Chapter 9

Layered Drawing of graphs

This chapter presents a widely used approach for drawing digraphs, the hierarchical
approach, that aims at creating polyline layered drawings.

Layered graph drawing (see Figure 9.1) is a popular paradigm for drawing graphs and
has applications in visualization, in DNA mapping and in VLSI layout.

Figure 9.1: An example graph - A possible layered drawing.

The development of algorithms for computing layered drawings has started in the sev-
enties. Graph layering is an important step in many algorithms for drawing directed acyclic
graphs (DAGs): a graph layering algorithm partitions the graph into layers of independent
sets of nodes and with this layering, the inter-layer connections and the ordering of nodes
within a layer are determined in an algorithm-specific way.

There are several Layering-Based Algorithms that construct layered drawings; they ac-
cept, as input, directed graphs without any particular restriction (the input directed graph
can be planar or not, acyclic or cyclic). In layered drawings, even though vertices and
edge-bends are placed at integer coordinates, the edge-crossings can be arbitrarily close to
each other or to the vertices and edgebends. Layering-based algorithms generally follow the
methodology of Sugiyama, which consists of the following steps (see Figure 9.2):

1. Remove existing cycles in the input graph by reversing the direction of some edges.

2. Assign vertices to layers heuristically, optimizing some criteria, such as the total edge
length.

3. Introduce fictitious vertices along edges whose end-vertices are not on consecutive
layers. The result is a proper k-level graph.
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Figure 9.2: An example of Sugiyama hierarchical drawing style for directed graphs.

4. Reduce the crossings among edges by permuting the order of vertices on each layer.
5. Remove the fictitious vertices introduced in Step 3, replacing them with edge-bends.

6. Reduce the number of bends by readjusting the position of vertices on each layer.

The hierarchical approach consists of three main steps:

1. Layer Assignment: Assign each vertex to a horizontal layer, determining the y-
coordinate of each vertex.

2. Crossing Reduction: Vertices within a layer are ordered to reduce edge crossings.

3. Horizontal Coordinate Assignment: Assign a z-coordinate to each vertex, with the
goal of distributing the vertices uniformly and minimizing the number of bends.

If the graph contains cycles, then an additional step is required:

4. Cycle Removal: As few edges as possible are reversed to make the graph acyclic. This
allows drawing all edges in one direction which is important for the next step. At
the end of the algorithm, the reversed edges are reversed again to obtain their initial
orientation.

Most of the steps are NP-complete problems and thus a variety of heuristics are used.
Each step is also fairly independent of the others and various techniques can be examined
at each stage without needing to know those of the previous stage.

9.1 Layer Assignment

Formally, a layering of an acyclic digraph, G = (V, E) is a partition of V into subsets
Ly, Ly,..., Ly, such that if (u,v) € E, where u € L; and v € L, then i > j. The height is
h and the width is the number of vertices in the largest layer. The span of an edge is the
difference between the levels of the vertices to which it is incident. A digraph is proper if
no edge has a span greater than one 1.

In the layering step, we want to find a layering of an acyclic digraph, such that the
layered digraph has small width and height. Also we want the layering to be proper for the
crossing reduction step that follows. The latter requirement is satisfied by inserting dummy
vertices at each level along the path of every edge with span greater than one. Later on



they are removed, leaving a polyline edge. Edges that originally had span one, are drawn
as straight lines.

A layering algorithm should find a layering of a DAG subject to certain aesthetic criteria
important to the final drawing:

1. The drawing should be compact; large edge spans should be avoided; and, the edges
should be as straight as possible. Compactness can be achieved by specifying bounds
W and H, on the width and the height of the layering, respectively. Short edge spans
are desirable aesthetically because they increase the readability of the drawing but
also because the forced introduction of dummy nodes complicates further stages of
drawing algorithms. Further, these dummy nodes may also permit additional bends
on edges since edge bends mainly occur at dummy nodes.

2. A proper layering is needed. A layering is called proper if edges occur between adjacent
layers only. To achieve the latter, dummy vertices are introduced along the edges.
Each edge (u,v) of span k > 1, is replaced with path (u = v1,vs,... ,vx = v), adding
dummy vertices vo,vs,... ,Ux_1. Dummy vertices are needed in crossing reduction
stage.

3. The number of dummy vertices should be small. Techniques exist to minimize the
number of dummy vertices used. This is desirable since later steps depend on the
number of vertices, dummy ones included, and because bends occur where dummy
vertices lie and we want to minimize the number of bends. One technique defines
a cost function which is equal to the total vertical span of all the edges. Then the
layer assignment problem is reduced to choosing the y-coordinates as before, but
now subject to miminizing this cost function. It can be solved as an integer linear
programming problem in a standard way. Moreover, the total number of dummy and
real vertices increases the time of steps required in layering approach.

Figure 9.3: A layering of the graph.



Figure 9.4: A layered drawing of a directed graph.

9.1.1 The Longest Path Layering

The so-called Longest Path Layering guarantees a layering with a minimum number of
layers. All sinks are placed in L;, then each remaining vertex, u is placed in layer L1,
where p is the longest path from u to a sink. Since the digraph is acyclic, this is done in
linear time. The nymber of layers is addressed to be minimum, so that the height of the
layering should be minimum. The shortcoming of this layering technique is that lower levels
may be quite wide.

