Chapter 5
Connectivity in graphs

I ntroduction

This chapter references to graph connectivity and the algorithms used to distinguish
that connectivity. Graph connectivity theory are essential in network applications, routing
trangportation networks, network tolerance e.t.c. Separation edges and vertices
correspond to single points of failure in a network, and hence we often wish to identify
them. We are going to study mostly 2-connected and rarely 3-connected graphs.

5.1 Basic Definitions

A connected graph is an undirected graph that has apath between every pair of
vertices

A connected graph with at least 3 vertices is 1-connected if the removal of 1 vertex
disconnects the graph

Figure 5.1.The removal of g disconnects the graph.

Similarly, a graph is one edge connected if the removal of one edge disconnects the
graph.

Figure 5.2.The removal of edge f disconnects the graph

5.2 Vertex Connectivity Vs. edge connectivity

Connectivity based on edges gives a more stable form of a graph than a vertex based one.
This happens because each vertex of a connected graph can be attached to one or more
edges. The removal of that vertex has the same effect with the removal of dl these
attached edges. Asaresult, agraph that is one edge connected it is one vertex connected
too.

For example

bt‘”

edge x

Figure 5.3.The removal of vertex af disconnects the graph

As shown in Figure 5.3 graph g is one edge and one vertex connected. The removal of
vertex x has the same effect with a possible removal of vertex a (with the term “effect”
we mean the graph disconnection). The same definitions apply to k-connected graphs
1. A connected graph isk-connected if the remova of k vertices disconnects the
graph.
2. A k-edges connected graph is disconnected by removing k edges

Note that if g isaconnected graph we cdl separation edge of g an edge whose
removal disconnects g and separation vertex a vertex whose removal disconnects g.

5.3 Bi-connectivity

5.3.1 Bi-connected graphs

Lemma5.1: Specification of ak-connected graph is a bi-connected graph (2-
connected).A connected graph g is bi-connected if for any two verticesu and v of g there
are two digoint paths between u and v. That is two paths sharing no common edges or
vertices except uand v.

Figure 5.4.a bi-connected graph

Theorem5.1. For any two vertices of abi-connected graph g thereisasimple cycle
containing them

Proof. Let’'s assume that there is no cycle. Then there is only one path from u to v. If we
remove that path we disconnect the graph. That means that the graph is one-connected.
We have a contradiction because we supposed that we have 2-connected graph.

o Y
/ \
7 \
O O
!
\ !
N s
. -
S -

Figure 5.5: One 2-connected graph

5.3.2 Bi-connected components

The study of bi-connected components is important in computer networks where
edges represent connection. Even if arouter in a bi-connected component fails, messages
can till be routed in that component using the remaining routers.

A bi-connected component of agraph g is a sub-graph satisfying one of the
following:
1. Itis amaxima sub-graph of g that is bi-connected (Maximal: If we add any other
vertex or edge the graph does not remain bi-connected)
2. A single edge of g consisting of a separation edge and its end-points

- ~,
4 \
~ - - |
\ }
% y y
_a - ’
—_— - o -

- separation wertex

- separation edge
— — — Thi-connected component

Figure 5.6. Bi-connected components, bridges and articulation points

Separation edges are a so called bridges and separation vertices are a'so called articulation
points As shown in Figure 5.6 let g be agraph. An articulation point is a vertex whose
removal disconnects the graph and a bridge is an edge whose removal disconnects the graph

Let G=(V, E) beadepth-first tree of G as shown in Figure 5.6. The articulation points are
the heavily shaded vertices, the bridges are the heavily shaded edges and the bi-connected
components are the edges in the cycled regions with the numbering shown.

articulation point
= P
I:l bridges

bi-cormected components

Figure 5.6.the articulation points, bridges and bi-connected components of a
connected, undirected graph.

We can determine articulation points, bridges and bi-connected components using the depth-
first-search algorithm

Theorem5.2 Theroot of the DFSis an articulation point if and only if it has two or more
children.

(&) (b

- the root of the DF3 tree

Figure 5.7. (a) The DFStree (b) The tree after the removal of the heavily shaded root

Proof. Since there are no cross edges between the subtrees of the root if the root has two or
more children then it is articulation point since its removal separates these two subtrees. If the
root has only one child then its removal does not disconnect the DFS tree and as aresult
cannot disconnect the graph in general.

