

 Visibility representations

7.1 Introduction

 The tessellation representation of a planar st-graph G seems rather awkward to the human
eye, mainly because it represents edges as faces, and faces as edges, while everybody is tought to
assume the opposite. The visibility representations can be seen as an enhancement of the
tesselation representation, that correct this. In visibility representations, the vertices are displayed
as horizontal segments, the edges as vertical segments that link two horizontal segments without
crossing another, and the faces as the area that is defined between horizontal segments and
vertical lines.
 The visibility representations that we just described are based on a form of visibility
called weak-visibility. We can define more strick forms of visibility called e-visibility and s-
visibility, to obtain more visibility representations that satisfy more constrains. We shall formally
refer to the forms of visibility and their representations, after the description of the weakest form
of visibility, and an algorithm to construct visibility representations for it.

Definition 7.1: Weak Visibility representation G of a planar st-graph G is the set of horizontal
vertex-segments G(?) that represent the vertices of G, and vertical edge-segments G(u,?) that
represent the edges of G, such that:

1 no two vertex-segments overlap
2 no two edge-segments overlap
3 each edge-segment G(u,?) has its bottom endpoint on G(u), its top endpoint on G(?),

and does not intersect any other vertex-segment.

A visibility representation of a planar st-graph G can be drown directly inside the
tesselation representation of G. Actually, if we shrink leftwards each rectangular area that
represents an edge at the tesselation representation to a line segment, we obtain the visibility
representation from the tesselation representation. This is one way to prove that the visibility
representation of a planar st-graph exists. This can also be proved directly from the construction
principles of the Algorithm 7.1 that computes such a representation.

Theorem 7.1: Let G be a planar st-graph with n vertices. Then, Algorithm 7.1 Visibility
constructs in O(n) time a visibility representation of G with integer coordinates and O(n2) area.

Proof: From the construction of the algorithm and Lemma 4.4 we can observe that any two

vertex-segments are separated by a horizontal or vertical strip of at least unit width. In the
representation constructed by the algorithm, we can observe that no two faces intersect except for
their common edges.

We will make an example of this algorithm. In Figure 7.1 is a planar st-graph G and its
dual. At the top of Figure 7.2 we have the dual G* of G' and its optimal weighted topological
numbering. This numbering provides the x-coordinates for the visibility representation. At the
right of Figure 7.2 we have G and it’s optimal weighted topological numbering which provides
the y-coordinates for the visibility representation.

We will make an example for a specific vertex, say v2 and find the horizontal vertex-
segment of it’s visibility representation according to step 5 of the algorithm. This vertex has
left(v2) = f3, right(v2) = f7, the x-coordinate of f3 according to the optimal weighted topological

numbering of the dual of G is X(f3) = 2, while the of f4 is X(f4) = 6. So, according to step 5 the
vertex-segment should be drawn from 2 to 5. The y-coordinate of the vertex-segment is directly
provided by the optimal weighted topological numbering of G.

For a specific edge, say (v8,v6), we follow the step 4 of the algorithm. The y-coordinates
of (v8,v6) can be directly obtained from the optimal weighted topological numbering of G,
specifically ybottom = 1, ytop = 2, as it is shown in Figure 7.2. Edge (v8,v6), has left(v8,v6) = f4,
while it has right(v8,v6) = f6. The x-coordinate is the number if the left facet of the edge, thus the
number that is provided by the optimal weighted topological numbering of f4, specifically x = 3.

Algorithm 7.1: Visibility

Input: planar st-graph G with n vertices.
Output: visibility representation G of G with integer coordinates and area O(n2).

