, is easy to be
performed on the technology independent netlist. Keutzer assumes also pattern graphs which are the
decomposed technology dependent gates. Keutzer’s approach is to decompose the subject graph, which
is a DAG, into a forest of trees, perform technology mapping on every tree and finally, compose the
partial results to form the general solution. The reason for decomposing the subject graph into a forest
of trees is given in [6], which states that the problem of covering a DAG for minimum area is NP-hard.

Chaudhary and Pedram in [2] proposed a way to minimize the area of the technology mapped circuit
taking into account the delay constraints of the design. This approach is claimed to be a near optimal
algorithm (NOA) and provides an area-speed tradeoff for every node of the circuit trees. The options
available for each node are the alternative technology mappings for this specific node, which infer an
area and a delay overhead. Based on the delay constraints, the minimum area selection can be chosen
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for each node of the tree, thus the minimum area implementation of the whole circuit can be derived
without violating the delay constraints.

Motivated by the loss of optimality when mapping the forest of trees instead of the complete DAG
that describes the circuit, Kukimoto et al. in [7] proposed a technology mapping algorithm that can be
applied to the whole DAG of the circuit. This algorithm is a delay-optimal technology mapper (DOT)
that guarantees better results compared to the algorithms that require the original DAG to be decomposed
into a forest of trees.

This paper is a review of the approaches described in [5], [2], [7].
The rest of the paper is organized as follows. Section 2 provides a formalization of the problem of

technology mapping. Section 3 describes the methodology followed by the algorithms reviewed. The
experimental results of the algorithms are presented in section 4, which is followed by Section 5, which
compares the algorithms presented. Section 6 describes the possible enhancements that can be applied
to the algorithms and Section 6 provides the conclusions.

2 Problem Formulation

Given a circuit and a set of library gates, map the circuit so that it uses only library gates. The circuit
is expressed as a Directed Acyclic Graph (DAG) and each library gate is described by a tree of NAND
and NOT gates. The root of the tree is the output of the gate and the leafs of the tree are the inputs of
the gate. Each internal vertex of the tree is one 2-input NAND or NOT gate and each edge of the tree
is a connection between two of the generic gates (NAND and NOT gates). Thus, one library gate may
include more than one generic gates. An example of a 4-input NAND gate expressed with the generic
gates is given in Figure 1.

Figure 1. Mapped 4-input NAND

An example of a possible input circuit is given in Figure 2. During technology mapping, instances

Figure 2. A Possible Input Circuit

of the library gates are matched against the DAG which describes the input circuit. The objective is to
find the best matches, which minimize some design parameter, like area or delay. Keutzer and Richards
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showed in [6] that graph covering for a circuit described as a DAG with the objective of minimizing area
is NP-hard. Thus, the usual methodology involves decomposing the DAG into a forest of trees and apply
technology mapping to the forest of trees instead of the complete DAG. This approach sacrifices some
optimality, as the multiple fanout points are omitted from optimization, but can be solved in polynomial
time.

3 Methodology

Due to the complexity of the task of mapping a circuit expressed as a DAG against a set of library
gates, the common approach is to decompose the DAG into a forest of trees. To illustrate this notion, the
circuit in Figure 2 would be decomposed into the circuits shown in Figure 3. Notice that the rightmost

Figure 3. A Decomposed Input Circuit

NAND-gate is present in both trees of the decomposed DAG. The DAGON approach and the NOA use
this decomposition of the initial DAG. DOT assumes a load independent scheme, which means that the
load values of the gates are not taken into account. DOT also ignores any possible area optimizations.
This approach reduces the complexity of DAG mapping to polynomial time, thus removing the need to
decompose the DAG into a forest of trees.

3.1 DAGON

The DAGON approach consists of three distinct phases. Initially, the DAG is decomposed into a
forest of trees. The decomposition is simply the creation of a new tree for every node that has fanout
greater than one, as it is shown in Figure 3. The trees are then individually traversed and technology
mapped using twig [11]. Twig performs tree matching by firstly identifying all the candidate matches
using the Aho-Corasick [1] algorithm. Twig uses a technology library which contains all the available
gates in canonical NAND/NOT form. An example of a complex AND-OR-INVERT gate in NAND/NOT
form is given in Figure 4. The technology library may have alternative implementations for the same
gate, or implementations of the same gate with different number of inputs. Figure 5 shows an AOI-
gate with three inputs. Each gate of the technology library has a cost assigned to it, which defines the
implementation cost of the particular gate. The cost variable is used for the cost calculation of the chosen
implementation. The cost at each node n is the cost of the tree T (gate) that has its root at node n plus
the cost of all the gates that belong to the subtrees of the T . An example of the cost calculation is given
below. Consider the circuit of Figure 6. Assume that an inverter has a cost of 2, a NAND-gate has a
cost of 3 and a AOI-gate (AND-OR-INVERT) has a cost of 7. There are two possible implementations
of the circuit in Figure 6. Either use an inverter at the root of the tree plus some 2-input NAND-gates
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Figure 4. AND-OR-INVERT Gate in NAND/NOT Form