The following algorithm which is similar to the above algorithm computes layerings of
minimum height. We assume that the graphs are acyclic. Each sink is placed in layer L.
For the remaining vertices, the layer will be recursively defined by:

y(u) := max{i|v € NT(u) y(v) =i+ 1} (9.1
and
Nt (u) :={v € V|3 (u,v) € E}. (9.2)

This produces a layering where many vertices will stay close to the bottom. The algorithm
can be implemented in linear time, using a topological ordering of the vertices.

9.1.2 Layering to minimize width

Given a fixed width greater or equal to three, the problem of finding a layering with
minimum height is NP-complete. Suppose each vertex is a unit-time task to be executed in
one of the processors of a multiprocessor, and each edge (u, v) of digraph G is the precedence
constraint that v must precede v. In the precedence constrained multiprocessor scheduling
problem all tasks that are assigned to the W processors must be executed in time H. This
problem is also NP - complete.

In the following we will present the Coffman-Graham-Algorithm. The Coffman-Graham-
Layering algorithm from the theory of multiprocessor scheduling is a layering method which



tries to minimize the width (ignoring dummy vertices, since their width is unimportant in
the final drawing) as well as the height. However, it does not guarantee a minimum width
and height since this problem is NP-complete. It computes a layering with width at most
w. The Coffman-Graham-Algorithm takes as input a reduced digraph, i.e., no transitive
edges are present in the graph, and a width w. An edge (u,v) is called transitive if a path
(u = v1,v9,... ,vx = v) exists in the graph.

Observe that the absence of transitive edges does not affect the width of the layering
significantly and that transitive edges can be found in linear time. The weakness of a simple
greedy heuristic is illustrated in Figure 9.6. w is assumed to be 2. The graph in Figure 9.6
consists of n/2, n mod 4 = 0, isolated vertices and a directed path of n/2 vertices (Figure
9.5.8(a)). The greedy heuristic would probably assign the isolated vertices to the n/4 first
layers. This would result in a layering of height 3n/4 (Figure 9.6(b)). An optimal solution
is depicted in Figure 9.6¢c).

o

Figure 9.5: Introducing dummy vertices in the graph.

The greedy solution is far from optimal since it does not consider the long path in the
graph. This is exactly what the Coffman-Graham-Algorithm tries to avoid. It proceeds in
two phases. The first orders the vertices mainly by their distance from the source vertices
of the graph, the second assigns the vertices to the layers. Vertices with large distances
from the sources will be assigned to layers as close to the bottom as possible. We need
a special lexicographical ordering on finite integer sets to describe the algorithm in more
detail: Then S < T if either

1. S=0and T #0, or

2. S #0, T #0, and max(S) < max(T), or

3. S#0, T #0, max(S) = max(T) and S — {max(S)} < T — {max(T)}.

Given a fixed width greater or equal to three, the problem of finding a layering with

minimum height is NP-complete. Suppose each vertex is a unit-time task to be executed in
one of the processors of a multiprocessor and each edge (u,v) of digraph G is the precedence
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Figure 9.6: (a) A graph. (b) Greedy solution. (c) Optimal solution. The worst and the
best layering for the given graph.

constraint that v must precede v. In the precedence constrained multiprocessor scheduling
problem all tasks that are assigned to the W processors must be executed in time H.
This problem is also NP-complete. The Coffman-Graham-Layering algorithm from the
theory of mulitprocessor scheduling is a layering method which tries to minimize the width
(ignoring dummy vertices, since their width is unimportant in the final drawing) as well as
the height. However, it does not guarantee a minimum width and height since this problem
is NP-complete.

Input: a reduced digraph G = (V, E) and the desired maximum width, .

Output: a proper layered digraph G.

COFFMAN-GRAHAM-LAYERING(G, w)
1 Order the vertices by assigning an integer label, w(u), to each vertex:

2 i+1
3 repeat
4 (a) Choose an unlabeled vertex, v, such that {7 (v) : (u,v) € E}
5 is minimized. Use a lexicographic order on the sets.
6 (b) Set 7(v) = i.
7 until ¢ =V
8  Assign vertices to layers, ensuring that no layer receives more than w vertices:
9 k+1
10 L1 — @
11 U+ 0
12 while U #V
13 do (a) Choose u € V — U, such that every vertex in {v : (u,v) € E} is in U, and m(u) is maximized
14 (b) if |Lg| < W and for every edge (u,w), w € Ly ULy U... L 4



15 then

16 add u to Ly
17 else k<« k+1, Ly + {u}
18 (c) Add u to U.

Suppose that hy,i, is the minimum height of a layering of width W, then the algorithm
above guarantees that the height of the layering is not too large, i.e that h < (2 — %)hmin.
Thus the Coffman-Graham-Algorithm is an exact algorithm for w < 2.

One technique defines a cost function which is equal to the total vertical span of all
the edges. Then the layer assignment problem is reduced to choosing the y-coordinates as
before, but now subject to miminizing this cost function. It can be solved as an integer
linear programming problem in a standard way.

9.1.3 Minimizing the Number of Dummy Vertices

Minimizing the number of dummy vertices implies minimum height. The objective to
minimize the number of dummy vertices is equivalent to minimize the total edge span. To
solve this problem we formulate it as an integer program. Given an acyclic digraph, each
vertex u has a y-coordinate that satisfies the following layering properties:

1. y(u) is an integer for each vertex u.
2. y(u) > 1 for each vertex u.
3. y(u) — y(v) > 1 for each (u,v) € E.