G = Visibility(G)

1) Construct the G* as the dual graph of G.
2) Assign unit weights to the edges of G and compute an optimal weighted topological number Y
of G.
3) Assign unit weights to the edges of G* and compute an optimal weighted topological
numbering X of G*0.
4) Draw the vertival segments:

for each edge e in p do
 draw G(e) as the vertical segment with:

(()) (());
(()) (());

(()) (());
B

T

x e X left e
y e Y orig e

y e Y dest e

Γ =
Γ =
Γ =

 endfor
5) Draw the horizontal segments:

for each vertex ? do
 draw G(?) as the horizontal segment with:

(()) ();
(()) (());
(()) (()) 1;

L

R

y
x left
x right

υ υ
υ υ
υ υ

Γ = Υ
Γ = Υ
Γ = Υ −

 endfor

v2

v5

v6

v7

v8

v4

v3

v1

f1

f2

f3

f4

f5

f6

f7

f8

FACET:

EDGE:
Graph G

Graph G.dual

Figure 7.1: graph G and its dual

f1

f2

f3

f4

f5

f7

f8

FACE:

f6

0 1 2 3 4 5 6 7
Topological Numbering

v2
v5

v6

v7

v8

v4

v3

v1

Dual Graph of G with optimal
weighted topological numbering

Graph G, with
optimal

weighted
topological
numbering

EDGE:

v1

v7

v2 v5 v6

v3 v8

v4

Figure 7.2: Visibility representation of graph G.

7.1 Forms of visibility representations.

 The visibility representation described in the previous section is a rather loose one. We
may require additional constrains to be fulfilled. While some of these additional constrains appear
for practical reasons at VLSI layer compaction strategies, some other are interested for theoretical
purposes. In order to understand the three forms of visibility representation, we must first define
two forms of visibility which defines if two vertex-segments are visible or not.

Definition 7.2: Two vertex-segments are called visible in a visibility representation, when they
can be joined by a rectangular area, orthogonal to them, which does not intersect any other
segment.

Definition 7.3: Two vertex-segments are called e-visible in a visibility representation, when they
can be joined by a rectangular area of width e, orthogonal to them, which does not intersect any
other segment, and e may tend to zero.

 A schematic representation of these two forms of visibility is in Figure 7.3. The

difference between visibility and e-visibility, is that visibiliry requires that the rectangular area
which links the two segments has a fixed non-zero width, while in e-visibility, this width
can approach zero. From this definition, we can observe that when two segments are visible, the
are also e-visible, while the opposite does not stand. Thus, in Figure 7.3a, the two segments are
visible and e-visible, while in Figure 7.3b, the two segments are e-visible, but not visible, since
the rectangular area, orthogonal to them, which links them, has a non fixed width that tends to
zero. So, e-visibility is more generic since it includes visibility.

(a) (b)

e

Figure 7.3: (a) two visible and e-visible segments, (b) two e-visible segments

 Now we can provide the formal definitions of the three forms of visibility. The first form,

the w-visibility is the case we described at the previous section, does not pose any restrictions to
how the segments are visible according to their neighbors. If we want only neighbor vertices to be
visible, something usefull in VLSI layour compaction, we have to move to the other two forms
of visibility representations. The second form is the e-visibility, which requires that every two
neighbor vertice-segments must be e-visible and that every two vertice-segments which are e-
visible must be neightbors. The third form of visibility is s-visibility which requires that every
two neighbor vertice-segments must be visible and that every two vertice-segments which are
visible must be neighbors. Obviously, s-visibility is more generic than w-visibility.

Definition 7.4: A w-visibility representation for a graph G = (V,E) is a mapping of vertices of G
into nonoverlapping horizontal segments (called vertex-segments), and of edges of G into vertical
segments (called edge segments) such that, for each edge (u,?) in E, the associated edge-segment
has its endpoints on the vertex segments corresponding to u and ?, and it does not cross any other
vertex-segment.

Definition 7.5: An e-visibility representation for a graph G is a w-visibility representation with

the additional property that two vertex-segments are e-visible if and only if the corresponding
vertices of G are adjacent.

Definition 7.6: An s-visibility representation for a graph G is a w-visibility representation with
additional property that two vertex-segments are visible if and only if the corresponding vertices
of G are adjacent.

If a graph admits any of these three visibility representations, then it is planar, since a
planar embedding of it can be immediately obtained from the visibility representation by
shrinking each vertex-segment to a point.

