
Chapter 3

Series – Parallel Digraphs

Introduction

In this chapter we examine series-parallel digraphs which are a common type of graph. They
have a significant use in several applications that make them interesting to examine. Using sp
graphs we can successfully visualize flow diagrams, dependency charts, and PERT networks.
In the current document we give some preliminary information about series–parallel digraph,
how it can be constructed and finally we present two algorithms one for drawing sp digraphs
and another for labelling the decomposition tree’s nodes.

A sp-graph is first of all a planar graph. As we can conclude of its name, it is a graph with
serial and parallel components. In the real world a suitable representation is that of digital
design circuits where logical AND gates imply series composition and OR gates parallel.

3.1 Definitions

Accepting that the simple – base case of a sp graph is that of Figure 3.1.a we can recursively
define our term:

If G1,….…, Gn are sp digraphs so are the graphs obtained by the following operations:

1. The series composition of digraphs G1,……, Gn with sources s1, ……., sn and sinks

t1, ……..,tn by identifying the sink ti with the source si+1 where 1= i < k (Figure 3.1.d).
2. The parallel composition of digraphs G1,……, Gn with sources s1, ……., sn and sinks

t1, ……..,tn by identifying s1, ……., sn into a single vertex s and identifying t1, ……..,tn into
a single vertex t (Figure 3.1.e).

The above definition can be understood in detail by studying Figure 3.1. In this figure we
construct the parallel composition of the base case by joining the sources at the bottom and
sinks at the top (see Figure 3.2.b). Similarly we construct the series composition by joining
the source with the sink of the two base case graphs. In a same way we can compose more
complex graphs like Figure 3.1.d and Figure 3.1.e cases.

(a) (b) (c)

G1 G2

(d)

G1 G2

(e)

or

Figure 3.1: Recursive construction of sp graphs: (a) simple-base case, (b) parallel composition
of “(a)”, (c) series composition of “(a)”, (d) general case series composition, (e) general case
parallel composition

The composition operation is a divide and conquer technique. Our problem requires more
complexity at the divide part. This is better explained below.

Here we adopt the upward drawing without multiple edges. So the source appears at the
bottom and the sink at the top of the drawing as we can see at Figure 3.1. Only the graph in
Figure 3.1.b doesn’t satisfy this condition and we won’t use it again. The sink and source of a
series-parallel graph are also called poles.

3.2 Decomposition of a Series – Parallel Digraphs

We are now called to analyse the inverse operation of decomposing a series-parallel digraph.
To do this we use a decomposition tree also called parse tree. Suppose we have a series –
parallel graph G and its decomposition tree T. We assume that graphs are simple: with no self
loops and multiple edges. In this tree there are exist three types of nodes: s-nodes to depict
series composition, p-nodes for parallel composition and q-nodes for terminal base cases (see
Figure 3.4). Its leaves are always q-nodes while the internal nodes are either p-nodes or s-
nodes. An example of a graph’s decomposition is given in Figure
3.2.

f

d

e

c

k

n
l

j

i

m

b
h

a

f
d

e

c

b

a

k l

j

i

m

h

n

k

l

j

i

m

h

n

k

l

j

i

(a) (b)

(c) (d)

k

l

j

i

(e)

G1 G2

G3

G4

G5

G6

G7

G8

G10

G9

G12

G11

 Figure 3.2: Decomposition of a sp graph

In the previous figure we see a sp digraph and its decomposition. We don’t provide the whole
decomposition, only a representative part of it, the right graph G2. Starting from the graph’s
source we separate it into two components according to its composition type. In the current
example we break it in the pieces seen in Figure 3.2.b as it has been generated from a parallel
composition. The new right component (G2) derives from a series composition. The
components that have not resulted in the base case sp graph are further decomposed in the
following figures (Figure 3.2.d, Figure 3.2.e). The decomposition that follows uses also
decomposition sub-trees for every component-graph. The operation is terminated when all the
sp graphs produced by decomposition, are basic-simple (see Figure 3.1.a). The complexity
required for the final result is O(n).

1

2

Figure 3.3: Closed and Open components

After constructing the decomposition tree there are two types of components which are
defined as follow. If C is a maximal path of nodes of T of the same type, and let µ1, …… , µk
are the children of the nodes of C that are not on C, from left to right. A closed component of
G is either G or the composition of the series – parallel digraphs associated with a
subsequence µi,……,µj, where 1< i = j < k and C consists of s-nodes. An open component of
G is either G or the composition of the series-parallel digraphs associated with a subsequence
µi,……,µj, minus its poles where 1= i = j = k. A component is either an open or a closed
component.