Thus minimizing over f = 3, ycp(y¥(v) — y(v) — 1) minimizes the total span of the
edges and thus the number of vertices. Note that f measures the total span of the edges and
consequently can be assumed as the number of dummy vertices. With the goal of minimizing
the sum of edge spans ,an Integer Linear Programming formulation has been developed, that
layers the graph accurately according to the specied dimensions. The contribution to the
width of the layering of the dummy nodes that are introduced by the layering process is
taken into account.

An example, where this formulation has been applied, is the graph Grafo1002 from the
graph database of the University of Rome introduced by Di Battista et al. in 1997. It is
a DAG with 20 nodes and 21 edges. Several techniques exist to minimize the number of
dummy vertices used. This is desirable since later steps depend on the number of vertices
and because bends occur where dummy vertices lie and we want to minimize the number
of bends. One technique defines a cost function which is equal to the total vertical span of
all the edges. Then the layer assignment problem is reduced to choosing the y-coordinates
as before, but now subject to miminizing this cost function. It can be solved as an integer
linear programming problem in a standard way.

9.2 Crossing Reduction

The output of the layering step is a proper layered digraph with a (possibly large)
number of crossings. Crossings do not convey any useful information about the structures
represented in the graph. Thus, their minimization is among the most important aesthetic
criteria.



What affects the number of crossings in a drawing of a layered digraph, is obviously the
relative - not the absolute - position of vertices within each layer, i.e., their ordering. The
crossing reduction problem is a combinatorial one, to choose for each layer the permutation
of vertices that ”"produces” less crossings. Still, it is NP-complete, even if we consider a
2-layer digraph.

It seems reasonable therefore, to apply heuristic algorithms to solve this problem ([2],
[4], [1]). All these methods use a layer-by-layer sweep along with a technique for reducing
crossings between two layers.

9.2.1 The Layer-by-Layer Sweep

Let G = (V,E) = (W1, Va,... , Vi, E) a k-layered graph, with disjoint sets Vi,...,Vj
of vertices that are assigned to layers Li,... , Ly, using longest path layering or Coffman-
Graham layering, for example. The edge set E consists of edges with endpoints in layers
L;_1, L;, i =2,... ,k (their span equals 1 since the graph is proper).

The layer-by-layer sweep in a k-layered graph, proceeds in the following way: The
relative position of vertices in the 1% layer is held fixed, chosen at random at first, or
”optimized” somehow. Then, we repeatedly change the order of vertices in the 2"¢ layer so
that the number of crossings between edges with endpoints in layers L; and Lo, is minimized.
The sweep proceeds, keeping fixed the permutation in the 2"% layer, and repermuting the
vertices in the 37¢ layer, and so on. When all the layers have been processed, we go
backwards, holding the vertex order in layer L; fixed, and repermuting the vertices in layer
L;_q,fori=k, k—1, ..., 2. The sweeps are repeated, from top-to-bottom and bottom-
to-top, until no more improvement is observed. Another variation of the above technique
considers a fixed vertex ordering in layers L;_; and L; 1, while repermuting the vertices in
L; layer in order to minimize crossings between edges in layers L; 1, L;, L;y1.

We conclude, then, that we have to solve a series of two-layer crossing problems: min-
imize crossings between two adjacent layers L; and L;; with L; fixed, reordering vertices
in Li+1-

Let G = (V1, V5, E) a 2-layered, or bipartite graph, whose vertices are assigned to layers
L1 and Lo, and E C V; X V5, the set of edges.

For convenience, we describe the ordering of vertices in each layer with z-coordinates:
z; = {z;(u) Yu € L;, i = 1,2}, that is, z;(u) is the ordinal position of u in the current
ordering . Then, cross(G,z1,x2) is the number of crossings between edges in E when the
vertices in L1, Lo are ordered by x1 and w9, respectively, and

opt(G, 1) = rréizncross(G,wl,:cg) (9.3)

is the minimum number of crossings given that vertices in L; have the (fixed) relative
positioning x1. Then, the two-layer crossing problem can be formulated as an optimization
problem:

Input: a two-layered digraph G = (V4, V3, E) and an ordering x; of L.
Output: an ordering zo of Lo that minimizes cross(G, z1,x2)

Since even the two-layer crossing problem is NP-complete, heuristic methods are appro-
priate; three popular heuristic methods are presented in subsequent sections. Also, in [4]
it is shown that if the ordering in one layer is fixed, the problem can be transformed in a



linear ordering problem that can be solved exactly in very short computational time, via
the branch and cut method.

Let ny = |Vi|, ng = |Va|, m = |E|, and N, = {v € V|e = (u,v) € E} denotes the set
of neighbors of u € V = V4 UV,. Let 8%, , i = 1,2 a binary vector, 2, =1 if u is to the

uuv? -
left of v (z;(u) < x;(v)), and zero otherwise. Thus, the vector §' € {0,1}(%) describes
adequately the orderings z; (i = 1,2). With the permutation z; of Vj fixed, the number
of crossings among the edges adjacent to u # v € Vo if zo(u) < z2(v), is then:

Cw= Y, > O (9.4)

keN(u) leN(v)

The crossing number ¢y, depends therefore only on the relative position of wu, wv; it
equals the number of pairs (u,k), (v,l) of edges with z1(l) < z1(k). Obviously, ¢y, =0
for all u € V5. Table 9.1 below, shows the crossing numbers for all pairs of vertices of Vs
in the 2-layer digraph in Figure (9.7).

Figure 9.7: Drawing of a 2-layer digraph
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Table 9.1: Crossing numbers for all pairs of vertices in layer 2.

