
Chapter 9 
 
Maximum flows  & Maximum Matchings 
 
 
 This chapter analyzes flows and matchings. We will define flows and maximum 
flows and present an algorithm that solves the maximum flow problem. Then matchings are 
analyzed in order to prove that flows and matchings are closely related. We will result into the 
fact that maximum flow algorithms can be used in order to find maximum matchings. 
 
 
9.1     Flows 
 
9.1.1    Definition of Flows 
 

A network flow graph is can be defined as a graph G = (V, E) and a capacity function 
c: V • V→ R+ that satisfies all the following conditions:  
 

1. For each (u, v) ∈ E, c(u, v) > 0. 
2. If (u, v) ∉ E, then c(u, v) = 0. 
3. There is a source s and a sink t. 
4. Each vertex is on a directed path from s to t. 

 
Due to the fourth condition, in a network flow graph for each node there is a path from 

source to sink through u therefore the graph is connected. 
 

We can consider that in this kind of networks, flow is “produced” at the source node and 
“consumed” at the sink node. All the other nodes are just used in order to “move” flow from 
source to sink and never “store” flow. 
 
Note: Capacity function c is defined independently for the two directions of an edge 
 

A flow in a network flow graph is a function f : V × V→ R+ such that : 
 

1. For all (u, v)  ∈ E, f(u, v) ≤ c(u, v) (Capacity constraint :  the network flow from one 
vertex to another must not exceed the given capacity)  

2. For all (u, v) ∈ V,  f(u, v) = - f(v, u) (Skew symmetry :  flow from one vertex u to a 
vertex v is the negative of the flow in the reverse direction) 

3. For all u ∈ V – {s, t},   0),( =∑
∈Vv

vuf  (Flow conservation : the total flow out of a 

vertex other than the sink or source is 0) 
 

We should note here that there could be no flow between two nodes that are not 
connected (there is no edge between them). Flow is only defined across an edge. 
 

 
 
 
 



The value of the flow passing from source s to sink t though (al least one) intermediate 
node v is : 
 

f = ∑
∈Vv

vsf ),(   = ∑
∈Vv

tvf ),(     (9.1) 

 
As we can see the value of the flow is the total outgoing flow of the source or the 

incoming flow of the sink. Also note that the flow value is constant, meaning that the flow 
that is “produced” from the source at each moment is equal to the flow that is “consumed” at 
the sink. This is true, since every other node except source or sink has a net flow value of 0 
(due to flow conservation). So the non-zero incoming flow of the sink should match the non-
zero outgoing flow of the source. 
 
9.1.2    Maximum flows 
 

A maximum flow in a flow network is a feasible flow (a flow that satisfies the flow 
conservation) such that the value of the flow is as large as possible.  
 

In the maximum flow problem we are given a flow network G with source s and sink 
t and we wish to find a flow of maximum value from s to t. This maximum value depends 
both on the structure of the network and on the various capacities of its connections. We can 
consider the problem as finding the maximum quantity of material that we can transfer 
through a “network” without exceeding the maximum transfer rate of the “network”. Assume 
that we want to provide a city with water, transferring it from a lake through a network of 
water pipes. Pulping more water that the maximum flow can harm the network while pulping 
less will not utilize the network at 100%. Also we are not concerned with the time that it takes 
for the water that is pulped to reach the city, but we should be sure that the amount of water 
that is pulped per moment is equal to the amount of water that reaches the city per moment. 

  
9.1.3     Network with multiple sources and sinks 
 

We have considered the maximum flow problem as if there is one source leading to one 
sink. In the case that there are multiple source or sinks, we reduce the problem to the single 
sink problem by adding a single source at the beginning (supersource) and one at the end 
(supersink). These nodes are connected to the other, through edges that their capacity is ∞. 
Now in order to computer the whole flow, we should compute the flow from the supersource 
to the supersink. Also using edges with capacity ∞, does not affect the value of the total flow. 
 