In the previous figure we can see an open and a closed component. Rectangle 1 describes a
closed component that consists of a series composition of two sp digraphs. On the other hand
rectangle 2 describes an open component consisting of a series of nodes except its poles.

P

SS

S

a n

d eb lc

f

SS
S

P Ph m

jki

Figure 3.4: The decomposition tree of the sp graph displayed in Figure 3.2.a

To construct the decomposition tree we start from graph’s source. By examining the
composition that has used this node we conclude to root’s type. This means that we think
backwards at the composition stage where we had conjunction of two nodes in one (series) or
creation of a new node and joining of two nodes in the one new (parallel). So depending on
the origin of the node we give him its type. In the figure’s example the source of the graph
comes from a parallel composition by joining the two sources of sp graphs into a new one.
Therefore the root of our tree is a p-node. As for its children, they are sub trees that are
examined in the same way. So we conclude that the right sub-tree represents a series
composition of the graph. Following the same algorithm we analyse the graph as far as we
find q-nodes, always according to the definition of the sp graph.

3.3 An algorithm for Drawing Series – Parallel Digraphs

The previous operations of decomposition in sp graphs provide us with the decomposition
tree T which has all the necessary information of sub sp graphs and the compositions between
them. This fact gives us the ability to draw the graph from scratch having as sole input its
decomposition tree T. In practice, it happens some series-parallel graphs to require
exponential area for their straight – line upward drawing. In this case there is a need to change
its embedding. Having the components of the whole graph we can choose another embedding
that serves our purposes.

We will use the algorithm ? -SP Draw to provide us with a drawing of O(n2) area. To do this
we consider the decomposition’s tree components. The algorithm uses as basic characteristic
a right-angled isosceles triangle (Figure 3.5), inside which there is the drawing of our series –
parallel graph. So every series – parallel graph can be illustrated inside this triangle.

Figure 3.5: a right-angled isosceles triangle

This operation is better understood by starting from the simplest case and continuing using a
recursive approach. The way the graphs are put into the bounds of triangle is shown in Figure
3.6.

 (b) (a)

parallel

 (c) (d)

Figure 3.6: applications of algorithm ? -SP Draw

We place the transitive edge along the hypotenuse as we want a right pulsed embedding.
While drawing a simple-base sp digraph we just put the edge onto the hypotenuse with the
source at the bottom and the sink at the top. In order to have a parallel composition of two
graphs (Figure 3.6.b) we have the placement of Figure 3.6.c. Note that the transitive edge is
always on the right. The result appears at Figure 3.6.d. A more general case of parallel
composition is illustrated in Figure 3.7.

parallel

G1

G2

G1 G2
legal area

s1

s2

t1

t2

s

t

u

v

Figure 3.7: A more general parallel composition of sp digraphs

In the general case of the parallel composition the result is also in a special triangle. As it
happens in every parallel composition the s (source node) of this triangle is the joint of s1 and
s2 and t (sink) is the joint of t1 and t2. An additional constraint that we should notice, is to
place the G2 somewhere in the legal area so that we won’t have any cross edges.

In series composition the two triangles are put next to each other as in Figure 3.8. They share
a node which is the source of the top graph and the sink of the bottom. The result of this
composition is a new triangle with sink the sink of the top and source the source of the
bottom. To complete the rest of the shape we extend the two sides of the triangles.

series

 (b) (a)

G1

G2

G1

G2

Figure 3.8: Series composition

All the operations that we have mentioned are applied in the below algorithm that gives us the
drawing of any sp graph in a right-angled isosceles triangle.

? – SP Draw

Input: a series – parallel digraph G
Output: a strictly upward planar straight – line grid triangle G of G

1. Compute a decomposition tree T of G.

2. Modify the embedding of G into a right-pushed embedding and perform the

corresponding modifications on T.

