
HY483

Αλγόριθμοι γράφων

Βιβλιογραφική εργασία

Ανδρέου Δημήτρης

14/12/2005

1. A Fast Adaptive Layout Algorithm for Undirected Graphs (1994)

1.1 Introduction

There are many techniques that are used in the context of producing aesthetically pleasing
graph drawings. Under the assumption that edges are drawn as straight lines, the problem
is transformed to the problem of positioning the nodes of a graph. A well-known
approach for creating such a positioning, in a general graph, is the spring-embedder
model. By using forces between the elements of a graph, we allow graph layout to evolve
naturally.

Some of the most important aesthetic criteria include displaying symmetries existing
in the graph and avoiding as much as possible of edge crossings. Furthermore, edges
should have as few bends as possible (while straight-line edges completely by-pass this
problem), and their length should not deviate greatly. The drawing should occupy
sensibly small space, while nodes should be evenly distributed in the area.

It is known that the optimal solution to this criteria is involves NP-complete problems
(for instance, edge crossing minimization is shown to be NP-complete). So, only good
approximations to optimal solutions are generally sought.

1.2 Previous work

The basic spring-embedder model is due to Eades. It treats nodes as mutually
repulsive charges and edges as springs connecting the nodes. The nodes are positioned
randomly on the plane, and at each iteration the system calcucates for each node the
forces that are applied to each, and moves the nodes accordingly. A problem is raised, as
to when to stop the iteration. Eades’ approach was simply to run a fixed number of
iterations, and then stop. This is problematic because the graph may not have converged,
or it may have converged long ago, wasting time.

Kamada and Kawai refined the model, firstly by introducing the notion of optimal
edge length, and updating only a single node at each step. This algorithm converges
deterministically to a local minimum.

To overcome the problem of ending up in a local minimum, randomness is
introduced. Simulated annealing is used, allowing for positive changes in energy state.
Any move that decreases energy is of course accepted, but additionally, moves to the
opposite direction may sometimes be accepted, by a probability that is dependend on the
cu temperature. The temperature is high when the system starts, so at that phase the
system has great flexibility in its movement. Then, the system is “cooled-down”, and
gradually the probability of a move that increases energy approaches zero. Unfortunately,
this technique is quite slow. Fruchterman and Reingold improved Eades’ algorithm by
using a simple cooling schedule. In their algorithm, the distance that a node can travel at
each single step is depended on the current temperature.

Finally, there have been proposed methods of graph preprocessing, in order to get a
good initial placement, and hopefully, a better final local minimum.

1.3 The GEM (Graph EMbedder) algorithm outline

The algorithm proposed is a variation of the spring-embedder model. Innovations (at
that time) included: attraction of nodes towards their barycenter, the concept of a
local, per node, temperature, and the detection of oscillations and rotations.

A major goal is to achieve high convergence speed, so that drawings can be
produced interactively by a user. To this end, integer arithmetic is utilized.

The authors observe that cooling schedules give better results than methods
based only on a gradient descent, but they are slower than the latter. So, their intention
is to improve the running time of their based-on-temperature-model method. In GEM,
temperature indicates the maximum distance a node is allowed to travel, and it
directly affects the proper values for other constant parameters, i.e. attractive and
repulsive forces.

In contrast to other proposals, GEM does not follow a cooling schedule in the
strict sense, but adapts locally to the data, and instead of a global temperature, a local
temperature is introduced. This temperature depends on its old temperature and the
possibility that the node takes part in an oscillation or a subgraph rotation. It can be
raised if the algorithm determines that the node is probably not close to its final
destination. Thus, the global temperature is now defined as the average of all local
temperatures of the nodes.

The algorithm comprises of an initialization phase and an iteration phase. At
initialization, an initial position is assigned, along with impulse and temperature for
each node. Iteration updates node positions and temperatures, until global temperature
is lower than a desired minimum.

At each iteration, every node is updated once, in random order. A node’s
position is updated according to attractive forces of its edges, and repulsive forces to
the other nodes. Additionally, a gravitational force is exerted, pushing the node
towards the barycenter of the graph. This helps keeping disconnected subgraphs
together. The resultant force is scaled with the node’s current temperature. Due to the
fact that local temperature affects global energy distribution, GEM has the ability to
escape from local mimima, and this presents a difficulty in the effort to provide
proofs of convergence.

1.4 Details of GEM algorithm

Each node remembers its current position j, its last impulse p, its (local)
temperature T and a skew gauge d. At initialization, p = 0, d = 0 and T = Tinit. The
initial positioning of nodes does not affect much the resulting drawings, as proposed
by Kamada/Kawai. So, a random positioning is utilized in the general case, although
for special graphs such as trees and meshes, inserting the nodes one by one can
accelerate convergence.