Here in Figure 7.4, there is an example of a visibility representation of each type. in
Figure 7.4a, is the example graph G. in Figure 7.4b, there is the w-visibility representation of G.
As it can be observed, two vertex segments are visible even if they are not neighbors. in Figure
7.4b, there is the e-visibility representation of G. Note that the vertex-segments v3, v4 are
represented by intervals that do not include the left point of the segment. The inclusion of that
point on the intervals will make v2 e-visible with v3, and v3 e-visible with v4, but at neither case,
visible with v4. This is the case in Figure 7.4d, where v2 “sees” v3, and v3 “sees” v4, at a single
point, thus through a narrow width rectangular area, of width that approaches zero.

The question that normally arises after the definition of the three types of visibility, is,
given a planar st-graph, does a w-visibility or e-visibility or s-visibility representation exists for
it? Obviously, the w-visibility representation exists for every planar st-graph, and the algorithm
that constructs such a representation was seen at the previous section. The following will answer
this question for the e-visibility and the w-visibility case.

v5

v4v3v2

v1
(a) (b)

v2

v3

v4

v1

v5

v2

v5

v1

v3

v4
v2

v5

v1

v3

v4

(c) (d)
Figure 7.4: (a) a planar st-graph G, (b) a w-visibility representation of G, (c) a e-visibility
representationn of G, (d) a s-visibility representation of G

Lemma 7.1: If the graph G admits an e-visibility representation, then there exists a planar

embedding of G, such that all cutpoints appear on the boundary of the external face.

The proof of this lemma is beyond the purposes of this lecture notes, and can be found at
the bibliography. An example of a graph that does not allow a e-visibility representation of it is in
Figure 7.5. As it can be seen, there is way to embed this graph with
an embedding that brings the internal cutpoint to an external face. The internal cutpoint will
always be inside an internal face.

Figure 7.5: A planar st-graph G that does not allow a e-visibility representation of it.

Lemma 7.2: If there is a planar embedding of a planar st-graph G=(V,E), with all the cutpoints
(if any) at the external face, then an e-visibility representation can be constructed in O(|V|).

This lemma tells as that there is an algorithm that computes an e-visibility representation of a
planar st-graph G, if such a representation exists, according to Lemma 7.1. From Lemma 7.1 and
Lemma 7.2 we can conclude to the following theorem.

Theorem 7.1: A graph G admits an e-visibility representation if and only if there is a planar
embedding for G, such that all cutpoints appear on the boundary of the same face.

And the following corollary comes straightforward:

Corollary 7.1: Let G’ be the graph obtained from G by adding a new vertex and connecting it to
all cutpoints of G. Then G admits an e-visibility representation, if and only if G’ is planar.

It is harder to answer if there is an s-visibility representation for a planar st-graph G.
For the s-visibility representation we can conclude to a lemma is similar to Lemma 7.1.

Lemma 7.3: If a graph G admits a s-visibility representation, then there exists a planar
embedding of G, such that all cutpoints appear on the boundary of the external face.

This lemma obviously does not answer the question of the existance of a visibility representation
for a given planar st-graph. The following theorem does answer, but only
for 2-connected graphs.

Theorem 7.2: A 2-connected graph G admits an s-visibility representation with bottommost
vertex-segment s and topmost vertex-segment t, if and only if there is a strong st-numbering for G.

We remind that strong st-numbering of G is the st-numbering on a planar embedding G’
of G, such that s and t appear on the boundary of the external face, and for every internal face f of
G’,the vertices l(f) and h(f) are joined by the arc [l(f),h(f)]. Note that l(f) and h(f) is lowest and
highest numbered vertices on the boundary of a face of G’.

For 4-connected graphs, we can also answer the existance question, and additionaly provide an
algorithm with complexity O(|V|3).

Theorem 7.3: Every 4-connected planar graph G = (V,E) admits an s-visibility representation
which can be computed in time O(|V|3).

The proof of the above lemmas and theorems is beyond the scope of this material.

7.3 Constrained Visibility Representations

In some cases there is a need to give more emphasis to certain paths of a planar graph.
These paths often called critical, should discriminate from all the other paths, on the visibility
representation of the planar graph. Such a visibility representation could be used, for example, for
having a quick inspection of critical paths on a workflow graph. Critical paths in that case they
have the potential of delaying a project, thus they should be emphasized in a visibility
representation. A way to emphasize certain paths in a visibility representation is to align their
edges to the same horizontal coordinate. Such a visibility representation is called constrained
visibility representation. This representation can be used as a starting point for obtaining
orthogonal and polyline drawings with interesting properties, as will be shown in the next section.

