
 1

Chapter 6   
 
Planar Orientations  
 
 

In this chapter we will focus on algorithms and techniques used for drawing planar 
graphs. The algorithms we will use are based on numbering the vertices and orienting the 
edges from the lower numbered vertices to high numbered vertices and they will help us to 
construct a kind of geometric representation of a planar graph, called tessellation 
representation.  
 We will first examine the method of numbering the vertices of a digraph, and focus 
especially on the st-numbering algorithm. We will then explore the properties of planar 
acyclic graphs. Understanding these properties is essential for understanding how tessellation 
representations work. At the end of this chapter we will provide the reader with the 
techniques used to construct a tessellation representation of a planar acyclic graph. 
 
 
6.1           Numberings of Digraphs 

 
 

Figure 6.1: (a) Topological numbering of G; (b) Topological sorting of G 

1 

2 

3 3 

4 4 

5 

(a) 

1 

2 

3 4 

5 6 

7 

(b) 



 2

To be able to draw a planar graph, we must first number its vertices. This numbering of 
course is not arbitrary. Our goal is to number the vertices in such a way that we can have a 
sorting of the vertices, starting from the source vertex s and ending to the sink vertex t.  

Let G be a digraph with n vertices and m edges. If we assign numbers to the vertices 
of G such that for every edge (u, v) the number assigned to v is greater than the number 
assigned to u (i.e. number(v) 〉  number(u) ) then we have a topological numbering of G. If in 
a topological numbering of G we assign each vertex with a distinct integer between 1 and n, 
we will have a topological sorting of G. If G has a unique path visiting all its vertices, the 
topological sorting is unique (see Figure 6.1). The following statements are equivalent: 

 
G is acyclic ↔  G admits a topological numbering ↔  G admits a topological 

numbering (see Figure 6.1) 
 
We can apply a topological numbering to a graph G even if G has weights on its 

edges, provided that these weights are non negative. That is called a weighted topological 
numbering and is actually a topological numbering such that for every edge (u, v) of G, we 
assign a number to v that is greater than equal than the number we assigned to u  plus the 
weight of (u, v) (i.e. number(v) ≥ number(u) + weight(u, v) ).  If we minimize the range of 
numbers assigned to the vertices, then the numbering is optimal. 

 
 
 
 

6.1.1 st–Numbering 
 
As we mentioned above, there are many different ways and techniques to number the 

vertices of a planar graph. In this section, we will focus on st-numbering and provide an 
algorithm to compute it.  

Let G(V, E) be a non-separable graph. Given any edge s – t of G, a 1-1 function g 
such that g: V →  { }||....3,2,1 V , is called an st-numbering if all of the following are true: 

(1) g(s) = 1 
(2) g(t) = |V| (=n) 
(3) { }tsVv ,−∈∀  there are adjacent vertices u and w, such that )()()( wgvgug 〈〈  

 
Although the definition of an st-numbering is quite simple, the algorithm that 

performs an st-numbering on a planar graph, may be a little confusing. Below, we provide an 
algorithm that performs an st-numbering in linear ( )mnO +  time.  
 
St-numbering algorithm 
Input: A graph ),( EVG = , the source vertex Vs ∈  and the sink vertex Vt ∈  
Output: An st-numbering for all the vertices of graph G.  
 
St-numbering(G, s, t) 

1. do DFS(G, t) and Vv ∈∀  compute )(vdfnumber , lowpoint(v), )(vparent  
2. 1←i  
3. PUSH(s, STACK) 
4. PUSH(t, STACK) 
5. ←v POP(STACK) 
6. if (v = t) then 
7.   ivg ←)(  
8.   return 
9. else find-path(G, v) 



 3

10. if (path is empty) then 
11.   ivg ←)(  
12.   ++i  
13.   go to step 4 
14. else let the path be ii vvvvv ,,...,, 121 −  
15.   PUSH( vvvv ii ,,..., 11− , STACK) 
16.   go to step 4 

 
In step 1 of the above algorithm we perform a DFS on G and while we do that we compute 
the )(vdfnumber (the number the DFS algorithm assigns to each vertex Vv ∈ ), the 
lowpoint(v) (the least dfnumber of the vertices adjacent to v), and parent(v) (the parent of 
vertex v). Also, in step 8 of the above algorithm we use the path finding algorithm. This 
algorithm starts from a given vertex v and finds a path from it. This path may be directed from 
v or into v. 
 