Figure 5. 3-input AND-OR-INVERT Gate in NAND/NOT Form
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Figure 6. An Example of DAGON Minimal Cost Decision

and a second inverter or use a complex AOI gate which consists of all the gates in the tree, except for one
NAND-gate. In the first case the cost of the implementation is the cost of the inverter plus the cost of the
implementation of the tree originating below the root. In this case, the total cost of the tree is 13, as there
are three NAND-gates of cost 3 each and two inverters of cost 2 each. In the second implementation,
the cost is only the cost of the complex AOI-gate, which includes 2 NAND-gates and two inverters as
is shown in Figure 5 and has a cost of 7, plus the cost of a NAND-gate. Thus, the cost of the latter
implementation is 9, compared to the cost of the first implementation which is 13.

In order to determine all the candidate matches for a given tree, a brute-force tactic, which compares
all the library gates against each node of the tree, would require O(TREESIZExLIBRARY SIZE) time.
Twig uses the Aho-Corasick [1] which requires O(T REESIZE) time. When all the candidate matches
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have been determined, each possible implementation is stored at each node along with the corresponding
cost.

The next step is to find the minimal cost matches. This is accomplished by traversing the tree in
depth-first fashion. Given a tree T with root r and subtrees T1 . . .Tn, the minimal cost implementation for
T is found by first finding the minimal cost implementation for each one of T1 . . .Tn. Using a depth-first
search, each subtree Ti with root ri, which is matched against each applicable pattern pi of the technology
library, is assigned to the minimal cost pattern pmin and the cost for this subtree is fixed. Iteratively, the
cost of a parent tree of Ti will be defined the same way and the total cost of the tree T will be the sum of
the cost of all the subtrees Ti.

After the minimal cost match for every tree is determined, the results are concatenated in order to
produce the complete solution for the initial DAG.

3.2 NOA

NOA focuses on technology mapping of NAND-decomposed trees under delay constraints with the
objective of providing area-speed tradeoffs. NOA consists of two phases. During the first phase, a pos-
torder traversal of the tree determines the area-speed tradeoff for all the nodes. At the end of this phase,
an area-speed tradeoff is available for the tree. During the second phase, an implementation based on
the area-speed tradeoff of the root is chosen and a preorder traversal determines the implementation of
all the tree nodes. During the postorder traversal NOA calculates area-speed curves like the ones in
Figure 7. Figure 7 shows the possible a,b implementations for NODE A and the possible c,d,e imple-
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Figure 7. NOA Area-Speed Curve

mentations for NODE B along with the delay and area cost for each implementation. For example, the
c implementation of NODE B has a delay cost of 1 unit and an area cost of 2 units. When a node is
visited, its area-speed curve is calculated based on the area-speed curve of its fanin gates. The area-speed
curves of the fanin nodes of a given node is determined previously, as the postorder traversal visits first
the leafs of the tree and then moves upwards until it reaches the root. Next we give an example of how
the area-speed curve is computed for a non-leaf node. Suppose the tree of Figure 8. Suppose that there
is a library gate which can be matched at node D and that is consists of the nodes A, B, C and D. The
area-speed curves are given in Figure 7. The area-speed curve for node D is created using the area-speed
curves of nodes A and B in the following way. First, we select a point in the area-speed curve of node A,
say point b. This point has a delay cost of 4 units and an area cost of 1 unit. Then, we select a point in
the area-speed curve of node B which has a delay cost of at least 4 units. This is point e. Thus, a point
on the area-speed curve of node D will have a delay cost of 4 plus the delay of the new gate and an area
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Figure 8. NOA Tree Example

cost of 2 plus the area of the new gate. In general, for a point gnew in the area-speed curve of gate g,
which depends on points a and b holds that:

delay(gnew) = max(delay(a),delay(b))+delay(g)
area(gnew) = area(a)+area(b)+area(g)

Using the same procedure for all the pairs of points in the area-speed curves A and B, we generate the
area-speed curve for node D, which looks like the one in Figure 9. Point g1 is generated from merging
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Figure 9. NOA Generated Area-Speed Curve

points a and d, g2 comes from a and c and g3 is produced from b and e. Note that point g2 is redundant,
as point g1 has the same area cost as point g2, but with less delay cost. Thus, point g2 can be omitted
from the area-speed curve of node D. Following the same procedure iteratively, the area-speed curve
for the root of the tree is constructed. After that, given the predefined delay constraints provided by
the designer, the minimum area implementation which satisfies the delay constraint is chosen for the
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root. Using a preorder traversal for the tree until it reaches the tree, the minimum area implementations
are chosen for the complete tree. The minimum area implementation for the whole circuit is found by
applying the same procedure to all of the trees of the decomposed DAG of the circuit.