At each iteration, each node is updated by the following algorithm:

Φ is a function that scales impulse conversely to the node’s degree. This provides
higher inertia for nodes with many edges, which accelerate convergence of the
drawing, since positional changes to nodes with high degree propagate to more nodes,
causing ripple-like updates.

At each step, a modification of the current temperature is needed. This
modification is dependent on the last temperature, the last and current movement of
the node, and the skew gauge, which indicates the likeliness that the node is
oscillating or is part of a rotation. To detect these phenomena

At every stage of the algorithm execution, each node remembers its last impulse.
Using this information, one can diagnose that a node is part of a subgraph rotation, or
is oscillates, by means of trigonometry. Given the vector of the last repulse, it is easy
to see if the vector of the new impulse is on the same direction, is about vertical, or,
finally, opposite. These conditions are approximated using an opening angle, which
must be chosen carefully.

If the new impulse is on the same direction as the old one, the local temperature is
raised, as it is assumed that the node moves at the “right” direction, and higher
temperature accelerates node’s next movement. If the node participates in a rotation,
skew gauge increases, and as it approaches 1, the more unbalanced the node is. This
scales down local temperature (and, thus, future movement). Finally, if the node
oscillates, GEM assumes that the node just passed its optimal position and will
continue to oscillate in the next rounds, so it scales down the temperature. This has
the effect of freezing the node.

1.4 Measurements and conclusions

GEM has been benchmarked in comparison to Kamada/Kawai (KK) and
Fruchterman/Reingold (FR) algorithm. GEM was expected to outperform the other two
implementations, on the account that only integer arithmetic is used, but what remained
to be seen was whether the quality of the drawings deteriorates. The results are quite
convincing – the algorithm produces nice drawings for many graphs of various type and
size, and many times it succeeds in finding a planar embedding, if such one exists.

The GEM algorithm’s local adaptation is quite interesting. With slightly more
memory (one vector per node), it can detect the type of moves, and scale them according
to that type. This is reasonable to accelerate running time, as nodes approach faster to the
position that they are heading to, or, if they rotate or oscillate, they slow down till they
freeze in place. This technique has the additional benefit that the algorithm does not
depend heavily on spring constants; if edge attraction is low, it gets accelerated, if it is too
high, the nodes oscillate and the moves scale down as well.

2. A Framework for User-Grouped Circular Drawings (2003)

2.1 Introduction

Circular drawings are known to be well-adept in demonstrating group/child relations in a
graph. When there is the need to show the strong relevance of a subset of nodes, it is a
viable alternative to draw this subset on the circumference of a circle. This way, the
viewer understands that these nodes have further structural meaning, and have to be
understood together, as a group.

Such drawings have wide applications in the fields of telecommunication,
computer networks, social network analysis, project management, and more.

There have been several approaches that partition the graph into groups, and then
place the groups onto embedding circles. What lacks from most of those techniques was
the ability for the user to provide the initial partitioning, and thus, take control of the final
drawing and the message that it attempts to convey. Graph Layout Toolkit, by Tom
Sawyer software is an exception, but it still places user selections themselves on a single
circle.

2.2 Review of previous algorithms

Authors’ own previous work has yielded an linear-time algorithm that layout biconnected
and non-biconnected graphs on multiple circles, with few edge crossings. It is noted that
the problem of minimizing edge crossings is proven to be NP-Complete, even when the
nodes are restricted to appear on a circle.

2.2.1 Circular Drawings of Biconnected Graph (CIRCULAR)

The biconnected-case algorithm produces draws with fewer crossings than
previous techniques, by its tendency of placing edges toward the outside of the
embedding circle, and of placing nodes near their neighbors.

A wave-like node visit is employed, seeking for pair edges (edges incident to
neighbor nodes) which are removed. A depth-first search (DFS) is performed on the
reduced graph. This procedure yields a longest path, which is then placed continuously on
the embedding circle, while the rest of the nodes are merged into the ordering.

The time-complexity of this algorithm is O(m), where m is the number of edges.
A very important property of this algorithm is that if it is applied to an outer-planar graph,
it will find produce a node placement with zero edge crossings.

2.2.2 Circular Drawings of Non-Biconnected Graph on a Single Circle (CIRCULAR-
Nonbiconnected)

The non-biconnected-case algorithm is composed of the following steps: at first,
the graph is decomposed to its block-cutpoint tree. Then, the resulting component array is
layout on a circle. This can be achieved by a simple DFS, without any edge crossings.
Finally the components themselves are layout using a variant of CIRCULAR. It is noted

that explicit treatment is needed for the issue of placement of articulation points. Another
issue worth mentioning is the strategy by which to place the biconnected components on
an arc of the circle.

The final drawing has the property that nodes that belong in a single graph, appear
consecutively on the circle. The time-complexity of this algorithm is O(m).