9.1.4    More definitions 
 
 When we think of a maximum flow we can suppose that there exists no path that can 
“carry” any more flow though the network. If there existed one we could ship more flow 
through it so the flow is not maximum. So while computing the maximum flow we try to find 
edges that are not fully utilized and create a path through them. We call residual capacity       
cf (u, v) of an edge (u, v) on a flow network G the additional amount of flow that can be send 
from u to v before exceeding the capacity of the edge c(u, v). So  
 

cf(u, v)= c(u, v) - f(u, v)    (9.2) 
 

All these edges constitute the residual network: Given a flow f on a flow network G 
the residual network Gf of G (induced by f) is a flow graph on G with flows capacities cf(u ,v). 
The residual network is the actual network that will be used in order to compute the 
maximum flow. Note that due to the skew symmetry condition (f(u, v) = - f(v, u)) an edge that 



exist in the residual network may not be an edge of the flow network! For each edge of the 
flow network, there may be created at most one more edge in the residual network. So the 
maximum number of edges that a residual network may contain is two times the number of 
edges in the flow network.  

We have noted that our purpose is to find more paths from source to sink that provide 
us with more flow, not utilized until now. These paths are called augmenting paths: Given a 
graph G =(V, E) and a flow f in G, an augmenting path p is a simple (directed) path 
connection source s to sink t in the residual graph Gf . Because of the definition of residual 
network, each edge permits some additional net flow through each edge without violating the 
capacity constraint. So the maximum amount of flow that we can ship among an augmenting 
edge is equal to the residual capacity of the edge. The amount of flow that we will ship 
through the whole augmenting path is the minimum residual capacity of the edges of path. 
Considering all these, it turn out that if an augmenting path exist in the residual network we 
can improve the flow of the network. So in order to achieve maximum flow we should search 
for augmenting paths.  

Finally we will define cut of flow networks : An (S, T) - cut in a flow network           
G = (V, E),  is a partition of V  to  S  and T = V – S  such that s ∈ S and t ∈ T.  

The flow across a (S, T) - cut is  
 

f(S, T)  = ∑∑
∈ ∈Su Tv

vuf ),(      (9.3) 

 
The capacity of the cut is  

      c(S, T) = ∑∑
∈ ∈Su Tv

vuc ),(          (9.4) 

 
Cuts in flow networks are very useful. A property of a cut is that the value of the flow 

across the cuts is equal to the flow of the network. Also this shows that in a flow network, the 
flow of the network is bounded by the capacity of any cut of the network. 
 
 
9.1.5 Max flow Min cut Theorem 
 
Theorem 9.1   Let f be a flow from s to t in G. The following conditions are equivalent 

1) F is a maximum flow 
2) The residual graph Gf allows no augmenting paths 
3) f  = c(S, T) for some (S, T) – cut 

 
Proof.   ( a ) (1) → (2) Let F be a maximum flow in a flow network. If the residual graph 
of the flow network Gf has an augmenting path, the flow f can be improved though that path 
so flow is not maximum. So there exist no augmenting paths. 

( b ) (2) → (3) We construct an (S, T) - cut as follows :  
Let S = {u ∈ V | there is a path from s to u in Gf} and let T = V – S. This partition defines an 
(S, T) – cut : s ∈ S,  t ∈T otherwise there is an augmenting path in Gf. For each u ∈ S and        
v ∈ T we have f(u, v) = c(u, v) otherwise edge (u, v) ∈ Ef and u∈S. Then f(S, T) = c(S, T) so 
f =  f(S, T)  = c(S, T) 

( c ) (3) →  (1) We have proved that for any (S, T) – cut , f  ≤ c(S, T) thus if 

f   = c(S, T) for some cut, f is a maximum flow. 
 
 



9.1.6 Maximum flows algorithms  
The Ford Fulkerson method can be used to solve the maximum flow problem. The 

method is iterative. It proceeds by finding an augmenting path in the residual network through 
which we can ship more flow. This is ended when no augmenting path can be found and we 
have achieved maximum flow. There are many implementations of this method and differs in 
the way that augmenting paths are discovered.  

 
Ford Fulkerson 
Input: a graph G, a source s and a sink t in the graph  
Output: a maximum flow for this graph from source to sink 
 
Ford Fulkerson (G, s, t) 
1 for each edge (u, v)  ∈ Edges[G] 
2 do  f [u, v] ← 0  
3       f [u, v] ← 0 
4 while there exist a path p from s to t in the residual network Gf 
5     do cf  ← min {cf (u, v) : (u, v) is in p} 
6        for each edge (u, v) in p 
7           do f [u, v] ←  f [u, v] + cf(p) 
8                 f [u, v] ←  f [u, v] 

 
At each iteration of the while loop we find an augmenting path in the residual network 

and ship more flow through the edges until there exist no more augmenting paths. The 
running time of the algorithm depends on the implementation. If augmenting paths are found 
using a BFS search then the algorithm runs in polynomial time. The exact time of the 
execution in this case is O( V E2) and is called Edmonds - Karp algorithm. 
 