Theorem5.3 Let ubeanon-root vertex in Gp. Then ? isan articulation point of G if and
only if thereis no back edge (u, w) such that in Gp , u is a descendant of ?and w is a proper
ancestor of 2.

Proof: Let consider the typical case of avertex u, where uisnot aleaf and u is not the root.
Let 21,72,....,7? be the children of u. For each child there is a sub-tree of the DFS tree rooted
at this child. If for some child, there is no back edge (because G is undirected we cannot
distinguish between back edges and forward edges, and we al call them back edges) going to
aproper ancestor of u , then if we are to removei , the sub-tree would become disconnected
from the rest of the graph, and hence u isan articulation point. On the other hand if every one
of the sub-trees rooted at the children of u, have back edges to proper ancestors of u, thenif u
is removed the graph remains connected

The leaves cannot be articulation points because if we remove one leaf the rest of the tree
remains connected.

5.4 Thealgorithm for identifying articulation points

All previous theorems and lemmas provide us with the proper background to identify
articulation points. We can design an algorithm to check these conditions.

The first thing we have to check isif thereis aback edge from a sub-tree to an ancestor of a
given vertex. It would be too expensive to keep track of all the back edges from each sub-tree
because may be ?(e) back edges. A more smple solution isto keep track of back edge that
goes highest in the tree.(closest to the root). Aswe travel from u towards the root the
discovery times of these ancestors of u get smaller and smaller. So we keep track of the back

edge (?, w) that has the smallest vaue of d[w].

We define lomu] = mn: dlu]
tdiw]: (u,v)

Where (u, w) is a back edge for some descendant u of ?

lowfu] isthe highest (closest to the root) that you can get in thetree by taking any one back
edge from either u, or any of its descendants.

Initialization:

low[u] = d[u]

Back edge (u, ?):
lonfu] = min(low u], d[u]) . We have detected a new back edge coming out
of u. If thisgoesto alower d value than the previous back edge then make
this the new low.

Treeedge (u,?):
lowfu] = min(low u], lowfu]) .Since ? isin the sub-tree rooted at u any
single back edge leaving the tree rooted at ?is a single back edge for the tree
rooted at u.

Once lowju] is computed for dl vertices u, we can test whether a given non-root
vertex uisan articulation point by using these simple steps. u is an articulation point if and
only if has achild in the DFS tree for which lonfu] 3 d[u] sinceif there were a back edge

from either ? or one of its descendants to an ancestor of ? then we would have low[u] < d[u]

()
)

(=)

(=)

D

o Articulation Points
1,2 Low each time
1,2,.. d each time

Figure 5.8. The DFS tree of (a)

The complete algorithm for computing articulation pointsis

Articulation points
Input: DFS tree
Output: The set of articulation points

Algorithm ArtPt (u)
1 color[u] = gray

2 lonfu] = time+ +
3 d[u] = lowfu]
4 for each v in Adj[u] do
5 if color[v] =whitethen /Il (u, v) isatree edge
6 pred[v] =u
7 ArtPt(v)
8 lonfu] = min(low[u],low[V]) /lupdate low][u]
9 if pred[u]=null then /Iroot
10 if thisisu’ ssecond child then
11 Add u to articulation points set
12 elseif lowv]3 d[u] then /linterna node

13 Add u to set of articulation points

14 elseif v1 pred[u] then /I (u, v) back edge
15 lonfu] = min(lonfu],d[Vv])

16

17

When processing a vertex u we need to know when a given edge (u, ?) is a back-edge. To do
this we check if ? iscolored gray. Thisis not quite correct because ? may be the parent of ?in
the DFS tree and we are seeing the “ other side” of the tree edge between ?and u. So we must
use the predecessor pointer to check that ? is not the parent of u in the DFS tree.

In Figure 5.8 ,(b) is the DFS tree of the graph (a).Using the previous algorithm we can
identify the articulation points. We start from vertex a where low=1 and d=1 and we color it
gray. We follow the algorithm for the rest vertices and their lowand d is shown in the figure.
If we know for each vertex low and d we can easily find articulation points because uisan

articulation point if and only if has a child in the DFS tree for which low[u] 3 d[u].