Path finding algorithm 
Input: A graph ),( EVG =  and a vertex Vv ∈  
Output: A path directed from v or into v. 
Initialization: Mark vertices s, t and the edge connecting them as old and all the other vertices 
as new 
 
Find-path(G, v) 

1. if there is a new edge e ( wv e→ ) where )()( vdfnumberwdfnumber 〈  then 
2.   Mark olde ←  
3.   The path is wv e→  
4.   return 
5. if there is a new edge e ( wv e→ ) where )()( vdfnumberwdfnumber 〉  then 
6.   trace a path whose first edge is e and from there it follows a path which 

defined lowpoint(w), i.e. it goes up the tree and ends with a back edge to a 
vertex u such that  =)(udfnumber lowpoint(w) 

7.   Mark all vertices in the path as old 
8.   return 
9. if there is a new edge e ( vw e→ ) where  )()( vdfnumberwdfnumber 〉 then 
10.   start a path with e and continue going backwards following tree edges until 

you find a vertex marked as old 
11.   Mark all vertices in the path as old 
12.   return 
13. if  all vertices incident to v are marked as old then 
14.   The path is empty 
15.   return 

 
If we examine the st-numbering algorithm as a whole, we can see that we insert each node 
only once in the stack, and we visit each edge only one time. Thus, the algorithm performs its  
task in linear ( )mnO +  time. An example of an st-numbering of a graph is shown in figure 
6.2 
 
 
 
 
 



 4

 
Figure 6.2: An st-numbering of graph G 

 
 
6.2        Properties of Planar Acyclic Digraphs 
 
We define an st-graph, as a planar acyclic digraph with one source vertex s and one single 
sink vertex t. If we apply a topological numbering on an st-graph G, we can see that the way 
the vertices are numbered, give a sense of direction, from a vertex with a low number to a 
vertex with a higher number, to the edges. Thus we can clearly state that: 

• Given a topological numbering of an st-graph G, each directed path of G visits 
vertices with increasing numbers. 

 
Given the way we defined an st-graph, we can also state that: 

• For every vertex v of an st-graph G, there exists at least one directed path P from s 
to t that contains v 

It is easy to see why this is true: if it wasn’t, there would either be no path from s to v, or from 
v to t, thus s or t wouldn’t be the source or tank vertices respectively.  
 An embedding of an st-graph that is planar where we position the source vertex s and 
the sink vertex t on the boundary of the external face is called a planar st-graph. We draw a 
planar st-graph by positioning s at the bottom and t at the top.  
 If G is a planar st-graph, and F its set of faces, then we will assume that the external 
face of G is divided in two “faces”, the “left external face” s*, that is incident with the edges 
on the left boundary of G and the “right external face” t* that is incident with the edges on the 
right boundary of G. For each edge e between two vertices u and v ( vu e→ ), we define 

ueorig =)( and vedest =)( . We also call the face to the left of e as left(e) and the face to the 
right of e as right(e) (see Figure 6.3 ). 

Figure 6.3 : The left (left(e)) and right (right(e)) faces of an edge e 
  
 
The planar graph G* of the planar st-graph G is defined as follows: 

• The set of faces of G represent the set of vertices of G*. 

e left(e) right(e) 

1 

2 

3 4 

5 6 

7 



 5

• For every edge e of G (where ),( tse ≠ ), there is an edge ),(* gfe =  in G* where 
)(eleftf =  and )(erightg = . 

 
G* is actually the dual graph of G, if in the dual graph of G we “break” the vertex associated 
with the external face into two different vertices, and associate one of them to the left external 
face that inherits the outgoing edges, and the other to the right external face that inherits the 
incoming edges (see Figure 6.4). If we rotate G* 90 degrees, we can see that G* is also a 
planar st-graph. 

Figure 6.4: Graph G drawn with solid lines and G* associated to it drawn with dashed lines 
 
 Given a vertex v of a planar st-graph, the face separating the incoming from the 
outgoing edges in the clockwise direction is called left(v), and the other separating face is 
called right(v) (see Figure 6.5).  

Figure 6.5: The left (left(v)) and right (right(v)) faces of a vertex v 
 
 
Lemma 6.1 Each face of a planar st-graph G, consists of two directed paths with common 
origin, called )( forig , and common destination, called )( fdest . 
 
