Comput. & Ops Res. Vol. 1, pp. 239-249
Pergamon Press Ltd., 1980. Printed in Great Britain

DEGREE-CONSTRAINED MINIMUM SPANNING TREE

SuBHAsH C. NARULA
Rensselaer Polytechnic Institute, Troy, NY 12181, U.S.A.

and

Cesar A. Ho

Universidad Nacional Technica de Piora, Peru

Scope and purpose—The problem of generating a minimum spanning tree, when the number of arcs incident
to any node are specified, is posed. Three procedures to construct such a tree are proposed. These
procedures are compared in terms of computer time required to solve a problem. Some guidelines are
proposed to assist in the selection of an algorithm for a given problem.

Abstract—In this paper the problem of a degree-constrained minimum spanning tree (DCMST) is defined.
The problem is formulated as a linear 0-1 integer programming problem. A prifnal and a dual heuristic
(construction) procedure and a branch-and-bound algorithm are proposed to construct a DCMST. These
procedures are illustrated with a simple example. Some computational experience with these algorithms is
alsd reported.

I. INTRODUCTION
In the design of electrical circuits, the following problem is often considered: connmect n
terminals with the minimum amount of wire. The length of a minimum spanning tree (MST)
connecting the terminals gives the required length of wire. However, sometimes the size of the
terminals is such that the number of wires incident to a terminal i cannot be more than b;,
i=1,..., n. The solution to this problem may not be the length of a MST. The solution to such
problems will be the length of a degree-constrained minimum spanning tree (DCMST). 4

The problem of finding a DCMST also arises in many other areas such as transportation,
communication, plumbing, sewage, etc. The DCMST problem subsumes a number of well
known and interesting problems. For example, if b;=n—1,i=1,..., n, the degree-constraints
become redundant and the problem reduces to the MST problem; if the degree at each node is
strictly equal to 2, the problem reduces to the travelling salesman problem (TSP). Further, in
the planning of some telecommunication systems, the objective is to set up transmission lines to
connect users in different places to a common computer center. The number of direct lines to
the computer center is exactly equal to the number of users is obviously a special case of the
DCMST problem; the problem is known as the order-constrained minimum spanning tree.

The problem and the procedures to construct a MST are well discussed in the literature, (see
Dijkstra[l], Kruskal{2] and Prim[3]). Recently, an efficient procedure for solving the travelling
salesman problem was proposed by Held and Karp[4, 5] and further improvements suggested
by Hansen and Krarup[6]. For the order-constrained minimum spanning tree, Glover and
Klingman([7] give an admissible edge exchange procedure. However, the DCMST problem is
only mentioned in passing by Obruca[8].

In this paper, we formulate the DCMST problem and propose three procedures to generate
such a tree. We illustrate the procedures with a simple example and present some com-
putational experience with the proposed algorithms.

2. PROBLEM FORMULATION
" ‘The degree-constrained minimum spanning tree can be stated as follows.

Given a non-directional complete graph G(V, E), with cost (length, time) c; associated with
the edge ¢; for every ¢; € E, construct a minimum cost spanning tree such that the degree d; at
anode i for every i € V, is less than or equal to b, _)

The problem can be formulated as a linear 0-1 integer programming problem. Let X;; =1 if

239

240 _SusHAsH C. NARULA and CESAR A. HO z o

- anedge g;EE is mcluded in the tree and 0 otherwrse Then the problem is

minimize o
E CijAjj
- Lhev
. i
subject to)
E Xi=<b vieV
i€V
i#]
E X;=1 VieVv
jev
ij
2 X;=<|N|~1 YNCV
iJEN

X;=0orl LjieV.

3. SOLUTION PROCEDURES
Clearly, the problem can be solved using a Jinear 0-1 integer programming algorithm.
However, for n terminals, the problem has n(n — /2 variables and 2" + n — 1 constraints. Even
for a moderate value of n, the problem can become very large very fast, making the linear 0-1
integer programming algorithms unattractive.
We propose two construction procedures and a branch-and-bound algorithm to generate a
DCMST.

3.1. A primal method

The method starts with a feasible degree-constrained spanning tree (DCST) and moves ¢

towards optimality maintaining feasibility at each step.