Lemma 9.1 gives cross(G,x1,x2) as a function of crossing numbers, and a lower bound
for opt(G,x1) that seems trivial but, according to [4], it is very good

Lemma 9.1 Let G = (V1,Vs, E) be a two-layer digraph and x1, xo orderings of Vi, Vs
respectively. Then

cross(G,xy, o) = Z Cuvs (9.5)
z2(u)<z2(V)
and
na—1 n2
opt(G, 1) > Zmin(cuvacvu) = Z Z min(Ccyy, Cuu), (9.6)
u,v u=1 v=u+1

where we sum over all pairs of vertices of the second layer.



Proof. The relation 9.5 is obvious. Inequality 9.5 holds because every ordering zo of V5
has either zo(u) < z2(v) or zo(v) < z2(u).

a

The general two-layer crossing problem permits both layers to be permuted; as shown in
[4], the number of crossings is considerably less than with one layer fixed. For large number
of vertices, however, two-sided crossing minimization is possible only through a modification:
the first layer is kept fixed while the second is ”optimized”, then the second layer is fixed
and the first is "optimized”, and so on; the iterations continue until the crossing number
does not decrease any more. The following heuristic methods, as well as the exact method
mentioned in [4], can be used either for one-sided, or for two-sided crossing minimization.

9.2.2 Sorting Methods

Several simple heuristic methods require precomputation of the crossing numbers, a
process that seems to require O(|E|?) time but - if implemented more carefully - can take

just O (Zu,v cuv).

The greedy-switch heuristic proceeds like bubble-sort, switching adjacent pairs of ver-
tices if the number of crossings is reduced. Algorithm Adjacent- Ezchange uses precomputed
crossing numbers ¢, (there is no need to compute them again since they depend only on
the relative position of u and v) and needs O(n3) time:

Input: a two-layer digraph G = (V1, V5, E) and an ordering 1 of vertices € V.

Output: an ordering o of vertices € Va.

ADJACENT-EXCHANGE(G)
Choose an initial order for V5
repeat
for each adjacent pair of vertices i, j < i+ 1 € V5
do if ¢;; > ¢j;
then exchange vertices 7, j
until the number of crossings is not reduced any more.

SO W N

An example of worst case performance for greedy-switch heuristic is depicted in Fig-
ure (9.8).

Figure 9.8: Pathological case for adjacent-exchange heuristic.

Split heuristic chooses a pivot vertex p € Vo and places each vertex g #p € V5 to the
left or right of p, depending on whether it would result in fewer crossings. As in quicksort,
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this step is applied recursively to order the sets of vertices to the left and right of p. Worst-
case running time of split is O(n3), but, on the average, it runs in O(nylogns) time (as
quicksort):

Input: a two-layer digraph G = (V1, V5, E) and an ordering x; of vertices of V.

Output: an ordering xo of vertices of V5.

SpLiT(Va)
ifVa#0
then (a)p € V;
(b) Vleft — Q); Vri_qht «—0
(c)for each vertex q € Vo — {p}
do if cg < ¢
then I/vleft <~ I/vleft Ug
else Viignt < Viighe Ugq
(d) SPLIT(Viest)  SPLIT(Vyignt)
The output is the concatenation of their outputs.

© 00 O Ui W N

Another sorting algorithm (mentioned in [4]) is greedy-insert: like insertion sort, the
next vertex p is chosen so that the number of crossings that edges adjacent to p make with
edges adjacent to vertices on the left of p, is minimized. All three of the above methods use
precomputed crossing numbers, so they all have non-linear time complexity.

9.2.3 The Barycenter and Median Methods

The averaging heuristics, i.e., the barycenter and the median methods, are very common
methods to order vertices in Vo. They simply compute the average position of their neighbors
in V7, the barycenter or median, respectively, and sort vertices according to these numbers.

More precisely, the barycenter method estimates the new ordinal number x5 (u) of each
vertex u € V5, as the average position of its neighbors in V;:

zo(u) = avg(u) ! Z z1(v)., (9.7)

B deg(u) VEN (u)

where N(u) denotes the set of neighbors of v and deg(u) denotes their number, i.e. the
degree of u. If the barycenter of two vertices coincides, their order is choosen arbitrarily.
The running time of the method is linear. We denote the number of crossings with this
method as avg(G, ).

The median method estimates the new ordinal number z3(u) of each vertex u € Va,
as the median of the positions of its neighbors in Vi: z2(u) = med(u). The running time
of this method is linear, too, that is, O(deg(u)). The number of crossings is denoted as
med(G, z1).

If the set N(u) = {vi,v2,...,v;} of neighbors of u is already sorted, ie., zi(v1) <
z1(v2) < ... < z1(v;), and the number of neighbors of u € V; is odd (j mod 2 = 1), then
the median is uniquely defined as

medogd(u) = 21(v|j/2))- (9.8)
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When |N(u)| is even (j mod 2 =0 = [j/2] = j/2), there are two median values, the left:
mede(u) (the same as medygq(u) defined in 9.8), and the right, med,(u):

meder(u) = T1(vj/241)- (9.9)

In this case, in [1] an interpolated value between the two medians is used, biased towards
the side where vertices are more closely packed:

mede (u) * (1(vj) — m1(Uj/2+1)) + meder (u) * (371(’Uj/2) — z1(v1))

r1(vj) — 21(v)/241) + 1(vj/2) — 21 (V1))

medeyen(u) = (9.10)

If N(u) =0, then med(u) =0 - in this case, [1] do not change at all x2(u), and sort
the other vertices w € Vo with N(w) # (), into the remaining positions.