As with DFS-based algorithms the running timeis ?(n+e€). Y ou could use the algorithm to
determine which edges are in the bi-connected components if we store the edgesin a stack as
we go through DFS search. When we come to an articulation point all the edges in the bi-
connected component will be in the stack

5.5 Equivalence Classes and the Linked Relation

Let C be acollection of objects. We can define a Boolean relation for each pair x, y in C. The
relation R is an equivaence relation if it has the following properties

I. Reflexive: xRx This means that the relation is true for each x in C
Il. Symmetric: xRy=yRx for each pair (X,y) inC
[1l. Transtive: xRy and yRz=> xRz.if xRy istrue and yRzis true then xRz is true for
every xy,zinC

Two edges of agraph are linked if thereis a cycle that contains them .A link relation is a sort
of an equivalence relation.

Ta_ : e : '..-'

f

Figure 5.9. Transitive Property of Link Relation

In Hgure 5.9, it is obviousthat if there is a cycle that contains h and e and another that
contains e and f. The two cycles have a common edge and if we remove e we will still have a

cycle that containsh and f hence the link relation is transitive. It is aso obvious that the link
relation is reflexive and symmetric so link relation is an equivalence relation.

5.6 Bi-connected components computing via DFS
In the beginning we can construct an auxiliary graph B as follows

An Auxiliary graph B of agiven graph G has the following properties:
= The vertices of B are the edges of G.

» For every back-edge eof G let f1,f2,...fk be the discovery edgesof G that
form a cycle with e. Graph B contains the edges (e f1),...,(efk)

a) 1)

[eo | [ae] [z
m/:“c:E“
2 1 [zs | a8 | [Rc |

Figure 5.10. The steps of construction of the auxiliary graph from the given graph a

In Figure 5.10 (@) is the given graph. In (b) vertices are becoming edges and for every back
edge we include in the Auxiliary graph the edges that form a cycle with these back edges.
For example we have the back edge GF which forms a cycle with edges Fl and IG. Asa
result, in the Auxiliary graph we have (i).If we combine (iii), (iv) and (v), we get the final
auxiliary graph shown in figure 10.

Figure 5.11. Thefina auxiliary graph

Since there are mn+1 back edges and each cycle induced by a back-edge has at most O (n)
edges the graph has at most O(hm) edges

We can see that as a result of the previous step we have a“forest” . Each connected
component of this“forest” satisfies the equivalence classin the link relation. We can call
these equiva ence classes as link components of G.

We can summarize the previous steps in the following agorithm.
1. PerformaDFSonG.
2. Compute the auxiliary graph F by identifying the cycles of G induced by each back-
edge.
3. Compute the connected components of F.
4. For each connected component of F output the vertices of G in the corresponding
block.

Theinitial DFS traversal of G takes O(m) time. The main computation however is the
construction of the auxiliary graph. As aresult agorithm takes O (nm) time because the
bottleneck is the computation of the auxiliary graph.

Now we have a simple way to determine the bi-connected components, separation edges and
separation vertices of agraph G in linear time.

The bi-connected components are the linked components of the auxiliary graph.
The separation edges are the single — element link components of the auxiliary graph.

A vertex v of G isaseparation vertex if and only if v hasincident edgesin at least
two distinct equivalence classes of linked edges

Note that we can simplify the algorithm in order to take O(m) time using, a very important
observation: we don’'t actually need the entire auxiliary graph but we only need to identify the
connected componentsin B. As aresult we don't actually need all the edges of the auxiliary
graph but just enough of them in order to construct a spanning forest of B. So we can reduce
thetimein O(m) by using a*“smaller Auxiliary graph” which is a spanning forest of B.