The construction procedure to determine a starting feasible DCST is a modrﬁcatron of the -~

Prim’s algorithm[3] for the MST problem. Prim[3] gives two construction principles to generate
a MST. The first principle P1 states that an isolated node i can be connected to the “nearest

neighbor” j-of i and the second principle P2 states that any “fragment” VsC V'can be *

connected to the “nearest heighbor” i ‘_cf the fragment. Repeated use of the two principles
generates ‘a MST.

To generate a feasible DCST, we modify the second prmceple P2’ as follows: any - -
“fragment” Vs C V can be connected to the “nearest neighbor” by the shortest edge whose -
inclusion will not violate any degree constraint. Using P1 and then repeatedly using P2’ will

generate a DCST.
The modified Prim’s algorithm to generate a fea31ble DCST can be summarized as follows:
Let the component of an entry i of the F table (Prim[3]) be: F1(i)—a node not in the

fragment, F3(i)—a node in the fragment, and F2(i)—the length of the edge j]ommg the node in -

F1(i) and F3(i). :
Step 1. Initialize F table by setting F3(i)=p (any initial node) and F 1(1) q for i=
1, -land g=1,...,n, q# p. Set F(2)({) = cost of the edge ¢,, dy =0fork=1,...,n and
= l Go to Step 2. '

Step 2. Let c*=FXi*) = mm F2(i), r=F3(i*) (note r=p for m=1), and s = F1(*). If -

d.<b,set E(m)=e,, d = d+1andd d+1gotoStep4Ifd b gotoStep3

Step 3. For all entries j for which F3(j) =r, let t = F1(j) and set F3(j) = u, where node u is k

in the fragment such that 0< d, < b, and edge e, is the shortest edge among the eligible edges
joining ¢ to the fragment. Further, set F2(j) = cost of the edge e,. Go to Step 2.
Step 4. Delete entry i* from the F table. Compare every F2(i) with G(i}—the cost of edge

joining a node s to F1(i). If G(t)<F2(t) set F2(i)=G(i) and F3(i)=s. Set m= m+l If -

“m> n — 1, stop; otherwise go to Step 2.
The DCST so generated need not be a DCMST To ﬁnd a DCST wrth a lower cost we check
each edge ¢; in the current tree to see if (i) it can be replaced by a shorter edge e,, or (ii) it can

sailisacsi e,

|

Degree-constrained minimum spanning tree 241

be replaced by an equal cost edge e,,, such that nodes v or w or both do not reach the maximum
degree allowed and nodes i or j or both already have the maximum degree.

The improvement edge exchange algorithm can be stated as:

Step 1. Set m = 1.

Step 2. Identify the subtrees T; and T; created by the deletion of ¢; = E(m) from the tree.

Step 3. Find an edge e,,, v € T; and w € T; such that cost (e,,) < cost (e;) and d, +1<b,,
d,+1=<b,. If a e,, exists, go to Step 6; otherwise, go to Step 4.

Step 4. Check if d; = b; or d; = b, If true, go to Step 5; otherwise, go to Step 7.

Step 5. Find an edge e,,, v € T; and w € T; such that cost (e,.,) = cost (¢;) and d, +1=<b,
and d, +1<b,. If a e,, exists, go to Step 6; otherwise, go to Step 7.

Step 6. Exchange ¢; and e,,. Go to Step 7.

Step 7. Set m=m+1. If m=<n -1, go to Step 2; otherwise, stop.

3.2 A “dual” method

With the MST as a starting solution, the dual method moves towards feasibility and thus
optimality by making “admissible” edge exchanges. The procedure is based on the following
observations. .

First, the cost of a MST provides a lower bound on the cost of a DCMST. Second, it is
reasonable to assume that many edges appearing in the MST will also appear in a DCMST. In
all probability, the edges common to the MST and the DCMST will be edges incident to a node i
with d; < b;. Thus, we can manipulate the edges of a MST to generate a degree-constrained
spanning tre&. Similar observations were made by Obruca[8] between the MST and the solution
to the travelling salesman problem.

The edge exchange procedure, used for manipulating the edges of a MST, is similar to the
one by Glover and Klingman[7] and proceeds as follows: Consider a node i such that d; > b..
For each edge ¢; in the tree, find an admissible replacement edge e,, such that (i) the deletion of
¢; and the inclusion of edge e, will result in a tree, (ii) the degree constraint at nodes r or s or both
will not be violated, and (iii) the penalty (= cost (e,;) — cost (e;)) is the least among all such edges e,;.
We make an exchange between the pair (¢;;, e,;) for which the penalty is the least. The exchanges
are made until d; < b; for all i. The procedure can be described as follows:

Step 1. Generate a MST.