If the median of two vertices coincides, and their degrees do not have the same parity,
then we place the odd degree vertex on the left of the even degree vertex. If their parity is
the same, we can choose their order arbitrarily. [1] flip vertices with equal medians during
the sorting phase on every other forward and backward traversal.

The following theorem proves that both methods give a zero-crossing drawing if this
actually exists.

Theorem 9.1 Let G = (V1,V,, E) be a two-layer digraph and x1 an ordering of Vi. If
opt(G,z1) =0, then avg(G,z1) = med(G,z1) = 0.

On the other hand, none of these methods is guaranteed to give an optimum solution.
Figures (9.9) and (9.10) present worst cases for the averaging methods, that imply a lower
bound to the crossings they achieve. This lower bound is given in the following lemma:

Lemma 9.2 1. For each n there is a two-layer digraph G = (V1,Va, E) with |V1| = n,
|Va| =2, and an ordering x1 of |Vi|, such that

avg(G, x1)

——— = x . 9.11

ot Goar) & (v/n) (9-11)

2. For each n there is a two-layer digraph G' = (V{, V4, E") with |V{| = n, |Vy| =2, and
an ordering x1 of |V]|, such that

med(G', z1) 1

— 2 >3- 0(-). 9.12

opt(G',z1) — O(n) ( )
Proof. For the relation concerning barycenter method, we will use the graph in Figure (9.9).
Let v1,v9, ... ,v, bethe vertices of V7, positioned with this order, where n = k*>+k—1, and
u, w the 2 vertices of Va. If N(w) = {vg2} and N(u) = {vi, V241, V219, ,Up24k 1}

then avg(w) = k% and: avg(u) = 1+k2+1+','c'+k2+k’1 =k?—k/2—1/2 < k%. Since avg(u) <
avg(w), the barycenter method places u to the left of w and avg(G,z1) = k — 1. But
opt(G,z1) =1, so % =k —1, where k is O(y/n, and the bound is proven.
In Figure (9.10) the digraph is a worst case example for the median method. V; has
n = 4k + 2 vertices, V, has the vertices u, w and N(u) = {vg41,--. ,V2%+1,U3k+3,
., Ugy2}, med(u) = 2k + 1, N(w) = {v1,...,0k, Vogt2,... ,VU3k12}, and med(w) =
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2k + 2 > med(u). Then u is placed to the left of w and med(G',z1) = 2k(k + 1) + k?
while opt(G',z1) = (k+ 1)2. So, we have that:

med(G',z1)  2k(k+1) +k?
opt(G',z1) (k+1)?
 B(k+1)2—4k—4+1
B (k+1)2
4,
k+1 " (k+1)2
- 16 16
B _n—l—2+(n+2)2
> 3—0(%). (9.13)

a

The lower bound to the number of crossings through barycenter method is proportional
to /nopt(G, x1); that is, its ratio to opt(G,z1) grows with increasing n. On the contrary,
the same lower bound for median heuristic is proportional to a constant times opt(G, x1),
or med(G,x1,x2) x 3opt(G,z1). Therefore, median method is better than barycenter in
terms of their theoretical lower bounds in performance.

u v

0000 @0

Figure 9.9: Pathological case for barycenter method.

Figure 9.10: Pathological case for median heuristic.

The median method has one more theoretical advantage over barycenter method, since
there is an upper bound on med(G, z1) according to the following theorem:

Theorem 9.2 For all two-layer digraphs G = (V1,Va, E) and all vertex orderings x1 of Vi,
med(G,x1) < 3opt(G,z1).

Proof. Let u and v vertices of Vo, and u be positioned to the left of v with median heuristic.
As depicted in Figure (9.11), we can partition edges incident with u and v, in four groups,
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according to their relative positions:

a = {(u,wy) € E:x1(wy) < med(u)}
B = {(v,wg) € E:z1(wg) > med(v)}
7 = {(v,wy) € E:z1(wy) <med(v)}
0 = {(u,ws) € E: z1(ws) > med(u)}

where w; a vertex of V] that is an end-vertex of an edge belonging in group ¢. These groups,
of course, do not include the edges that join u and v to their respective medians, denoted
as e, and e, respectively.

If we refer to the number of edges in each group as a = |a|, b = |8, ¢ = |y|, and
d =|4], we can prove that

Cou > ab+a+b+e, (9.14)

where ¢ = 0 if med(u) = med(v), and e = 1 in the opposite case. Indeed, if v is
positioned to the left of u, as shown in Figure (9.12), all edges in a group will cross e,
(since z1(wy) < med(u) < med(v)), as well as all edges in [ group (since zi(w,) <
med(u) < z1(wg), yielding a+ab crossings. Also, all edges in 3 group will cross e, (since
x1(wg) > med(v) > med(u)), resulting in b crossings. Concerning e, if med(u) = med(v),
edges e, and e, do not cross, and € = 0. On the otherhand, if med(u) # med(v), edge
ey will cross e,, and € = 1. Inequality (9.14) follows.

