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1. A Fast Adaptive Layout Algorithm for Undirected Graphs (1994)

1.1 Introduction

There are many techniques that are used in the context of producing aesthetically pleasing
graph drawings. Under the assumption that edges are drawn as straight lines, the problem
is  transformed  to  the  problem  of  positioning  the  nodes  of  a  graph.  A  well-known
approach for  creating such  a  positioning,  in  a  general  graph,  is  the  spring-embedder
model. By using forces between the elements of a graph, we allow graph layout to evolve
naturally.

Some of the most important aesthetic criteria include displaying symmetries existing
in the graph and avoiding as much as possible of edge crossings. Furthermore, edges
should have as few bends as possible (while straight-line edges completely by-pass this
problem),  and  their  length  should  not  deviate  greatly.  The  drawing  should  occupy
sensibly small space, while nodes should be evenly distributed in the area.

It is known that the optimal solution to this criteria is involves NP-complete problems
(for instance, edge crossing minimization is shown to be NP-complete). So, only good
approximations to optimal solutions are generally sought.

1.2 Previous work

The  basic  spring-embedder  model  is  due  to  Eades.  It  treats  nodes  as  mutually
repulsive charges and edges as springs connecting the nodes. The nodes are positioned
randomly on the plane, and at  each iteration the system calcucates for each node the
forces that are applied to each, and moves the nodes accordingly. A problem is raised, as
to when to stop the iteration.  Eades’ approach was simply to run a fixed number of
iterations, and then stop. This is problematic because the graph may not have converged,
or it may have converged long ago, wasting time.

Kamada and Kawai refined the model, firstly by introducing the notion of optimal
edge length,  and updating only a single  node at  each step.  This  algorithm converges
deterministically to a local minimum.

To  overcome  the  problem  of  ending  up  in  a  local  minimum,  randomness  is
introduced.  Simulated annealing is used, allowing for positive changes in energy state.
Any move that decreases energy is of course accepted, but additionally, moves to the
opposite direction may sometimes be accepted, by a probability that is dependend on the
cu  temperature.  The temperature is  high when the system starts,  so at  that  phase the
system has great flexibility in its  movement.  Then, the system is “cooled-down”, and
gradually the probability of a move that increases energy approaches zero. Unfortunately,
this technique is quite slow. Fruchterman and Reingold improved Eades’ algorithm by
using a simple cooling schedule. In their algorithm, the distance that a node can travel at
each single step is depended on the current temperature.

Finally, there have been proposed methods of graph preprocessing, in order to get a
good initial placement, and hopefully, a better final local minimum.

1.3 The GEM (Graph EMbedder) algorithm outline



The algorithm proposed is a variation of the spring-embedder model. Innovations (at
that  time)  included:  attraction of nodes towards  their  barycenter, the concept  of a
local, per node, temperature, and the detection of oscillations and rotations.

A major goal is to achieve high convergence speed, so that drawings can be
produced interactively by a user. To this end, integer arithmetic is utilized.

The authors observe that cooling schedules give better results than methods
based only on a gradient descent, but they are slower than the latter. So, their intention
is to improve the running time of their based-on-temperature-model method. In GEM,
temperature  indicates  the  maximum  distance  a  node  is  allowed  to  travel,  and  it
directly affects  the proper  values for  other constant  parameters,  i.e.  attractive and
repulsive forces.

In contrast to other proposals, GEM does not follow a cooling schedule in the
strict sense, but adapts locally to the data, and instead of a global temperature, a local
temperature is introduced. This temperature depends on its old temperature and the
possibility that the node takes part in an oscillation or a subgraph rotation. It can be
raised if  the algorithm determines  that  the  node is  probably not  close to  its  final
destination. Thus, the global temperature is now defined as the average of all local
temperatures of the nodes.

The algorithm comprises of an initialization phase and an iteration phase. At
initialization, an initial position is assigned, along with impulse and temperature for
each node. Iteration updates node positions and temperatures, until global temperature
is lower than a desired minimum.

At each iteration,  every node  is  updated  once,  in  random order.  A node’s
position is updated according to attractive forces of its edges, and repulsive forces to
the  other  nodes.  Additionally,  a  gravitational  force  is  exerted,  pushing  the  node
towards  the  barycenter  of  the  graph.  This  helps  keeping  disconnected  subgraphs
together. The resultant force is scaled with the node’s current temperature. Due to the
fact that local temperature affects global energy distribution, GEM has the ability to
escape  from local  mimima,  and  this  presents  a  difficulty in  the  effort  to  provide
proofs of convergence.

1.4 Details of GEM algorithm

Each  node  remembers  its  current  position  j,  its  last  impulse  p,  its  (local)
temperature T and a skew gauge d. At initialization, p = 0, d = 0 and T = Tinit. The
initial positioning of nodes does not affect much the resulting drawings, as proposed
by Kamada/Kawai. So, a random positioning is utilized in the general case, although
for  special  graphs  such as  trees  and  meshes,  inserting the  nodes  one by one  can
accelerate convergence.