Step 2. Search a node i such that d; > b;. If one such node exists, go to Step 3; otherwise,
stop. .
Step 3. Let V; denote the set of nodes incident to node i in the current tree. Compute
p(j) = cost (e;) — cost (e,5(j)) for j € V,, where e,(j) is the smallest replacement edge that joins
the subtrees created by the deletion of the edge e; such that d,+1=<b,, (d;+1=b,) if r (or
s)#jand d, < b, (d,<b,) if r (or s) =]. Go to Step 4.

Step 4. Let p(j*) = min p(j). Make the edge exchange for the pair (g;», €,:(j*)). Set d; = d; - 1,
]

dr=ds—1,d,=d,+1,and d, = d, + 1. If d; < b;, go to Step 2; otherwise, go to Step 3.
Since the tree so found may not be the DCMST, improvement edge exchanges as described
in Section 3.1 are made.

3.3 A branch and bound procedure

A branch-and-bound procedure may be used to generate a DCMST. The cost of a MST
provides a lower bound and the cost of any feasible DCST can be used as an upper bound on
the cost of the DCMST. The branching procedure described here is an adaptation of the method
due to Held and Karp[4, 5] for the travelling salesman problem. The branching procedure may
be described as follows:

Let X be the set of edges currently included in the tree, and Y be the set of edges currently
excluded. At the beginning of the algorithm, the sets X and Y are empty. At any iteration, if
the lower bound for a subset (X, Y) is less than the current upper bound; sort the edges, not yet
included or excluded, in a decreasing order of the amount by which the lower bound will
increase if the edge were excluded. Let ¢ be the number of edges not yet included or excluded
and e(l),...,e(t) be the sorted sequence of edges. The subset is then partitioned and new

CAOR Vol. 7, No. 4—B

242

subsets created as follows':
; ~ -

Xy = XU{e(l)} - Ya=YU{e(2)}

- X=X U{e(1); ()} - Y=Y U{eB)}

X=X Ufe(D),...,ek=D} Ye=YUE,

where k is the smallest index such that some node p has b, edges incident to it, and E, is the
set of all edges not yet included or excluded that are mcrdent to the node p. For a subset
(X, Yi), a lower bound is calculated as the total length of the MST that includes the edges in
X and excludes those in Y,

In this procedure, the number of nodes of a search tree can become large, requiring
excessive core storage space. To reduce the core requirement, the procedure may be modified
as follows: always branch to the right and at each node m, keep a “right” bound (the current
lower bound).and a “left” bound (the lower bound of the subset (X,_1, Yn-1)).

The algorithm may be summarized as follows: Let R(#) and L(i) be the right and the left
bounds, respectively, of a subset at level i of the search tree. Further, let k(i) be the subscript
of the last entry (X, Y}) generated at level i, as de§cnbed in the branching procedure.

Step 1. Generate a degree-constramed spanning ‘tree. Set upper bound Z =total cost and
i=1 :

Step 2. Generate a MST. Set R(i) = total cost, L(i) = and i=i+1. .

- Step 3. Determine subset (X, Yi). Set R(i) =bound of (X, Yk(,)) and m(z) k()—1.
Determlne set (Xm(,), Ym(,)) and let L(l) bound of (Xm(,), Ym(,)) Go to Step 4, .

Step 4. If R(i)< Z, go to Step 5; otherwise, go to Step 6. :

Step 5. If the tree corresponding to R(i) is feasible, set Z= R(z) and go to Step 6;
otherwise, set i =i+1 and go to Step 3. :

Step 6. If L(i)< Z, set R(i)= L(i) and go to Step 7; otherwrse go to Step 8.

Step 7. Set m(i)=m(i)—1. If m(i)>0, determine subset (Xongiys Y,,,(,)) and set L(i) = bound
of (Xin(iy» Ym@); otherwise, set L(i) =. Go to Step 4.

Step 8. Set i=i—1.1If i> 1, go to Step 6; otherwise, stop.