Link Components
Input: A connected graph G
Output: The link components of G

Algorithm LinkComponents (G)

1
2
3
4
5
6
7
8
9

10

11

12

13

14

15

16

17

AuxGr = null /MNnitially empty auxiliary graph.
DFS(s) /IDFS of G starting at an arbitrary vertex s
for each DFS discovery edgef
AuxGr = AuxGr+ f /ladd f as vertex in Auxiliary graph
f = unlinked //mark f unlinked
for each vertex v of G
p(v) = parent(v) /lthe parent of v in the DFS tree.

for each vertex v, in increasing rank order as visited in the DFS do
for each back-edgee= (u, v) with destination v do
AuxGr - AuxGr+e
whileu?® sdo
if f' AuxGr corresponding to discovery edge (u, p (u)).
AuxGr = AuxGr + (g, f)
if f =unlinked then
f = linked
u- p(u)
else

18 u- < //shortcut to the end of the whileloop 19
Compute the connected components of the Ayx
b
& ...)
+ GF
[1o | IER
)
7 :, OF
P CE
o] Gl]
o CE
o oz § 0
PO I = G e
(o | [rm | [ec| [ap]| [Es] [FE |
J ST
RS T ' GF |
ﬁ E
= =

Figure 5.12. The agorithm in action

Aswe can seein Figure 5.12 (@) isthe input graph G after the DFS traversal. Verticesare
labeled by their rank in the visit order, and the back edges are drawn with dashed lines. In the
beginning each discovery edge isinserted in the Auxiliary graph and marked as unlinked.
After processing back edge (G, F) we have (b) and then after processing (C, E) we get (c) etc.
Thefind Auxiliary graph is (f) in the end of the agorithm.

5.7 Fundamental circuitsof a graph

A co-treeof agraph G = (V, E) with respect to aspanningtree T =(V,E() isthe
set of edges (E - E() .If G hasn vertices then any co-treg, if one exists, has
[E|- (n- 1) edges. Any edge of aco-tree s called achord of the spanning tree.

The ring-sum of two graphs G1= (V1, E1) and G2= (V2,E2) isthe graph ((VIUV2),
((E21U E2)- (E1ln E2))).In other words the edge set of the ring-sum of G1, G2
consists of those edges which are either in G1 or arein G2 but are not in both. The

ring-sum of G1 and G2 is written like G1A G2
It is easy to prove that the operation of ring-sum is both commutative and associative:

GLA G2=G2A a1,

and

G1A G2) A G3=G1A (G2 A &

It is easy to redlize that the addition of a chord to a spanning tree of a graph creates precisely
one circuit. In a graph the collection of these circuits with respect to a particular spanning tree
is called asset of fundamental circuits. Any arbitrary circuit of the graph can be expressed as a
ring-sum combination of the fundamental circuits. Hence we can suppose that the

fundamental circuits form abasis for the circuit space.

A
w2 vl
vl w3
vl w5 n V5
w4
v
(&) A given graph G (b4 spanning tree of G

Figure 5.13. A spanning tree of agraph G

V)

w3
vl —~ 5 V2
~
vl w4 vl -~ v3

Flgure 5.14. The fundamental set of circuits of G with respectto T

VIQV@/%\‘S
N v/\@A
SVAN

3
vl ~
L va
vl vl o \/
v4

Figure 5.15. Circuits produced using right sum
All previous figures show for the graph illustrated ,a spanning tree T, the corresponding set
of fundamental circuits and some other circuits expressed as linear combination of these. In
general we have the following theorem

Theorem 5.4. A set of fundamenta circuits, with respect to some spanning tree of agraph G,

forms a basis for the circuit space of G.

We have an immediate corollary:

Corollary 5.1. The circuit space for agraph with |E| edgesand n vertices has dimension
(g-n+1

We could construct an agorithm that can find a set of fundamental circuits of agraphin
polynomial time.

Set of Fundamental circuits
Input: A graph G
Output: The set of fundamental circuits

Algorithm Fund (G)

2 Find a spanning tree and the corresponding co-tree CT of G
3 FCS- null

4 forale =(u,u)l Cdo

5 find the path from u, to u¢in T and denoteitby P

6 G- R E{Q}

7 FCS- FCSEC,

8

Firstly we find the T spanning tree and the corresponding co-tree CT of G. We can achieve
that in O(max(n,|E[)) time. Then for each edgein CT the algorithm finds one fundamental
circuit and adds in to the set FCS. The whole path finding process requires no more than

O(n) time. Because the number of the edgesin CT is O(E|) ,the total worst complexity of

the agorithm is O(n°) .

Fundamental circuits were early used by Kirchoff to develop its voltage laws. These laws are
based in solving several equations over an eectric network. Theorem 5.4 and its corollary tell
us which circuits of the underlying graph of the network and how many of them, provide a
linearly independent set of equations.