Now, if u is positioned to the left of v, edges in a group will not cross any edge of 3
group. Edges e, and e, cannot cross, too; see Figure (9.11). Then:

cuw < ac+ cd+ bd + ¢+ d. (9.15)

If the degree of u is odd, then the number of edges in group « equals that of § (by
definition of groups); if the degree of u is even, then a + 1 = d. If deg(v) is odd, ¢ = b,
while if it is even, ¢+ 1 = b. In any case, we have that d < a+1 and ¢ < b. Substituting
in 9.15 we get

Cuw < 3ab+a+3b+ 1. (9.16)

Next we have to show that ¢y, < 3¢y, in order to prove the theorem. Assume that
Cyv > 3Cyy, instead, or

Cyv — 3¢y > 0. (9.17)

Multiplying 9.14 with —3, its direction is reversed; adding it to 9.16 and using 9.17,
implies that —2a —3e +1 > 0, or 2a + 3¢ —1 < 0. Since a > 0, € > 0 and both are
integers,

a=e=0. (9.18)

Then a = () and
deg(u) = |[N(u)| = |aU{e,} U =0+1+d<2. (9.19)
Using 9.14, 9.15 and the inequality ¢ < b, we can show that d # 0. Then d = 1, and

deg(u) = 2 according to 9.19.
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v.

Figure 9.12: Edges belonging to the same groups as above, when v is positioned to the left
of u.

By definition of €, and 9.18, med(u) = med(v); since u is positioned to the left of v, and
the degree of u is even, the degree of v must be even, too, otherwise the median heuristic
would place it to the left of u. Then, ¢+ 1 = b as mentioned above, or ¢ = b— 1. Using this
equality and 9.18 in 9.14 and 9.15, it follows that ¢, > b or —3c¢,, < —3b, and ¢, < 3b—1.
Summing the last inequalities and using 9.17, implies that —1 > 0, that is a contradiction.

So, for any vertices u,v € Vb, it holds that ¢y, < 3¢,,. This is equivalent to:

Cyy < 3min(cvuacuv)-

We sum the last inequality over all pairs u,v € Vs, with xz9(u) < z3(v), and use both
relations of Lemma, 9.1, to conclude that

Cyp < 3min(cyy, Cyp)-

Figure 9.13: A two-layer digraph with groups of edges a = {(u,2),(u,3)}, B8 =
{(v,9), (v,11), (v,12)}, v = {(v,1), (v,5),(v,7)}, and § = {(u,6), (u, 10), (u,11)}
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Considering only low-degree digraphs and applying a similar - but case-by-case - argu-
ment, gives the following result:

Theorem 9.3 For all two-layer digraphs G = (V1,Va, E) with deg(u) < 3VYu € V4 and all
vertex orderings x1 of Vi, med(G,x1) < 20pt(G,z1).

9.2.4 Integer Programming Methods

The two layer crossing minimization problem can be formulated as an integer program
(a linear ordering problem).

Equation 9.4 gives the number of crossings c,,, among the edges adjacent to u # v € V3
if z9(u) < @2(v), when the permutation x; of V; is fixed. If z9(v) < 22(u), the number
of crossings is denoted as ¢,, and is given by:

cu= Y. > O (9.20)

keN(u) leN(v)

where Jél a binary vector (already defined in subsection 9.2.1), 5,& =1 if k is to the left
of I, or z1(k) < z1(l), and &, = 0 otherwise. Below, we use 2, to denote the relative
position of vertices u, v in second layer. Obviously,

62, =1-62,. (9.21)

Combining equations 9.4, 9.20, 9.21 and 9.5 from Lemma 9.1, gives:

cross(G,xy,m0) = Z (Cwnd2, + cou(l —62))
2 (u)<z2(v)
= Z (Cuv — Cou)d2, + Z Cou- (9.22)
z2(u)<z2(V) z2(u)<z2(V)
Since the problem is to minimize cross(G,z1,x2) and the term Em(ukzz(v) Cyy 10 9.22

is a constant, the equivalent linear ordering problem is:

Minimize z = sz(ukmz(v) (Cuv — Cou)d2,, subject to:

1. 0<d82, +62,—62,<1 for 1<m(u) <x2(v) < 22(W) < Mg
2.0<62, <1 for 1<ma(u) < z2(v) < nog

3. 62,€{0,1} for 1 <mo(u) < z2(v) < no

If z* is the optimum value of z, the minimum number of crossings is
Z2* + Z Cou-
3 (u)<z2(v)

The constraints ensure that the solutions actually correspond to all permutations zo of
Va.

The problem is NP-hard and a complete linear description of feasible solutions is unlikely
to be found and exploited algorithmically.
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In [4] it is shown that, if the third set of constraints, the integrality conditions, is
dropped, the solution can be given with standard linear programming techniques. In that
case, the first set of constraints, the 2("32) 3-cycle inequalities, and the second set, the
2("22) hypercube inequalities, define a relaxation of the integer program that is solved in [4]
with a branch and cut algorithm. Since the set of 3-cycle inequalities is large (O(n3)), the
algorithm uses a cutting plane approach. It starts with the hypercube inequalities which
are solved implicitly by the LP-solver; 3-cycle constraints are used iteratively to cut the
solution space, after an LP has been solved: the algorithm continues to add violated 3-cycle
constraints and to delete nonbinding 3-cycle constraints, until the relaxation is solved. The
algorithm stops if the solution is integral; if it is not, the algorithm is applied recursively
to two subproblems in one of which a fractional z,, is set to 1 and in the other set to 0.
The solution is optimal for digraphs of limited size (ne can be up to 60).

This method is exact, i.e., it is guaranteed to find the optimum solution, in contrast
to the methods described in previous subsection. However it does not always terminate in
polynomial time (see subsection 9.2.6).