3.3 DOT

DOT focuses on minimal-delay technology mapping without decomposing the DAG of the circuit
into a forest of trees. The algorithm of DOT is based on the FPGA technology mapping procedure
described by Cong et al. in [3]. This algorithm tries all the possible k-cuts of a specific node that can be
implemented by a single lookup-table (LUT). In order to elaborate on this, assume a DAG in which the
number of nodes that fanin into any node is no more than k. This is a k-bounded network. The FlowMap
algorithm presented in [3] visits each node of the tree starting from the leafs and moving towards the
root. For each node it visits, it investigates all cuts of its fanin that have size of at most k. Recall that
the network is already k-bounded, thus no transformation is needed and no inputs are omitted here. For
every cut that the algorithm assumes, it maps the gates that are included in the cut into an LUT. The
mappings are compared against each other and the optimal cut is chosen. Thus, the optimal depth of
each cut is determined. The algorithm proceeds until the root is reached. At each node, the optimal
cuts for its fanin nodes is already determined, so the algorithm guarantees that there are no nodes left
out from this optimization. The algorithm stops when the optimal cut for every node is determined. A
brute-force approach of this method has a complexity of O(nk), where n is the number of the network
nodes. In [3] it is shown that this problem can be solved as a network flow problem with complexity
proportional to k. When the optimal depth for each node is determined, the network is traversed from the
root towards the leafs and assigns an LUT to the nodes that are in the optimal cut of the node currently
being visited. The complexity of this algorithm is O(kmn), where m denotes the number of edges in the
network.

The approach in [7] is the same as in [3], with the only difference that instead of LUTs there are only
library gates available. The optimal fanin cone is determined for each node and the mapping proceeds
by matching the library gates against the subgraph that consists of the nodes that are in the fanin cone
of the node currently being investigated. The matching can be either exact or extended. In exact match,
the pattern graph (library gate) must be identical with the subgraph that is being matched. In the case of
extended match, if a gate fanouts to more than one gate, then duplication of this node in the subgraph is
allowed, in order to find an exact match. An example of an extended match is given in Figure 10.

4 Results

In this section, the experimental results for all the approaches are presented. Table 1 shows the results
for DAGON on the de Geus [4] benchmarks. Table 1 compares the DAGON implementations with the
NAND/NOT implementations of the same circuit. The grids columns correspond to standard cell grids
with the assumption that a two-input NAND gate uses three grids. The runtime is measured on a VAX
8650 machine. The gate count and the grid count show improvement if the DAGON approach is used.

NAO is implemented in a program called ADIEU and is compared against the MIS2.2 technology
mapper [12]. Tables 2 and 3 show the normalized results for MIS2.2 and ADIEU. The normalization
in Tables 2 and 3 is for the area mode of ADIEU. ADIEU produces 6% faster circuits than MIS2.2
on average, but with an overhead of 3% when using the area mode. With timing mode, the timing
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Figure 10. Extended Match Example

Circuit NAND/NOT DAGON runtime
gates grids gates grids seconds

rd53 36 109 19 79 0.1
9sym 66 202 44 163 0.2
vg2 90 253 65 208 0.2
rd73 90 275 47 196 0.3
sao1 111 331 64 245 0.4
sao2 111 370 61 273 0.4
bw 171 479 118 380 0.6
duke2 338 1013 251 851 1.2
gpio 400 1073 281 835 1.3
lmtc 908 2559 660 2078 3.1
pla4 1478 4338 1022 3465 5.6

Table 1. Results for DAGON
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optimization is similar for both mappers, but ADIEU’s circuit are 17% smaller.

Circuit MIS2.2
Area mode Timing mode

area delay area delay
9symml 1.00 0.99 1.35 0.91
apex6 0.94 0.92 1.35 0.90
apex7 0.97 0.97 1.26 0.88
b9 0.96 0.93 1.06 0.78
des 0.98 2.19 1.43 1.24
rot 0.99 0.98 1.18 1.02
z4ml 0.93 1.01 1.24 0.87
C1908 0.93 1.16 1.27 1.13
C1355 0.97 0.92 1.18 0.86
C432 1.00 1.00 1.26 0.81
C880 0.98 0.99 1.17 0.83
C3540 0.99 1.00 1.27 0.96
C5315 0.98 0.89 1.28 0.84
C7552 0.97 1.03 1.31 0.74
average 0.97 1.06 1.26 0.91