It is easy to construct such an algorithm, based on the algorithm of the visibility
representation. Let G be a planar st-graph with n vertices. The key idea is to construct a new

planar st-graph G’ that has an extra facet for each critical path. This can be done by dublicating
each critical path. The visibility representation of that graph will have the edge segments of the
left side of the boundary of each extra facet, vertically aligned. By removing the right copy of
every edge of the dublicated path, and joining the copies of the dublicated vertices, we have each
critical path aligned to one x coordinate. The new facet for every critical path can be inserted
directly to the dual of G, as a new vertex, at it will be shown, after the following definitions:

Definition 7.1: Two paths p1 and p2 of a planar st-graph G, are said to be non intersecting, if
they do not share any edge, and do not cross at common vertices.

This means that if the two paths p1 and p2 have a common vertice, which is the case in

Figure 1, then two consecutive vertices, in the clockwise or anticlockwise order, must belong to
the same path. For example in Fig. 1, two paths are intersecting if e1 and e3 belong to the same
path, while e2 and e4 belong to another.

e1

e2

e3

e4

e1

e2

e4

e3

(a) (b)

Figure 7.1: Two paths meet on an edge and it’s visibility representation’s segment.

Lemma 7.1: A Constrained Visibility representation of a planar st-graph exists if and
only if the critical paths do not intersect.

Proof: If the two paths intersect then the edges at the visibility representation could not be
aligned. Take the case in Figure 1. Let e2, e4 belong to one path and e1, e3 to another, then if e1
is at the right, e3 must be at the left of e2, thus e1 and e3 could never be on the same side to share
the same x coordinate.

 In order to align the vertical edges of a critical path of the visibility representation to the
same x coordinate we must insert a facet that restricts the x coordinate of each edge at the critical
path. This could be done easily to the dual graph of G, by inserting a new vertex that receives all
incoming edges from their sources, and sends all outcoming nodes to their targes, for each critical
path.

Without any loss of generality, let every edge of G to be a single edged critical path. Let
? be the set of nonintersecting critical paths. For example in Figure 2, the critical paths are {
(v4? v3? v2? v1), (v4? v8? v6? v1) }, so the set ? has the following paths:

? = { (v4? v3? v2? v1), (v4? v8? v6? v1), (v3? v5), (v8? v5), (v5? v1), (v8? v7),
(v4? v7), (v7? v1), (v6? v7) }

v2

v5

v6

v7

v8

v4

v3

v1

f1

f2

f3

f4

f5

f6

f7

f8

FACET:

EDGE:

1rst Critical
Path Edges:
2nd Critical
Path Edges:

Graph G
Graph G.dual

Figure 7.2: A graph G and it’s dual G*.

Notice that each edge of G uniquely defines an edge at its dual G*. So, the set ? of edges

of G uniquely defines a set of edges at G*. Now, for each path p that belongs to ? , a new facet is
inserted at G*. Let the new graph formed by this procedure be Gp. Gp is constructed by forcing
the facets at the left side of each critical path to link to the facets at the right side of that critical
path, through the new facet inserted for that critical path. The Gp graph of graph G presented in
Figure 2 is drawn in Figure 3. Note that all facets around path (v4? v3? v2? v1) are linked to the
destination facets through the new rectangular facet ‘x1’, and that all facets around path
(v4? v8? v6? v1) are linked through ‘x2’. Single edge critical paths, are linked through
x3,x4,x5,x6,x7,x8,x9 new circular facets.

Since G is a planar st-graph, it’s dual, G* is also a planar st-graph. The insertion of new
facets at G* doesn’t change either the planarity of G* nor the fact that there is an st-numbering
for it. Every edge e of G, belongs to a path p of ? , and has a left and a right facet. Therefore,
every internal facet of G has some path to it’s left and some path to it’s right. No path is to the left
of s* or to the left of t*. Hence, Gp contains no directed cycles, has one source s* and one sink t*.
Clearly, Gp is directed and planar. Finally, notice that both s* and t* are on the external face of
Gp. Therefore, Gp is also a planar st-graph. More formally:

Definition 7.2: Let G be a planar st-graph, and G.dual, it’s dual. Let ? be a set of non-
intersecting paths that covers the edges of G. We construct Gp as the graph with the vertex set
F ∪ Π and edge set { (f, p) | f = left(e) for some edge e of path p } ∪ { (p,g) | g = right(e) for
some edge of path p }.