Proof: Lets suppose that the lemma is not true for a face f of the graph. Then there should be 
two vertices w and u on the boundary edges of f , and they create a path directed from dest(f) 
to orig(f). Then, there should also be a directed path P1 from s to w and a path P2 from u to t. 
But these two paths must intersect, and since G is planar, there should be a vertex x at their 
intersection point. But then, we can clearly see that G has a cycle, between vertices w, u and x 
which contradicts the fact that G is a planar st-graph (see Figure 6.6). 

v left(v) right(v) 



 6

Figure 6.6: Graph G has a cycle between x, w and u 

 
 
Lemma 6.2 The incoming edges for each vertex v of a graph G appear consecutively around 
v, and so do the outgoing edges. 
 
Proof: The lemma is true for vertices s and t. Let’s suppose that the lemma is not true for a 
vertex v of G. This means that there are edges ),(),,(),,(),,( vdcvvbav , as they appear in 
Figure 6.7. Then there should be a directed path P1 from s to b, and a directed path P2 from c 
to t. But these two paths intersect, and since G is planar, there should be a vertex x at their 
intersection point. But then a cycle between vertices v, c, x and b is created, contradicting to 
the fact that G is a planar st-graph. 
 

 
 

Figure 6.7: G has a cycle between v, c, x and b 
 

 

orig(f) 

dest(f) 

f 

w 

u 

x 

s 

t 

P1 

P2 

s 

t 

a b 

c 
d 

v x 

P1 

P2 



 7

Lemma 6.3 For every two faces f and g of a planar st-graph, exactly one of the following 
holds: 

• G has a directed path from dest(f) to orig(g) 
• G has a directed path from dest(g) to orig(f) 
• G* has a directed path from f to g 
• G* has a directed path from g to f 

 
Proof: Before we prove lemma 6.3, we must give two more definitions that we will use in this 
proof. We call the leftmost path from a vertex u the path that always takes the leftmost 
outgoing edge. Similarly, the rightmost path of a vertex u is the path that always takes the 
rightmost edge. Now let’s assume that G is topologically sorted and that the number of dest(f) 
is less than the number of orig(g). The rightmost and leftmost paths of from dest(f) to t are 
called P1 and P2 respectively. Similarly, the leftmost and rightmost paths from orig(g) are 
called P3 and P4 respectively. The lemma is obviously true if there is a directed path from 
dest(f) to orig(g). Otherwise P2 and P3 or P1 and P4 intersect. Let’s assume that P2 intersectsP3 
at a vertex x. Then from lemma 6.2, every edge incident to every vertex on P2, from the right, 
is incoming, as it also happens with every edge incident to P3 from the left. If we construct 
G*, we will see that there is a directed path in G* from f to g. (see Figure 6.8) 

Figure 6.8: A directed path in G* from face f to g 
 
 In the above lemma we deal with a special case of a more general property of planar 
st-graphs. We can make the abstraction and call an element of the set FEV ∪∪ of a planar 
st-graph G an object. The definitions of )(),(),(),( •••• rightleftdestorig can then be extended 
as follows. For a vertex v we define vvdestvorig == )()(  and for a face f we define 

ffrightfleft == )()( . Lemma 6.3, can then be generalized as follows: 
 
Lemma 6.4 For any two objects 1o  and 2o  of a planar st-graph G, exactly one of the 
following holds: 

• G has a directed path from )( 1odest to )( 2oorig  
• G has a directed path from )( 2odest to )( 1oorig  
• G* has a directed path from )( 1oright to )( 2oleft  
• G* has a directed path from )( 2oright to )( 1oleft  

dest(f) 

orig(g) 

f 

g 

t 

x 

P1 

P2 

P3 

P4 



 8

6.3 Tessellation Representation 
 
6.3.1 Plane Tessellation Representation 
 
 A tessellation representation on the plane for a planar graph G is a partition of the 
plane into disjoint tiles, each associated with vertex, edge or face of G, such that the 
topological incidencies correspond to geometric adjacencies between tiles. 
 

A tile is a rectangle with sides parallel to the coordinate axes. A tile can be 
unbounded or can degenerate to a segment or a point. Two tiles are horizontally or vertically 
adjacent if they share a portion of a vertical or horizontal side. The coordinates of a tile ? will 
be denoted by )(θLx , )(θRx , )(θBy , )(θTy . 
 
 Let G be a planar st-graph. As usual, we denote the sets of vertices, edges and faces 
of G by V, E and F, respectively. A tessellation representation T  for G maps each object 
(vertex, edge, or face) o of G into a tile T (o), such that: 
 

• The interiors of tiles T(?1) and T(?2) are disjoint whenever ?1 ≠ ?2. 
 