Table 2. MIS2.2 Results for NAO

Circuit MIS2.2
Area mode Timing mode

area delay area delay
9symml 1.00 1.00 1.09 0.90
apex6 1.00 1.00 1.03 0.75
apex7 1.00 1.00 1.01 0.93
b9 1.00 1.00 1.00 0.89
des 1.00 1.00 1.06 0.92
rot 1.00 1.00 1.01 0.95
z4ml 1.00 1.00 1.10 0.87
C1908 1.00 1.00 1.04 1.01
C1355 1.00 1.00 1.10 0.93
C432 1.00 1.00 1.07 0.83
C880 1.00 1.00 1.07 0.90
C3540 1.00 1.00 1.04 0.91
C5315 1.00 1.00 1.05 0.85
C7552 1.00 1.00 1.03 0.90
average 1.00 1.00 1.05 0.91

Table 3. ADIEU Results for NAO

Tables 4 and 5 show the experimental results for DOT compared against the standard tree matching
procedure for the lib2.genlib and 44-1.genlib libraries respectively. The CPU time is mea-
sured on a DEC AlphaServer 8400 5/300 and is presented in seconds. The results show that there is a
significant improvement in delay, but with a large area overhead.

Circuit Delay Area CPU time
tree DAG tree DAG tree DAG

C2670 11.54 9.43 1552 2008 2.3 2.6
C3540 17.20 14.00 2075 2926 3.1 3.7
C5315 16.55 13.04 3687 4275 5.4 6.0
C6288 56.99 41.95 4107 9291 4.9 5.9
C7552 14.23 11.06 4983 6452 6.8 8.4

Table 4. lib2.genlib Results for DOT

Circuit Delay Area CPU time
tree DAG tree DAG tree DAG

C2670 27 18 2998 4568 2.0 2.0
C3540 42 30 4007 6640 2.7 2.8
C5315 46 33 6817 8352 4.6 4.8
C6288 125 120 7782 7121 4.3 4.4
C7552 39 28 9552 11149 6.0 6.3

Table 5. 44-1.genlib Results for DOT

5 Comparison

In this section, the three approaches are compared against each other. The comparison is focused on
the complexity of each approach.

DAGON tries all library gates on each node it visits. Clearly, the complexity of DAGON is
O(DAGSIZExLIBRARYSIZE), where DAGSIZE is the size of the DAG that describes the circuit and
LIBRARYSIZE is the number of gates that the technology library consists of.

The complexity analysis of NOA requires that we find how quickly we can generate the delay curves
for each node. Each match g of a node n with a fanin cone of size k has a delay curve with at most
N = ∑k

i=0 Ni points. If the delay curve for each point is sorted, then the time required to generate each
point is O(klog(Nmax)), where Nmax denotes the maximum Ni. After each point is generated a new
sorting of cost O(Nlog(N)) is required. The total time required for the generation of a delay curve for a
match g at a node n is O(N2log(N)klog(Nm)).
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For DOT, one instantiation of graph_match has a complexity of O(p) according to [10], where p
denotes the size of the technology library. Thus, the complexity of DOT for the entire graph is O(sp),
where s is the number of nodes in the graph as graph_match is called once for each node.

6 Enhancements

This section describes the enhancements that have been applied to the basic algorithms described in a
previous section in order to improve the quality of the results.

For DAGON, three enhancements have been explored and applied to the DAGON tool. The first
improvement stems from the fact that the matching algorithm can do better if it takes into consideration
details relevant to the complete DAG instead of using information relevant only locally to the tree it
tries to match. Such details are the fanout of the nodes and the existence or not of the inverse of the
signals present in the tree. The second improvement originates from the application of DAGON to
sequential circuits. In these circuits, both the inverted and the non-inverted outputs of a flip-flop can be
used in optimization gates. A final enhancement of DAGON is the search of redundant gates that may
be present due to the optimization of two neighboring trees.

For DOT, there are two enhancements, one of which targets optimization of a sequential circuit and
the second one targeting global optimization. Pan and Liu in [9] proposed a polynomial-time algorithm
for the optimization of a sequential circuit. The basic steps are the retiming of the initial circuit, which
is followed by technology mapping of the re-timed circuit. After technology mapping, another retiming
on the mapped circuit is performed. The procedure is repeated iteratively and can compute the minimum
cycle mapping in polynomial time. The second enhancement takes into consideration the fact that the
initial subject graph is constructed without knowledge of the technology library. Lehman et al. in [8]
include a number of decompositions into an extended subject graph and perform technology mapping
on the extended graph.

7 Conclusions

This paper has provided a comparison of three technology mapping approaches. All of them address
the problem by providing solutions for matching pattern graphs against trees that describe the technology
independent circuit. One of them tries to find the best matches of the pattern graphs against the complete
DAG of the circuit without decomposing it into a forest of trees. All of the approaches have been
described in detail and their experimental results have been presented. The complexity analysis has
shown that all algorithms require at least O(sp) where s and p describe the size of the technology library
and the size of the circuit respectively.
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