9.2.5 The Two-Layer Crossing Problem on Dense Digraphs

Let G = (V4, V3, E) be a dense, two-layer digraph; then, since for any vertices v and v
of V5, the number of their common neighbors, X, is large, both crossing numbers, ¢, and
Cyu, Will be large. This explains intuitively why, for dense digraphs, cross(G, z1,x2) is close
to opt(G,x1), for any ordering xo of Va.

The following lemma sets bounds on ¢, in terms of yy.,:

Lemma 9.3 If u and v vertices of Va, then
1. cyy + cpu + Xuv = deg(u) deg(v)

2. cu > (95

3. cyp < deg(u) deg(v) — (xug}l)
Theorem 9.4 Let G = (Vi, Vs, E) be a two-layer digraph, |Vi| = |Va| = n, and E = en?.
Then

maxg, cross(G, z1, x2)

=1.
egri Opt(G,.’El,ZBQ)

Proof: Inequality 9.3.2 implies that since Xy, = Xy 18 large, both ¢y, and ¢y, will be large.
Multiplying inequality 9.1.2 by -1 (its direction is reversed) and adding it to 9.1.1, we
have:

cross(G,xy,z2) — opt(G,x1) < Z (Cup — min(Cyy, Cuy))
z2(u)<z2(v)

< Z |cuw — Coul- (9-23)

z2(u)<za(v)

Also, multiplying inequality 9.3.2 by -1 and adding it to 9.3.3 (either relation could refer to
Cyy OT Cyy, SO We will refer to the absolute value of this difference), we have:

deg(w)deg(v) — (xuu; 1) B (X;w)

< deg(u)deg(v) — Xy (9-24)

IN

‘Cuv - Cvu‘
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Summing last inequality 9.24 over all pairs u, v of Vo and using inequality 9.23, we get:

Z (deg(u)deg(v) — X5y) > cross(G,m1,2) — opt(G, a1) (9.25)
zo(u)<z2(v)

It is simple to estimate the following upper bound:

| |2 62n4

Z deg(u)deg(v) < ET =— (9.26)
2 (u)<z2(v)

Next, a lower bound on the sum of the second term of the same, left-hand side of 9.25
can be obtained through the following steps:

Yo xw =), (deg;w)> (9.27)

o (u) <z (v) wevy
and
Z deg(w) = |E| = en?. (9.28)
weVy
Then

3 (deg;w)) > n(Z” ) (9.29)

weV;

and, from 9.27 and 9.29, the lower bound follows:

€n 2
> () () - 0
73(u)<ea (v) ) (n=1)
From 9.25 9.26 and 9.30 we get:
ent  E@nd(en —1)2
_ < _
cross(G,x1,x2) — opt(G,z1) < 5 20— 1)
1
< én? (en — 5) . (9.31)
Through a similar argument, it follows that:
2,4
opt(G, 1) > % — o(n?). (9.32)

Division by parts of 9.31 and 9.32 gives that &2%5(G:21,22) _0pUG21) 4¢ )(£) and the theorem
) d y P 8 opt(G',an) n
is proved.
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9.2.6 Remarks on the Two-Layer Crossing Problem

The median method is the only heuristic with a theoretical upper bound to the number
of crossings it achieves; moreover, it runs in polynomial time. However, comparative tests
on pseudo-random digraphs have shown that the barycenter method may outperform the
median in terms of optimality of solution, having the same (linear) running time.

In [4] various heuristics are compared with their exact method 9.2.4), both for one-sided
and for two-sided crossing minimization. For sparse graphs of medium size - in automatic
graph drawing the graphs are usually sparse - the exact computation by branch and cut
algorithm is faster than many of the heuristics, except barycenter and median method. In
summary, barycenter method turned out the fastest method with a solution very close to
optimum.

For all heuristics, a considerable performance gain was achieved if the same experiment
was repeated 10 times , starting with random orderings of nodes in V1, and taking the best
solution found.

Also, an hybrid approach, adopted in [1], yields good results on ”real world” digraphs:

1. Determine an initial ordering of nodes in each rank that avoids obvious crossings
(through depth-first or breadth-first search starting with vertices of the first layer).

2. Tteratively permute vertices in each layer, based on the weighted median heuristic, as
long as the number of crossings improves.

3. Optimize the output through greedy switch (Algorithm Adjacent Exchange).

9.3 Horizontal Coordinate Assignment

The computation of the horizontal coordinates has mainly two different objectives. The
layout should have as few bends as possible. As mentioned before, bends only occur at
dummy vertices, unless the expansion of the vertices is very large. In some applications both
straight edges and vertical edges are preferred. Approaches to this problem are presented
below. Given the layers of the digraph and the order of the vertices within each layer,
we want to find the best z-coordinate of each vertex. By ’best’ we mean the position
that minimizes the amount of bending. Since the number of dummy vertices is set in the
Layer Assignment step, we can only shift horizontally the vertices, maintaining the order
we selected in the Crossing Reduction step. One way is to attempt to draw each edge as
straight as possible, with no preferred direction. Suppose we want some edge, wiwy,, to be
as straight as possible. Then we could try to fit dummy vertices in between w; and w,,, call
them ws, w3, ... ,w,_1, to the line:

i—1  z(w;) — 2(w)
n—1 xz(w,) — z(w)

(9.33)

(Note that y(w;) = i because the layers are evenly spaced). Then we turn the line equation
into a cost function by placing all terms on the same side and squaring;:

n—1

Cost(wywy) = > _(z(w;) — ), (9.34)