• The union of all tiles T(o), ? ∈  V ∪  E ∪  F is a rectangle. 
 

• Tiles T(?1) and T(?2) are horizontally adjacent if and only if  
 

)( 21 olefto =  or )( 21 orighto =  or )( 22 olefto =  or )( 12 orighto =  

 
• Tiles T(?1) and T(?2) are vertically adjacent if and only if  

 
)( 21 oorigo =  or )( 21 odesto =  or )( 22 oorigo =  or )( 12 odesto =  

 
The algorithm bellow constructs a tessellation representation Θ for a planar st-graph 

G. 
 

Plane tessellation representation algorithm 
Input: A planar st-graph G 
Output: A tessellation representation T for G such that each vertex- and face-tile is a segment 
 
Plane tessellation representation (G) 
 

1. Construct planar st-graph G*. 
2. Compute a topological numbering Y of G. 
3. Compute a topological numbering X of G*. 
4. For each object ? ∈  V ∪  E ∪  F, let the coordinates of tile T(?) be 

 

    

)).(()(
));(()(
));(()(

));(()(

odestYoy
oorigYoy
orightXox

oleftXox

T

B

R

L

=
=
=
=

 

 
Theorem 6.1 Let G be a planar st-graph with n vertices. The plane tessellation 
representation algorithm constructs a tessellation representation of G in O(n) time. 



 9

 
Proof: The tiles of any two distinct objects are separated either by a vertical or by horizontal 
line, according to Lemma 6.4. Each step of the algorithm takes linear time, so the above 
algorithm constructs the plane tessellation representation in O(n) time.  

 
An example of a run of the plane tessellation representation algorithm is shown below 

in Figure 6.9. 
 

 
Figure 6.9: Example of a run of the plane tessellation representation algorithm: (a) a planar 

graph G; (b) planar st-graphs G and G* labelled by topological numberings Y and X, 
respectively; (c) tessellation representation T  of G constructed by the plane tessellation 

representation algorithm 

(b) 

(c) 

(a) 

0 

0 

4 

1 

2 

5 
2 

3 
3 1 

2 

3 

4 

0 1 2 3 4 5 
0 

1 

2 

3 

4 



 10

 
Notice that the above algorithm constructs a tessellation representation on the plane, in 

which the tiles associated with the faces and the vertices (except s and t) are degenerate. In 
particular, the external face is associated with the a tile at infinity. It is possible to modify the 
construction so that only one tile is degenerate, namely the one associated with the external 
face. 

 
We can modify the plane tessellation representation algorithm to support user-defined 

constraints on the size of the edge-tiles. Namely, let h(e) and w(e) be non-negative numbers 
associated with each edge e of G. By replacing the first two steps of the plane tessellation 
representation algorithm with the following ones, we obtain a tessellation representation of G, 
such that the tile of each edge e has height at least h(e) and width at least w(e): 
 

1. Assign weight h(e) to each edge e of G and compute an optimal weighted topological 
numbering Y of G. 

 
2. Assign weight w(e) to each edge e* of G* and compute an optimal weighted 

topological numbering X of G* 
 

Plane tessellation representation algorithm can also be further modified to support user-
defined constraints on the size of the vertex- and face tiles. Namely, we construct from G a 
new planar st-graph G′  as follows: 
 

• Let G′ = G. 
 

• For each vertex v of G′ , we expand v into vertices v′  and v ′′ , joined by an edge eu 
from v′  to v ′′ , such that v′ contains the incoming edges of v and v ′′ contains the 
outgoing edges of v. 

 
• For each face f of G′ , we add an edge ef into face f from orig(f) to dest(f).  

 
Every object of G is associated with an edge of G′ . We then simply apply Plane 

tessellation representation algorithm to G′  and represent each object of G with the tile of the 
associated edge of G′ . 
  
Theorem 6.2 Given a planar st-graph G with n vertices and nonnegative numbers h(o) and 
w(o) for each object o of G, a minimum-area tessellation representation T  for G, such that 
each tile T (o) has height at least h(o) and width at least w(o) can be constructed in time O(n). 
In particular, if h(o) = w(o) = 1 for each object o of G, then T  has integer coordinates and 
area O( 2n ). 
 