3. If G consists of a single edge (base case sp graph), it is drawn as a vertical segment of

length 2, with bounding triangle having width 1 (see Figure 3.6.a)

4. If G is the series composition of G1

 and G2, the two drawings G1
 and G2 of G1

 and G2
 are

first recursively produced (divide). Then (conquer), G is drawn by translating G2 so that
the sink of G1 is identified with the source of G2 (see Figure 3.8). The bounding triangle
?(G) is obtained by extending the bottom side of ?(G1

) and the top site of ?(G2).

5. If G is the parallel composition of G1

 and G2. The two drawings G1
 and G2 of G1

 and G2 are
first recursively produced (divide). Then (conquer), we consider the rightmost edges (s1,
u) and (v, t1) incident on the source and sink of G1, respectively (see Figure 3.7). The
G2 drawing should be put between the line of the legal area, the line through u that is
parallel to the bottom side of the bounding triangle G1, the line through v that is
parallel to the top side of the triangle of G1 and the hypotenuse of G1. Then, we
identify the sources and sinks of G1 and G2 by moving them to the intersections s and t of
the base of ?(G2) with the lines extending the top and bottom sides of ?(G1), respectively.

In the third step the length of the hypotenuse is 2 so that the area of the triangle will be 1
((hypotenuse * height) / 2).

After we have computed the decomposition tree of the sp graph G, which is algorithm’s input
we work on the root of T. If this node is a q-node (G consists of a single edge) the algorithm
returns. In any other case there is a recursive call of the algorithm with argument first the
right child and then the left; this is an arbitrary order. Practically we apply the algorithm on
the two or more sub-trees of the root. Following the same procedure for each sub-tree we
draw first simple sp graphs and then more complex. The final output when every procedure
returns is the required G drawing.

For better understanding an example is provided next.

Suppose that we have as input the digraph of Figure 3.2.a. The execution of the algorithm
until a depth will be as follows:

1. First we construct the decomposition tree shown in Figure 3.4
2. At the current example our graph has no transitive edge so this step is never executed.
3. It’s not this case so we pass at step 5

Recursive call of the algorithm for graph G2 and G1
1. decomposition tree of G2
2. ….
3. not this case
4. it is a series call algorithm for G3, G4, G5, G6

1. decomposition tree of G3
2. ….
3. draw the triangle, return (Figure 3.9.a)

1. decomposition tree of G4
2. …..
3. not this case
5. it is a parallel composition call algorithm for G7, G8.
 1. decomposition tree of G7

 2. …..
 3. not this case

4. it is a series call algorithm for G9, G10

 1. decomposition tree of G9
 2. …
 3. draw the triangle, return (Figure 3.9.b)

1. decomposition tree of G10
2. ….
3. draw the triangle, return (Figure 3.9.c)

conquer step à series draw of triangle (Figure 3.9.d)

1. decomposition tree of G8

 2. …..
 3. not this case

4. it is a series call algorithm for G11, G12

 1. decomposition tree of G11
 2. …
 3. draw the triangle, return (Figure 3.9.e)

1. decomposition tree of G12
2. ….
3. draw the triangle, return (Figure 3.9.f)

.

.

.

 (a)

G3 G9 G10

G10

G9

 (b) (c) (d)

G11

G12

G11 G12

 (e) (f) (g)

Figure 3.9: Steps of the algorithm

G11

G12

G10

G9

Figure 3.10: Parallel composition of two sp digraphs

G3

....

Figure 3.11: Final ? -SP Draw of our graph G

The above figures describe the algorithm steps to the final output in Figure 3.11.

The correct operation of the algorithm guarantees the following invariants of every right
angled triangle ? (G).

Invariants

a. The graph’s drawing is contained into the triangle without filling its critical vertex
(right-angled). Moreover the embedding is constructed in a way such that has the
transitive edges on the right just like the hypotenuse of the triangle.

b. The source is depicted by the bottom vertex of the triangle whereas the sink by the top.

c. For any adjacent vertex to the source there should be satisfied a condition: the wedge
with vertex in this node and rays with slopes –p/2 and –p/4 does not contain any vertex of
G except s. (see Figure 3.12.a)

d. A similar condition should be satisfied for the sink t of G too. In this case the wedge
will have rays with slopes p/2 and p/4. (see Figure 3.12.a)

s

t

s

u1

u2

t

(a) (b)
lu1

lu2

Figure 3.12: Properties of nodes adjacent to poles

Lemma 3.1 Let u1 and u2 be neighbours of the source vertex s, such that edge (s, u1) is to the
left of edge (s, u2), and let lu1 and lu2 be the rays of slope –p/4 originating at u1 and u2,
respectively. If Invariant (c) holds, then lu1 is below lu2.