 
Example 

Given the graph shown in Figure 9.1 (a) we will run the algorithm. The first augmenting 
path that we find is a → b → c → d (Figure 9.1 (b)). The flow that we can ship through is 4 
and so we update the network. In the second iteration (Figure 9.1 (c)) we find a → b → d. 
Edge (a, b) can carry only 4 additional units of flow so this is the maximum flow through this 
path. Finally, (Figure 9.1 (d)), we navigate through a → c → d by adding 2 units of flow since 
edge (c, d) can’t carry any more. Now our network has no augmenting paths so the algorithm 
terminates and we have found the maximum flow for the flow network 
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Figure 9.1: A Ford - Fulkerson algorithm example



 
9.2    Matchings 
 
9.2.1 Definitions 
 

A matching in a graph G=(V, E), is a set of edges (links) no two of which have a 
common end (vertex). In the most practical problems we want to find the matching for the 
most elements of the graph. Such a matching is called maximum matching. 

A matching is also called an independent edge set. 
An edge in a matching of a graph is a matched edge. All the edges of the graph that 

are not in the matching are called free edges. 
A vertex incident to an edge of the matching is called matched vertex (with respect to 

the matching) , on the other side every other vertex is an exposed vertex (with respect to 
the matching). 

In the most practical problems we want to find the matching for the most elements of 
the graph, such matching is called maximum matching (also known as maximum 
cardinality matching). 

 
 
Formal Definition: 
Given a graph G=(V, E) a set of edges M is a matching if  
1. M ⊆ E 
2. No two edges of M share the same node. 
 

A maximum matching in G is a matching M with maximal cardinality. That means 
that for every other maximal matching M' of the graph G: |M| > |M'|. 

In a bipartite graph G = (X, Y, E), a matching is a complete matching from X to Y if 
every vertex in X is incident to an edge of the matching. The necessary and sufficient 
condition for the existence of such a complete matching is that  |f(A)| ≥ |A| for every 
subset A of X, where f(A) is the set of vertices that are adjacent to at least one vertex in A. 

A matching in a graph is a perfect matching if every vertex in the graph is incident to 
an edge in the matching.  

Given an arbitrary graph G = (V, E), we want to find out if all the vertices of V can 
be grouped in pairs using this matching. According to the Konig’s Marriage Theorem: If 
a bipartite graph G = (X, Y, E) is k-regular (where k is positive), there is a perfect 
matching in the graph. 

If a graph has a perfect matching M then |M| = |V|/2, that means practically that each 
vertex has its unique pair. 

 
Theorem 9.2 (Tutte) 

The graph G = (V, E) has a perfect matching if and only if the number of odd 
components of (G – S) does not exceed |S| for every S ⊂ V. 

 
 
9.2.2 Building a Matching  
 
Before continuing with methods and algorithms for finding the maximum matching, we 
must introduce some definitions of terms. 
 
Given a matching M in G, a simple path P of G: 

P = u1, u2, u3, u4, …, uk 
is the path that connects u1 with uk . 
 



An alternating path with respect to M is the path P that all its odd edges are not in M and 
also all its even edges are in M (Figure 9.2). 
 

u2

u4

u6

u8

u9

u1

u3

u5

u7

P = u1 , u2 ,u3 ,u4, u5, u6

M = (u2,u3) , (u4,u5), (u7,u8)  
Figure 9.2 : Paths & alternating paths 

 
 

An alternating path P is an augmenting path with respect to M if its first and its last 
node are not covered by M. 
 

An augmenting path has odd number of edges. The idea of the augmenting path is 
one of the fundamental ideas of matching theory. A path or a circuit P in a graph G is said 
to be alternating with respect to a matching M if its edges alternately are in and not in M 
(an alternating circuit will have an even number of edges). If the end nodes (first and last) 
of a path P are not saturated by M then P is called an augmenting path. 
 
Removing the even edges of P from M and adding the odd edges of P to M increases the 
size of the matching by one (covering two more vertices). 
 