Proof: We construct a plane tessellation representation such that each tile T (?) has height and 
weight, by expanding each vertex into two new vertices. The only essential difference 
between the initial G graph and G? graph obtained by the changes we apply, is that the second 
one has more objects. So, according to theorem 6.1, we can construct a tessellation 
representation on the plane in O(n) time for a G graph. So, according to theorem 6.1 the 
above algorithm will take O(n) time. If h(o) = w(o) = 1, then the objects o of G graph will 
have integer dimensions. So T  will have integer coordinates. Also T  will have area O(n2), 
because vertices and faces will be represented as rectangles and not as lines. 
 
 
 
 



 11

6.3.2 Sphere Tessellation Representation 
 
 A sphere S is the locus of points at the same distance from a point, called the centre of 
the sphere. The intersection of S with the horizontal plane that passes through the centre of S 
defines a circle, called the equator. Similarly, the intersection of S with planes parallel to the 
plane of the equator defines the parallels. The line that passes through the centre of S and is 
orthogonal to the plane of the equator, called the axis of the sphere, intersects the sphere into 
two points, the North Pole and the South Pole. Every plane that is orthogonal to the plane of 
the equator and passes through the two Poles defines a circle called a meridian. Every point p 
of S will be denoted by a pair (x, y) where x is the latitude measured with respect to the South 
Pole, and y is the longitude measured with respect to a reference meridian. The notion of 
horizontal and vertical is extended to the sphere by considering horizontal the parallels and 
vertical the meridians.    
 
 A spherical st-graph is an embedded planar acyclic digraph with exactly one source s 
and exactly one sink t. It is convenient to visualize a spherical st-graph as drawn on a sphere 
with s at the “South Pole” and t at the “North Pole”. A tile on the sphere is the portion of the 
sphere delimited by two parallels and two meridians. On the sphere, we allow tiles containing 
one or both Poles.  
 

Now we consider a spherical st-graph G. Let p be a path in G from s to t, p does not 
contain its extreme vertices s and t. We construct from G a new planar st-graph Gp by 
“cutting” G along path p and duplicating the vertices and edges of p. Note that the graph Gp is 
a planar st-graph. The two copies of p, denoted π ′ and π ′′  are the left and the right boundary 
of Gp, respectively. Also, we denote by o′  and o ′′  the two copies of a vertex or edge o of p in 
π ′ andπ ′′ , respectively. For any other object o of G which is not in p, both o′  and o ′′  denote 
the unique object of Gp associated with o. 
 

The following algorithm constructs a tessellation representation on the sphere for a 
spherical st-graph G. 
 
Sphere tessellation representation algorithm 
Input: A spherical st-graph G 
Output: A tessellation representation Tfor Gp on the plane such that each object o of p the 
tiles Θ ( o′ ) and Θ ( o ′′ ) have the same y-coordinates. 
 
Sphere tessellation representation (G) 

 
1. Construct planar st-graph Gp. 
2. Construct planar st-graph Gp*. 
3. Compute a topological numbering Y of Gp. 
4. Compute a topological numbering X of Gp*. 
5. Set 0x = p / ?(t) and 0y = 2p / ?  (t) 
6. For each object ? ∈  V ∪  E ∪  F, let the coordinates of tile T(?) be 

 

    

.))(()(

;))(()(

;))(()(
;))(()(

0

0

0

0

yorightXoy

yoleftXoy

xodestYox
xooriginYox

T

B

R

L

=
=
=
=

 

 



 12

The above algorithm constructs a tessellation representation, in which the tiles associated 
with the faces and the vertices are degenerate. It is possible to modify the construction, so that 
no tile is degenerate. 
 
Theorem 6.3 Let G be a spherical st-graph with n vertices. The sphere tessellation 
representation algorithm constructs a tessellation representation of G on the sphere in O(n) 
time. 
 
Proof: The sphere tessellation representation, essentially, constructs a plane tessellation 
representation on the plane for Gp, with the property that for each object o of p tiles T ( o′ ) 
and T ( o ′′ ) have the same y-coordinates. So, according to Theorem 6.1, the sphere tessellation 
representation algorithm constructs a tessellation representation on the sphere in O(n) time. 
 

Let G be a planar undirected graph. Graph G is said to be spherically st-orientable if it 
can be oriented and embedded so that the resulting digraph is a spherical st-graph.  
 
Theorem 6.4 Let G be a planar undirected graph with n vertices.   
 

1. G admits a tessellation representation on the plane if and only if it is possible to add 
an edge (s, t) to G such that the resulting graph is 2-connected and planar. 

 
2. G admits a tessellation representation on the sphere if and only if it is possible to add 

an edge (s, t) to G such that the resulting graph is 2-connected. 
 