Lemma 7.2: The digraph Gp constructed by the definition above is a planar st-graph.

The topological numbering of G and Gp will actually provide the y and x coordinate of

the horizontal vertices and the vertical edges of the contrained visibility representation. Now we
can present the algorithm that constructs the constrained visibility representation:

__

Algorithm 7.1: Constrained Visibility

Input: planar st-graph G with n vertices; set ? of non-intersecting paths covering the edges of G.
Output: constrained visibility representation G of G with integer coordinates and area O(n2).

G = Constrained_Visibility(G,?)

1) Construct Gp.
2) Assign unit weights to the edges of G and compute an optimal weighted topological
numbering Y of Gp, such that X(s) = 0.
3) Assign half-unit weights to the edges of Gp and compute an optimal weighted
topological numbering X of Gp, such that X(s*) = -0.5.
4) Draw the vertical segments:

for each path p in ? do
 for each edge e in p do
 draw G(e) as the vertical segment with:

(()) ();
(()) (());

(()) (());
B

T

x e X
y e Y orig e

y e Y dest e

πΓ =
Γ =
Γ =

 endfor
 endfor

5) Draw the horizontal segments:
for each vertex ? do

 draw G(?) as the horizontal segment with:

(()) ();
(()) min { ()};

(()) max { ()};
B

T

y
x X

x X
υ π

υ π

υ υ
υ π
υ π

∈

∈

Γ = Υ
Γ =
Γ =

 endfor
__

An example of this algorithm is shown on Figure 3. At the upper side in Figure 3 there is

graph Gp topologicaly ordered according to step 3 of the algorithm. At the right side of Figure 3 a
graph G is topologicaly ordered according to step 2. The indexes of the extra facets of Gp provide
the x coordinates and the indexes of the vertices of G provide the y coordinates, for the vertical
edges and the horizontal segments, as it is stated in steps 4, 5. The operations at step 3 are quite
clear, while the operations at step 5 need some explaining.

At step 5 we compute a horizontal segment of the constrained visibility representation for
each edge of G. The y coordinate of that segment is the index provided by the topological
numbering of G. The horizontal segment starts at the minimum x coordinate among the x

coordinates of all the paths p of ? that contain this edge, and ends at the maximum x coordinate
among the x coordinates of all the paths p of ? that contain this edge. For example, the edge v8 of
G is contained in paths (v4? v8? v6? v1), (v8? v5), (v8? v7). These paths have x coordinates 3,
2, 5 respectively. Thus the horizontal segment will be:

[xL, xR] = [min{3,2,5}, max{3,2,5}] = [2, 5].
Note that xL could be equal to xR, as it happens at vertex v2 of G in Figure 3.

Theorem 7.1: Let G be a planar st-graph with n vertices, and let ? be a set of nonintersecting
paths covering the edges of G. The algorithm Constrained_Visibility computes in O(n) time a
visibility representation of G with integer coordinates and O(n2) area, such that the edges of
every path p in ? are vertically aligned.

 The optimal weighted topological numbering ensures that the area will be O(n2). A non
optimal weighted topological numbering would require more area. Also, the weights need not be
set to unit. An arbitrary positive weighting of G will not affect the algorithm.

f1

f2

f3

f4
f5

f6

f7

f8

FACET:

1rst Critical
Path Edges:
2nd Critical
Path Edges:

x1

x2
x3

x4

x5

x6

x7

x8
x9

Critical Path
Extra Facets:
Single Edge
Extra Facets:

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
Topological Numbering

v2
v5

v6

v7

v8

v4

v3

v1

Graph Gp with topological ordering:

Graph G,
with

topological
ordering

EDGE:

1

2

3

4

0

Figure 7.3: Constrained visibility representation of G.