2.2.3 Circular Drawings of Non-Biconnected Graph on Multiple Circles (CIRCULAR-
withRadial)

This algorithm firstly decomposes the graph into its biconnected components, as
CIRCULAR-Nonbiconnected did. One circle is assigned for each component. Then the
circles are laid out using a radial layout technique. The time complexity of this algorithm
is again O(m).

2.3 A Framework for User-Grouped Circular Drawing

The dominating difference of a circular drawing grouped by biconnectivity and a
user-grouped circular drawing is that in the latter, no structural information can be
inferred about the subgraphs. So, an algorithm that handles user selections must be
general enough to be able to apply to arbitrary graph groupings, either biconnected or not.
The goals of the proposed technique are: 1) Highly-visible user groupings, 2) Low edge
crossings in groups, 3) Low inter-group edge crossings and 4) Fast layout.

An important assumption being made is that inter-group relations are not very
complex. The algorithm begins as follows: Define supergraph Gs = (V, E, P), where P is
the user-defined node partitions. For each inter-partition edge, define an edge connecting
the respective partitions. This structure is then laid out with a force-directed technique.
Based on the assumption that this structure will not be very complex, the force-directed
part will finish quickly.

The partitions can be either biconnected or not. The respective algorithms that
were briefly mentioned are used to draw the partition in either case. Till here, goals 1) and
2) have been reached, as these algorithms are shown to perform well at practice.

Next, inter-group edge crossings must somehow be reduced. A force-directed
approach is applied, that is different to the traditional algorithms in that the nodes must
appear on the circumference of their circles. Yet, the ordering of the nodes on the circles
is allowed to change, thus nodes are highly encourages to move close to their incident
groups. This, unfortunately, is working against the good drawings (with few edge
crossings) produces at the previous step. Hopefully, the intra-group drawings will not be
affected much, due to the simplicity of the inter-group relations. In either case, the
reduction of inter-group edge crosses is more important than intra-group edge crossings,
since the former produce more visual clutter, and the algorithm is willing to pay the
relatively smaller price of deteriorating the inner layout of circles, to achieve better
overall outcome.

2.4 Circular-Track Force-Directed

As mentioned previously, a new force-directed algorithm is needed to layout the nodes of
the circles. The requirement is that nodes remain on their circles at all time, while they
are able to jump over each other, as depicted in the following diagram:

As nodes’ location is restricted by the circle they reside in, they can be located by simply
using a theta coordinate, which denotes the angle on the circumference of the circle where
the node is.

(xa, ya) is the center of the circle.
Hooke’s law provides for the potential energy V in the system:

These equations can be combined to produce:

Furthermore, a repulsive force between the nodes is added, to avoid nodes occlusion:

Finally, the force applied to each node is defined as:

2.5 Algorithm CIRCULAR-withFORCES

The full algorithm is summarized here:

Steps 5 and 6 need some clarification. At step 5, we have an almost final drawing: the
user-defined components have been laid out by the CIRCULAR algorithms, and the
super-structure has been laid out as well using a basic force-directed scheme. At step 5,
prepares the graph for the final step, by reducing locally the potential energy. It is meant
as a simple heuristic that may help the final step perform better. The algorithm doesn’t try
to find the best combination of rotations, but treats the groups sequentially, in one
iteration, and each circle independently. The final step applies the force-directed
algorithm outlined in the previous section.

Worse-case time complexity is unknown, as per the use of force-directed
algorithms, but authors claim that in practice it is expected to be O(n2). Evidence are
provided that almost final drawings do not take much time to converge using force-
directed techniques, so the final step (No. 6) can be regarded to spend O(n2) as well.

2.6 Conclusions

This work outlines a framework of algorithms useful to draw user-selected sub-graphs.
The framework achieves a nice balance between elements that work against each other.
That is, few inter-group edge crossings, few intra-group edge crossings and high visibility
of groups. It does it by combining a set of algorithms, including basic and circular-track

force-directed methods, and circular drawing algorithms of biconnected and non-
biconnected components.

The authors’ work is based on the assumption that inter-group relations will be
relatively small. Yet, that may not hold on every problem instance, as user selections are
arbitrary. Also, the method described implies that the user partitions the whole graph,
while it seems sensible that the user only cares about a set of nodes, and chooses them. In
that case, the rest of the graph will end up in a circle of its own, and it is quite probable
for these groups to have many incident edges.

Another point that merits attention is the use of angle parameters in the circular-
track force-directed algorithm. The outcome of this algorithm is not reformed into a
simple ordering of nodes, thus not balancing the nodes uniformly on the circumference of
the circle. This could cause visual problems if the nodes of a tree are highly biased toward
a specific direction; that group could be misunderstood for another shape. Yet, spreading
uniformly the node on the circle could in turn cause more edge crossings, so the right path
to this matter is unclear.