-

4. AN EXAMPLE

We rllustrate the proposed procedures by solving a problem with 9 nodes and restricting the
maximum degree to less than or equal to 3. :
Consider the graph whose distance matrix (upper tnangle) appears in Table 1.

4.1 The primal method) .
The primal method starts by generating a feasible DCST using the modified Prim’s
algorithm. The F-tables that are generated are given in Table 2. The entries in the second row

Table 1. Distance matrix for the example

Node
12 3 4 5 6 7 s 9

1 - 2.24 2.24 3.61 6.71 3.00 5.39 8.00 9.43

2 S 2,00 2.00 4.47 2.83 4.00 7.28 7.62
3 - 4,00 5.66 4.47 6.00 9.22 9.49|

4 - 400 2.00 2.00 5.39 5.83

Node | 5 o - 6.00 4.47 7.8l - 5.10
- g - 2,83 i5.00 " 7.07
7 - a6l 4

8 - 5.00

243

T
F1 2 3 4 5 [3 7 8 9
Stage 1 F2 2.24 2,24 3.61 6.71 3.00 5.39 8.00 9.43
F3 1 1 1 1 1 1 1
+
F1 3 4 5 6 7 8 . 9
Stage 2 F2 2.00 2.00 4.47 2.83 4.00 7.28 7.62
F3 2 .2 2 2 2 2 2
+
F1 4 5 6 7 8 9
Stage 3 F2 2.00 4.47 2.83 4.00 7.28 7.62
F3 2 2 2 2 2 2
v
F1 5 6 7 8 9
Stage 4 F2 4.00 2.00 2.00 5.39 5.83
F3 4 4 4 4 4
+
F1 5 7 8 9
Stage 5 F2 4,00 2.00 5.00 5.83
F3 4 4 6 4 .
g v
- , Fl1 5 8 9
Stage 6 F2 4.00 3.61 4.24
F3 4 7 7
Fl 5 9
Stage 7 F2 4.00 4.24
F3 4 7
v
F1 5 9
Stage 8 F2 = 4.47 4.24
F3 7 7
v
F1 5
Stage 9 F2 5.10
F3 9

of the successive F-tables are the distances from the connected fragment to the unconnected
terminals at each stage of fragment growth. The entries in the third row of these tables 1nd1cate
the nearest neighbor in the fragment of the external terminal in question. -

The computations are started by entering the first row of the distance table into the F-table.
Stage 1 contains the first row of the distance matrix. The shortest entry in the first stage is the
first entry (correspondmg to edge 1-2); edge 1-2 is selected to enter the fragment. The F-table
is then updated to include all the entries corresponding to the shortest edges joining the
fragment with the isolated nodes (the isolated nodes at this stage are 3-9). At stage 2, edge 2-3
is selected and this entry is deleted from the table. Stage 3 table remains unchanged as the edges
joining the new selected node (node 3) with the remaining isolated nodes are larger than the
ones already in the table. The procedure is repeated until F-table of stage 7 is obtained. The

“shortest entry at this stage corresponds to edge 4-5. However, node 4 already has a degree
equal to 3. So, stage 7 F-table is changed replacing entry 4-5 by entry 5-7 which is the shortest
edge joining node 5 to the fragment without violating a degree constraint. Similar change is
made in the F-table at stage 8 where edge 5-7 is replaced by edge 5—9 The resultmg tree is
shown in Fig. 1(a). - ‘

. The edges in the first degree—constramed spanning tree are then mspected to see if any of
these can be replaced by a shorter or an equal length edge as described in Section 2.1. Let edge

~1-2 be the first edge to be inspected. This creates two subtrees T, and T as shown in Fig. 1(b).
An equal length edge rejoining T; and T, without violating a degree constraint is edge 1-3. No’

244

3

Length=23.19
(a)

l‘ 2
7~
l 7
\. 3
Length=23.19 Length=22.56
le), (d)

Fig. 1. Trees at various steps of the primal method.

shorter edge is available. Since it only increases the degree of node 3-2 (less than the maximum

permissible), we make the exchange. The resulting tree is shown in Fig. 1(c). The rest of the

edges in the tree are inspected in a similar manner. Only one more improving edge exchange is
possible; edge 5-9 for edge 2-5. Since no more improvement edge exchanges can be made to

the tree, the procedure stops. The final tree is given in Fig. 1(d). ’