At each iteration, each node is updated by the following algorithm:



Φ is a function that scales impulse conversely to the node’s degree. This provides
higher  inertia for  nodes  with  many  edges,  which  accelerate  convergence  of  the
drawing, since positional changes to nodes with high degree propagate to more nodes,
causing ripple-like updates.

At  each  step,  a  modification  of  the  current  temperature  is  needed.  This
modification is dependent on the last temperature, the last and current movement of
the  node,  and  the  skew  gauge,  which  indicates  the  likeliness  that  the  node  is
oscillating or is part of a rotation. To detect these phenomena 

At every stage of the algorithm execution, each node remembers its last impulse.
Using this information, one can diagnose that a node is part of a subgraph rotation, or
is oscillates, by means of trigonometry. Given the vector of the last repulse, it is easy
to see if the vector of the new impulse is on the same direction, is about vertical, or,
finally, opposite. These conditions are approximated using an opening angle, which
must be chosen carefully.

If the new impulse is on the same direction as the old one, the local temperature is
raised,  as  it  is  assumed that  the  node  moves  at  the  “right”  direction,  and higher
temperature accelerates node’s next movement. If the node participates in a rotation,
skew gauge increases, and as it approaches 1, the more unbalanced the node is. This
scales  down  local  temperature  (and,  thus,  future  movement).  Finally,  if  the  node
oscillates,  GEM  assumes  that  the  node  just  passed  its  optimal  position  and  will
continue to oscillate in the next rounds, so it scales down the temperature. This has
the effect of freezing the node.



1.4 Measurements and conclusions

GEM  has  been  benchmarked  in  comparison  to  Kamada/Kawai  (KK)  and
Fruchterman/Reingold (FR) algorithm. GEM was expected to outperform the other two
implementations, on the account that only integer arithmetic is used, but what remained
to be seen was whether the quality of the drawings deteriorates.  The results are quite
convincing – the algorithm produces nice drawings for many graphs of various type and
size, and many times it succeeds in finding a planar embedding, if such one exists.

The  GEM  algorithm’s  local  adaptation  is  quite  interesting.  With  slightly  more
memory (one vector per node), it can detect the type of moves, and scale them according
to that type. This is reasonable to accelerate running time, as nodes approach faster to the
position that they are heading to, or, if they rotate or oscillate, they slow down till they
freeze in place.  This  technique has the additional  benefit  that  the algorithm does  not
depend heavily on spring constants; if edge attraction is low, it gets accelerated, if it is too
high, the nodes oscillate and the moves scale down as well.



2. A Framework for User-Grouped Circular Drawings (2003)

2.1 Introduction

Circular drawings are known to be well-adept in demonstrating group/child relations in a
graph. When there is the need to show the strong relevance of a subset of nodes, it is a
viable  alternative to  draw this  subset  on the circumference of a circle.  This  way, the
viewer  understands that  these  nodes  have  further  structural  meaning,  and  have  to  be
understood together, as a group.

Such  drawings  have  wide  applications  in  the  fields  of  telecommunication,
computer networks, social network analysis, project management, and more.

There have been several approaches that partition the graph into groups, and then
place the groups onto embedding circles. What lacks from most of those techniques was
the ability for the user to provide the initial partitioning, and thus, take control of the final
drawing and the  message that  it  attempts  to  convey. Graph Layout  Toolkit,  by Tom
Sawyer software is an exception, but it still places user selections themselves on a single
circle.

2.2 Review of previous algorithms

Authors’ own previous work has yielded an linear-time algorithm that layout biconnected
and non-biconnected graphs on multiple circles, with few edge crossings. It is noted that
the problem of minimizing edge crossings is proven to be NP-Complete, even when the
nodes are restricted to appear on a circle.

2.2.1 Circular Drawings of Biconnected Graph (CIRCULAR)

The  biconnected-case  algorithm  produces  draws  with  fewer  crossings  than
previous  techniques,  by  its  tendency  of  placing  edges  toward  the  outside  of  the
embedding circle, and of placing nodes near their neighbors.

A wave-like node visit  is  employed, seeking for pair  edges (edges incident  to
neighbor  nodes)  which  are  removed.  A depth-first  search  (DFS) is  performed on the
reduced graph. This procedure yields a longest path, which is then placed continuously on
the embedding circle, while the rest of the nodes are merged into the ordering.

The time-complexity of this algorithm is O(m), where m is the number of edges.
A very important property of this algorithm is that if it is applied to an outer-planar graph,
it will find produce a node placement with zero edge crossings.

2.2.2 Circular Drawings of Non-Biconnected Graph on a Single Circle (CIRCULAR-
Nonbiconnected)

The non-biconnected-case algorithm is composed of the following steps: at first,
the graph is decomposed to its block-cutpoint tree. Then, the resulting component array is
layout on a circle. This can be achieved by a simple DFS, without any edge crossings.
Finally the components themselves are layout using a variant of CIRCULAR. It is noted



that explicit treatment is needed for the issue of placement of articulation points. Another
issue worth mentioning is the strategy by which to place the biconnected components on
an arc of the circle.

The final drawing has the property that nodes that belong in a single graph, appear
consecutively on the circle. The time-complexity of this algorithm is O(m).