Theorem 9.3 (Berge 1957) 
  A matching M in a graph G is maximum iff there is no augmenting path in G with 
respect to M. 
 
Proof. 
  (a) Augmenting path ⇒ not maximum: If there is an augmenting path then M is not 
the maximum matching since we can use the path to get a larger matching. 
 

(b) Not maximum ⇒ augmenting path. Assume that M is not the maximum. we need 
to show that there is an augmenting path with respect to M. Let M′ be a matching in G 
such that  |M′| > |M′| consider the graph  

H = (V, M ∪ M′) 
The degrees in this graph are 0, 1, and 2. The connected components in the graph are 
either paths or cycles (circuits), since there are no cycles with odd number of edges, there 
must be at least one connected component (path) with mode one edge of M′  than M. This 
component is an augmenting path. 
 

 
9.2.3 A generalized Matching Algorithm 
 
 
 



Main steps: 
 

1. M ← 0; 
2. while there are augmenting paths with respect to M 
3.       extend the matching using an augmenting path. 

 
The analysis of this algorithm is very complex. Here we will emphasize in a solution 

for bi-partite graphs only.  
 

In a bipartite graph the search for an augmenting path, which is the most difficult step 
in the generalized algorithm above, can be done by a variation of the Ford - Fulkenson 
method which we saw in the Maximum flows. 
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Figure 9.3 : Conversion of an undirected bi-partite graph in a flow network in order to find 
matchings 

 
 
Given an undirected bi-partite graph G=(V, E), (Figure 9.3 (a)) we must construct a flow 
network in which the flows will correspond to the matchings.  
 
Let G′ = (V′, E′) be the corresponding flow network for G (Figure 9.3 (b))  
 
(according to super-source and super-sink theory section 9.1.3) We define two new vertices a 
source s and a sink t not in V, and we let: 

 
V′ = V∪{s, t} 

 
For the original graph G if V = L ∪ R where L is the left partition, and R is the right partition 
of the bi-partite graph G, then the directed edges of G′  are given by: 
 

E′ =   {(s, u): u ∈L} ∪  {(u, v): u ∈ L, v ∈ R, and (u, v) ∈ E} ∪  {(v, t) : v ∈ R, } 
 
The last step to finish the directed weighted graph G′  is to assign unit capacity to every edge 
in E′. (Figure 9.4) 
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Figure 9.4 : Last step of conversion, each edge has capacity 1 and the graph has been 
transformed to an flow network 

 
The following show that a matching in G corresponds to a flow in G′ network flow. 
 
We say a flow f on a flow network G = (V, E) is integer-valued if  f(u, v) is an integer for all 
(u, v) ∈ V x V . 
 
Lemma 9.4: Let G = (V, E) be a bi-partite graph with vertex partition  

V = L ∪ R 
and let G′ = ( V′, E′) be its corresponding flow network. If M is a matching in G, then there is 
an integer-valued flow g in G′  with value  |f| = |M|. Conversely, if f is an integer-valued flow 
in G’, then there is a matching M in G with cardinality |M| = |f|. 
 
Proof.  We must show that a matching M in G corresponds to an integer flow in G′. 
If (u, v) ∈ M, then   
 

f(s, u) = f(u, v) = f(v, t) = 1  and  f(u, s) = f(v, u) = f(t, v) = -1 
 

For all other edges of E′  we define f(u, v) = 0. 
Since the graph is bi-partite we observe that for each path from s to t: 
 

s → u → v → t with u ∈ L , v ∈ R  the capacity is 1. 
 
Since each vertex in L has incoming capacity 1 there can be at most 1 edge (u, v) leaving L to 
R. The set of edges (u,v) therefore corresponds a matching M. 
To see that |M| = |f| where |f| the number of flows, we observe that for every matched vertex  
u ∈ L we have f(s, u) = 1 and for every edge (u, v) ∈ E - M ,we have f(u, v) = 0. Consequently 
we obtain : 
 
|M| = f(L ,R) 
 = f(L, V′) - f(L, L) – f(L, s) – f(L, t) 
 = 0 – 0 + f(s, L)  - 0 
 = f(s ,V′) 
 = |f|  
 
The above shows that we can use an algorithm for finding maximum flows to find the 
maximum matching of a Graph G. 
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