4.2 The dual method

The dual method starts by generating a MST, using Prim’s algorithm. The F-tables are given
in Table 3. The procedure followed is similar to the one explained in the primal method to
generate the first feasible DCST, with an exception that the F-table at a stage is not changed if
a node in the fragment reaches the maximum degree specified. The resulting MST is given in
Fig. 2(a). R : ') :

Note that node 4 has a degree greater than the maximum allowed. One of the edges incident
to node 4 must be deleted and replaced by another (not violating a constraint) in such a way
that the increase in the total length of the tree is the least. Consider edge 4-7; if it is deleted the
MST is divided into two subtrees T, and T; as in Fig. 2(b). The four shortest edges (different
from edge 4-7) rejoining T, and T, without violating a degree constraints, are edges 6-7, 5-7,
6-8, and 5-9; the shortest of these being edge 6-7. The penalty associated with the pair 4-7 and
6-7 is length (6-7) —length (4-7) = 0.83. Similar analysis is made for all edges incident to node 4
and the pair of edges having the smallest penalty are exchanged. The best exchange is to

Degree-constrained minimum spanning tree o 245

_iuws oo Table 3. F-Tables for Prim’s algorithm s
a2 ¥ .
©F1 2 3 4 5 6 7 8 9
Stage 1 F2 2.24 2.24 3.61 6.71 3.00 5.3 8.00 9.43
F3 1 1 1 1 1 1 1 1
+
F1 3 4 5 6 7 8 9
Stage 2 F2 2.00 2.00 4.47 2.63 4.00 7.28 7.62
F3 2 2 2 2 2 2 2
. .
F1 4 5 6 7 8 9
Stage 3 F2 2.00 4.47 2.83 4.00 7.28 7.62
F3 2 2 2 2 2 . 2
+
Fi 5 6 7 8 9
Stage 4 F2 4.00 2.00 2.00 5.39 5.83
F3 4 4 4 4 4
+
F1 5 7 8 9
Stage 5 F2 4.00 2.00 5.00 5.83
F3 4 6 4 ¥,
¥
M ’ F1 5 8 9
Stage 6 F2 4.00 3.61 4.24
' F3 4 7 7
+
F1 5 9
Stage 7 F2 4.00 4.24
F3 4 7
+
Fl 9
Stage 8 F2 4.24
F3 7

replace edge 4-7 by edge 6-7. The length of the resulting tree is the length of the MST plus the
penalty. The resulting tree is in Fig. 2(c). :

The improving edge exchanges are next attempted in the manner described for the primal
method. Only one exchange is p0531ble edge 1-3 for edge 1-2. The final tree is given in Fig.
2(d).

4.3 The branch and bound method

The branch and bound method starts with a feasible DCST as in the primal method (Fig.
1(a)), and its length as the upper bound. Thus, the first upper bound on the length is Z=23.19.
The MST obtained at the beginning of the dual method (Fig. 2(a)) prov1des an initial lower
“right”” bound ZR,=22.09. The initial lower “left” bound is ZLo= «.

In the begmmng, the set NXY is the set of all edges in the initial MST. Thus NXY, = {1-2,
2-3,2-4, 45, 4-6, 4-7, 7-8, 7-9}. The set X, of included edges and the set Y, of excluded edges
are initially empty. The penalty for each edge in set NXY, is calculated. (The penalty of an
edge i-j is the difference between the length of edge i-j and the length of the shortest edge
rejoining the two subtrees, T; and T}, created by the deletion of edge i-j.) The penalties are
calculated as in the dual method with the difference that here the degree constraints are not
considered. After the penalties are calculated the edges are arranged in order of decreasmg
penalties. The computations for this step appear in Table 4.

Branching starts by passing edges from the set NXY; to a set X; of edges included as
follows: X, ={7-8, 47, 4-6, 2-4}. The transfer of edges sfops when edge 2-4 is included
because at this point there are 3 edges incident to node 4. The set Y, includes the edges (not
already in a previous set X or Y) incident to node 4. Thus, Y; ={1-4, 34, 4-5, 4-8, 4-9}. At this

" 724‘6

N

. .
6 5
2 o B
| /)
3
7
Length=22.09 :
(a)
(p) v
8 9
y
6 4 5

‘ <
8 S
7
1]
]
g
6 1 5
2 2
// -
| | .
3 3
Length=22.92 Length=22.92
() (d

Fig. 2. Trees at various steps of the dual method.