2.2.3 Circular Drawings of Non-Biconnected Graph on Multiple Circles (CIRCULAR-
withRadial)

This algorithm firstly decomposes the graph into its biconnected components, as
CIRCULAR-Nonbiconnected did. One circle is assigned for each component. Then the
circles are laid out using a radial layout technique. The time complexity of this algorithm
is again O(m).

2.3 A Framework for User-Grouped Circular Drawing

The dominating difference of a circular drawing grouped by biconnectivity and a
user-grouped  circular  drawing  is  that  in  the  latter,  no  structural  information  can  be
inferred  about  the  subgraphs.  So,  an  algorithm  that  handles  user  selections  must  be
general enough to be able to apply to arbitrary graph groupings, either biconnected or not.
The goals of the proposed technique are: 1) Highly-visible user groupings, 2) Low edge
crossings in groups, 3) Low inter-group edge crossings and 4) Fast layout.

An important  assumption being made is that inter-group relations are not very
complex. The algorithm begins as follows: Define supergraph Gs = (V, E, P), where P is
the user-defined node partitions. For each inter-partition edge, define an edge connecting
the respective partitions. This structure is then laid out with a force-directed technique.
Based on the assumption that this structure will not be very complex, the force-directed
part will finish quickly.

The partitions can be either biconnected or not. The respective algorithms that
were briefly mentioned are used to draw the partition in either case. Till here, goals 1) and
2) have been reached, as these algorithms are shown to perform well at practice.

Next,  inter-group edge  crossings  must  somehow be  reduced.  A force-directed
approach is applied, that is different to the traditional algorithms in that the nodes must
appear on the circumference of their circles. Yet, the ordering of the nodes on the circles
is allowed to change, thus nodes are highly encourages to move close to their incident
groups.  This,  unfortunately,  is  working  against  the  good  drawings  (with  few  edge
crossings) produces at the previous step. Hopefully, the intra-group drawings will not be
affected  much,  due  to  the  simplicity  of  the  inter-group  relations.  In  either  case,  the
reduction of inter-group edge crosses is more important than intra-group edge crossings,
since the former produce more visual  clutter,  and the algorithm is  willing to pay the
relatively smaller  price  of  deteriorating  the  inner  layout  of  circles,  to  achieve  better
overall outcome.



2.4 Circular-Track Force-Directed

As mentioned previously, a new force-directed algorithm is needed to layout the nodes of
the circles. The requirement is that nodes remain on their circles at all time, while they
are able to jump over each other, as depicted in the following diagram:

As nodes’ location is restricted by the circle they reside in, they can be located by simply
using a theta coordinate, which denotes the angle on the circumference of the circle where
the node is.

(xa, ya) is the center of the circle. 
Hooke’s law provides for the potential energy V in the system: 

These equations can be combined to produce:

Furthermore, a repulsive force between the nodes is added, to avoid nodes occlusion:

Finally, the force applied to each node is defined as:



2.5 Algorithm CIRCULAR-withFORCES

The full algorithm is summarized here:

Steps 5 and 6 need some clarification. At step 5, we have an almost final drawing: the
user-defined  components  have  been  laid  out  by the  CIRCULAR algorithms,  and  the
super-structure has been laid out as well using a basic force-directed scheme. At step 5,
prepares the graph for the final step, by reducing locally the potential energy. It is meant
as a simple heuristic that may help the final step perform better. The algorithm doesn’t try
to  find  the  best  combination  of  rotations,  but  treats  the  groups  sequentially,  in  one
iteration,  and  each  circle  independently.  The  final  step  applies  the  force-directed
algorithm outlined in the previous section.

Worse-case  time  complexity  is  unknown,  as  per  the  use  of  force-directed
algorithms, but authors claim that in practice it  is expected to be O(n2). Evidence are
provided that  almost  final  drawings do not  take much time to  converge using force-
directed techniques, so the final step (No. 6) can be regarded to spend O(n2) as well.

2.6 Conclusions

This work outlines a framework of algorithms useful to draw user-selected sub-graphs.
The framework achieves a nice balance between elements that work against each other.
That is, few inter-group edge crossings, few intra-group edge crossings and high visibility
of groups. It does it by combining a set of algorithms, including basic and circular-track



force-directed  methods,  and  circular  drawing  algorithms  of  biconnected  and  non-
biconnected components. 

The authors’ work is based on the assumption that inter-group relations will be
relatively small. Yet, that may not hold on every problem instance, as user selections are
arbitrary. Also, the method described implies that the user partitions the whole graph,
while it seems sensible that the user only cares about a set of nodes, and chooses them. In
that case, the rest of the graph will end up in a circle of its own, and it is quite probable
for these groups to have many incident edges.

Another point that merits attention is the use of angle parameters in the circular-
track force-directed  algorithm.  The outcome of  this  algorithm is  not  reformed into  a
simple ordering of nodes, thus not balancing the nodes uniformly on the circumference of
the circle. This could cause visual problems if the nodes of a tree are highly biased toward
a specific direction; that group could be misunderstood for another shape. Yet, spreading
uniformly the node on the circle could in turn cause more edge crossings, so the right path
to this matter is unclear.