Proof. Invariant (c) says that the wedge seen at Figure3.12.a contains only vertex s. This
means that the rays with slopes -p/4 of both u1 and u2 are parallel. So one of them will be
above the other. The one that will be above is that of the most right vertex(u2) since otherwise
u2 would be contained into the wedge of u1 and invariant (c) would hold.

It is interesting to see how the sp graph’s invariants are preserved during the compositions. It
is obvious why the two first invariants always hold in both kinds of composition.

In series composition invariants (c) and (d) are satisfied since the poles of the composed
drawing remain intact. This is because the source of the new drawing is the source of one of
the olds and the sink is the sink of the other old. Therefore the properties of the poles are
inherited from the components’ drawings, since the adjacent vertices in both poles are the
same as before.
In parallel composition these invariant are guaranteed by the correct placement of the right
graph inside the bounds. This allowable area is better described by Figure 3.7, where u and v
are the rightmost vertices which are adjacent to the source and the sink respectively. So
invariants (c) and (d) are satisfied.
However this bounded area where we can put the right graph in a parallel composition should
be better defined. This purpose serves the ? -SP-Label algorithm. A simple idea is put the G2
so that the right angled vertex of it to be somewhere across the hypotenuse of G1.This doesn’t
produce any problem since that vertex is never occupied by any node. Using this technique
we result in a drawing with O(n2) area, as it derives from the triangle’s properties.
Considering now the recursive operation of the ? – SP Draw algorithm in a graph G we
reach the following theorem.

Theorem 3.1 Let G be a series – parallel digraph with n vertices. Algorithm ?-SP Draw
produces a strictly upward planar straight-line grid drawing of G with O(n2) area such that
isomorphic components of G have drawings congruent up to a translation.

The algorithm that follows computes some parameters of the nodes of a decomposition tree
that will allow us to specify the appropriate and exact placement of the components
represented by these nodes, during a composition.
For more details see the algorithm that follows.

? -SP-Label

Input: decomposition tree of T of a series-parallel digraph G
Output: labeling of each sub-trees of T with values b, b’, and b’’

1 if the root of T is a Q-node
2 then
3 b(T) = b’’(T) = b’(T) = 2 (see Figure 3.13.a)
4 else
5 let T1 and T2 be the left and right sub-trees of T, respectively
6 for each i=1, 2 do
7 ?-Sp-Label(Ti)
8 if the root of T is an S-node (see Figure 3.13.c)
9 then
10 b(T) = b(T1)+ b(T2)
11 b’(T) = b’(T1)
12 b’’(T) = b’’(T2)
13 else (the root of T is a P-node)
14 b(T) = b(T1)+ b(T2) + 2Dx (see Figure 3.13.b)
15 if T2 is a Q-node (transitive edge)
16 then
17 b’’(T) = b’(T) = b(T)
18 else
19 b’’(T) = b(T1) + 2Dx – Dy + b’’(T2)
20 b’(T) = b’(T2) + Dy

The algorithm works recursively starting from the root of the decomposition tree T that takes
as input. Its role is to label every node of this tree according to its type. Therefore if the node
of the root of the tree that examines each time is a q-node it labels this node giving him value
“2” in all of it’s parameters. These parameters are defined through the Figure 3.13.

T1
T2

b(T)

s1

s2

t1 t2

s

t

u

v

b''

b'

b(T1)

b, b'', b'

Dx

D
y

b(T2)

(a)

(b) (c)

T1

T2

b(T1)

b(T2)

b(T)

Figure 3.13: (a) Labels in q-nodes, (b) labels in p-nodes and (c) labels in s-nodes

In the other cases of q-nodes or p-nodes we have different values that valuated by the
geometry of our drawing. In parallel case (line 13) the equation b(T) = b(T1)+ b(T2) + 2Dx is
produced by the triangle’s properties: b(T) = 2*(height of T)= 2*(height of T1 + height of T2 +
Dx). Equations in lines 19, 20 are also proofed by the geometry of our shape.

By examining the way this algorithm works we can conclude the following theorem.

Theorem 3.2 Algorithm ?-SP Draw can be implemented to run in O(n) time and space on a
series – parallel digraph with n vertices.