Table 4. Table of penalty functions

Edge _ Penalty Réplacement Edge
7-8 1.39 6-8(or 8-9)
4-7 0.83 6-7

4-6 0.83 2-6(or 6-7)
2-4 0.83 S 2-6

7-9 0.76 o 89

4-5 0.47 2-5(or 5-7)
2-3 0.24 1-3

1-2 0.00 1-3

stage, a tree of minimum length, that includes the edges in X, and excludes those in Y, is
generated. This tree appears in Fig. 3(a). e] . -

- The right bound is not ZR, = 22.56. The left bound is ZL, = ZR,+ penalty of the last edge in
X (edge 2-4), ie. ZL,;=22.09+0.83 =22.92. At this stage, ZR, is smaller than the current
upper bound Z and the tree is infeasible (degree of edge 2 is equal to 4). The computations are
repeated with set NXY = {1-2, 2-3, 2-5, 7-9}, a set of edges not yet included or excluded, and

“Degree-constrained minimum spanni g tree

- sets X; and Y;. The penalties are calculated as before and the bounds at this stage are: ‘7

Y, =Y, U{l-7, 2-1,3-1,5-1,6-1} .
ZR, =22.56 infeasible)
ZL,=23.32

NXY,=1{2-5,2-3,1-2}. -

Further branching continues as follows:

X3 = X2 U {2—5, 2—3}
Y;=Y,U{1-2,2-6,2-7,2-8,2-9}
ZRy=122.56.

Since at this stage, a feasible DCST is obtained, ZR; becomes a new upper bound, i.e. Z = ZR;.
The left bounds (ZL,, ZL,, ZL,) are inspected, but none of these is smaller than the new upper

bound Z. The algorithm stops. The final tree is shown in Fig. 3(b).

8 - 9 8 » 9

. ¥

Y, . 7 ‘ .
i 5 ‘ : ‘
'4/5 A ‘

2 .

/ , 2
o)
| : \J
g) 3
Length=22.56 Length=22.56
@ : : (b .

'~

Fig. 3. Trees generated by the branch and bound me?hod.

5. COMPUTIONAL EXPER'IEN‘CE

At this point it may be observed that the branch and bound procedure (if all the branches
are examined implicitly) will converge to a global optimal solution. The other procedures may
not give a global optimal solution, as seen in the example (Section 3). This happens since only
one (improving) edge exchange is considered at a time which may lead us to a local optimum.
By modifying the method of improving edge exchanges it is possible to make all procedures to
converge to a global optimal solution.

The three algorithms were programmed in FORTRAN IV for a CDC CYBER 173. The
three-label-per-node labelling procedure of Scions[9] as modified by Johnson[10] was used to
store .a tree. The procedure of Glover et al. (111 was used for updating the
tree. To find the admissible edge exchanges in the dual method, the labelling method of Glover
and Klingman{7] was used. Further, in the dual and the branch-and-bound algorithms, the MST
was found using Prim’s algorithm. =~~~ ™ o

The algorithms were tested on a number of randomly generated problems with n = 30, 50
and 100. The test problems were created by generating the coordinates of the nodes at random;
and using the Euclidean distance between nodes ; and 5 j=1,...,n) as ¢; It can be easily
shown that when Euclidean distance between nodes is used for ¢ij, the maximum degree at any
node of a MST is no more than 6. Further, the maximum degree at node i was specified to be

less than or equal to b; = b for i =1,.. ., n. The values of b were restricted to 2,3 and 4 as the
maximum degree of the MST’s for the generated problem was no more than 5.

g

i ", SuBRasH C. NARULA and CEsaR A. Ho TR

The DCMST with b =2 can be obtained by deleting the largest edge from the solution of the
travelling-salesman problem. Since efficient algorithms are, available for solving a TSP (see
Hansen and Krarup[6)), results for b =2 are not reported here. oo

Table 5 gives the average solution times, the standard deviation and the number of problems
for which the optimal solution was found. Note that the statistics for n =30 and n =50 are
based on 50 problems, and for n = 100 are based on 20 problems.

For problems for which the methods did not find an optimal solution, Table 6 gives the
maximum percentage by which the solution obtained differed from the optimal solution (or the
cost of the MST if the optimal solution was not known). -

Table 5. Comparative results: Average Solution Time(CPU Secs); (Standard deviation); Number of optimal
solutions found

Method
: Branch-and-
n b Primal Dual Bound
3 1.342 1.188 " 0.711
(0.042) (0.138) (0.876)
30 46 50 50
4 1.352 1.127 0.250
(0.190) (0.109) (0.252)
50 50 50
3 9,049 8.697 C 4,844
(0. 256) (0.426) (8.324)
50 44 50 50
4 9.034 8.578 0.961
(0.182) (0.562) (1.116)
50 50 50 -
3 139.328 137.482 212.923
(2.630) (2.733) (56.271)
1T o3 6 6
100
‘ 4 135.542 136.132 20.068
(3.332) (5.384) (5.175)
18 19 20

Table 6. Maximum percent difference between obtained and optimal solution

Method
, Branch-and-

n b Primal Dual Bound
10 3 1.1 0.0 0.0
0.0 0.0 0.0
so 0.8 0.0 0.0
A .0.0 - 0.0 0.0

100 L.6* 1.6* 0.37%
4 | 1.2 1.2~ 0.0

Compared with the MST.

&g o&m[.i‘;‘ Vs

49

Degree-constrained minimum spanning tree

Table 7. Métﬁodg in order of preference

- n ; el R >
BN\ 30 : 50) 100
1. Branch-and- 1. Branch-and- 1, Dual
3 Bound Bound - 2, Primal
> 3. Branch-and-
2. Dual 2. Dual . Bound
Primal " Primal soun
1. Branch-and- 1. Branch-and- 1. Branch-and-
4 Bound Bound Bound
2, Dual 2. Dual 2, Primal
Primal ’ Primal Dual

6. DISCUSSION AND RECOMMENDATIONS

Before making the final recommendations, it is important to observe the following.

Although more efficient for n =30 and 50 the branch-and-bound procedure requires more
core storage space (approx. twice) compared to the primal and the dual methods. Also, the
solution times increase rapidly as the number of nodes # is increased andfor b is decreased.

The primal method generally generates a better initial feasible soldtion in less time than

the initial feasible solution by the dual method. Further, the primal method maintains feasibility
at each step,,) ’

Based on the preceding observations and limited computational experience (Tables 5 and 6),
Table 7 lists the methods.in terms of the average time required to solve a problem of given size
and thus provides some guidance to the reader in selecting an algorithm.

Acknowledgements—The authors wish to thank Charles G. DeWald for suggesting p}oblem. The computer time for the
project was provided by the Department of Industrial Engineering, State University of New York at Buffalo.

REFERENCES

1. E. W. Dijkstra, A note on two problems in connexion with graphs. Numerische Mathematik 1, 269-271 (1959).

2. J. Kruskal, On the shortest spanning subtree of a graph and the travelling-salesman problem. Proc. Am. Math. Soc. 7 s
48-50 (1956).

3. R. C. Prim, Shortest connection networks and some generalizations. Bell Systems Tech. J. 36, 1389-1401 (1957).

4. M. Held and R. M. Karp, The travelling-salesman problem and minimum spanning trees. Ops Res. 18, 1138-1162 (1970).

5. M. Held and R. M. Karp, The travelling-salesman problem and minimum spanning trees: Part IL. Mathematical
Programming 1, 6-25 (1971).) .

6. K. H. Hansen and J. Krarup, Improvements of the Held-Karp algorithm for the symmetric travelling-salesman
problem. Mathematical Programming 7, 87-96 (1974).

7. E. D. Glover and D. Klingman, Finding minimum spanning trees with a fixed number of links at a node. Res. Rep. CS
169, Center for Cybernetics Studies, The University of Texas at Austin (1974).

8. A. K. Obruca, Spanning tree manipulation and the travelling-salesman problem. Comp. J. 10, 374-377 (1968).

9. H. Scions, The compact representation of a rooted tree and the transportation problem. Int. Symp. Math.
Programming, London (1964).

10. E. Johnson, Networks and basic solutions. Ops Res. 14, 619-623 (1966).

11. F. D. Glover, D. Karney and D. Klingman, The augmented predecessor index method for locating stepping stone paths
and assigning dual prices in distribution problems. Transpn Sci. 6, 171-180 (1972).