=2
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where

1—1
n—1

;= z(wn) — x(w1)) + z(w1). (9.35)
Because we need such a term for each edge, we sum all these terms to obtain our cost
function which we can then minimize using some standard method. We do not want to
lose our crossing reduction step, so we must also subject our solution to the constraint:
z(u) — z(v) > § for all u, v in the same layer, where u lies to the left of v. In an analogous
manner, we could try to keep the edges as close to the vertical as possible or some other
orientation that is desirable for a particular application. The problem of finding a layout
with as straight edges as possible can be formulated as follows. Consider a directed path
p = (v1,v2,...,vr) where vy, vs,... ,vk_1 are dummy vertices. We call this an edge-path.
If the edge-path would be drawn straight, the dummy vertices would satisfy:

2(v5) — 3(uy) = Ii::;(:c(uk) — a(wy)) (9.36)

for all 1 < ¢ < k. Observe that this formula is only valid for equidistant layers, but it is
straightforward to adjust this formula for unequal layer distances. To be able to state the
objective function more compact, we introduce the term

1—1
k—1

Z(v;) := (x(ug) — z(u1)) + x(u1) (9.37)
which would be the the z-coordinate of v; if it would lie on the straight line between x(v;)
and z(vg). We can now formulate a measure for the deviation of the path from a straight
line

k—1

dev(p) = Y _(x(u;) — T (u;))® (9-38)

=2

To make the edges as straight as possible, we minimize the sum:

S deolp) (9.39)

pis edge—path

subject to the constraints
z(w) — z(u) = p(w,v) (9.40)

for all pairs w, v of vertices in the same layer with w to the right of v. The constraints ensure
that the ordering within each layer computed by the crossing reduction step is preserved
and that the horizontal distance p(w,v) between the vertices is observed. The value p(w,v)
usually is calculated from the size of the vertices and the requested minimum horizontal
distance between two succeeding vertices. An optimal solution to this optimization problem
may result in exponential width of the drawing and thus, if the width should be kept
small, further inequalities would have to be added. The main disadvantage is that since
this problem has a ,ratic objective function, it can only be solved to optimality for small
instances.
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Another objective is to draw the lines as close to vertical lines as possible. In this case
the objective function can be stated as (Gansner et al., 1993)

Z Qu, v)w(u, v)|z(u) — z(v)] (9.41)

(u,v)EE

where w is a measure for the importance of an edge and ) denotes an internal weight for
straightening long edges. Therefore, the authors suggest higher priorities for edges between
dummy vertices than between the other vertices (£2(e) = 8 if both end vertices are dummy
vertices, Q(e) = 2 if exactly one end vertex is a dummy vertex and Q(e) = 1 otherwise).
The introduction of a weight function may improve the layouts computed by the preceding
model as well.

Another idea to solve this problem efficiently was introduced in (Gansner et al., 1993).
Gansner et al. construct an auxiliary graph on which this problem transforms to a layering
problem introduced which can be solved easily. The z-coordinates correspond to the layers
and vice versa.

The auxiliary graph G, = (V,, E,) contains as vertices all vertices of G plus a vertex for
each edge in G. Hence, V, = V U [uv]|(u,v) € E. We introduce two kinds of edges in G,.
The first class of edges encodes the original edges and is needed to eliminate the absolute
values in the objective function. For every edge (u,v) € E, we introduce two edges ([uv], u)
and ([uv],v) in G,. We define

wa ([uv], u) = wy([uv], v) = Q(u, v)w(u,v) (9.42)
and
Aa([uv],v) = Ag([uv],v) = 0. (9.43)

The second class of edges separates the vertices with the same rank. If v is a left neighbor
of w in G, we insert an edge (v,w) in E, and define wy(v, w) = 0 and A\, (v, w) = p(v, w).

A solution of the layering on GG, corresponds to a solution of the positioning problem
on GG and that both have the same cost. Let a solution of the positioning problem on G be
given. Assign [uv] to the layer min{z(u),z(v)}. Conversely, in an optimal layer assignment
in G, the vertex [uv] lies in either the layer of u or the layer of v. Thus, one of the edges
([uv],u), ([uv],v) has length 0 and the other has length |z(u) — 2(v)|. Hence, optimality in
G, implies optimality in G and a layering for G, gives a solution for G.

Another possibility is to obtain the z-coordinates by an improvement heuristic which
can roughly be stated like the following:

A HEURISTIC()

1 Choose initial coordinates

2 while some conditions hold
3 do

4 positioning
9 straightening
6 packing

One possibility for computing an initial solution is to position the vertices with minimal
distance from left to right in the order given by the crossing minimization.
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In the positioning phase essentially the ideas used in the previous section for crossing
reduction between two layers might be applied, like the median or barycenter heuristic.
Another idea is to think of the vertices as balls and the edges as strings of a pendulum
(Sander, 1996D).

Since these strategies compute layouts with many bends, in the straightening phase
one tries to assign paths of dummy vertices to the same z-coordinate. The edges can be
seen as rubber bends with vertices at both ends and the dummy vertices in between. This
enlarges the drawing in z-direction of course.Hence, the drawing is compressed by moving
the vertices closer together again without introducing new bends. These steps might be
iterated to obtain a satisfying solution.

9.4 Cycle Removal

In this section, we will address solution methods for the mazimum acyclic subgraph
problem: find a maximum set E, C E, such that the graph (V| E,) contains no cycles ( see
Figure 9.14). The problem is often stated as the feedback arc set problem: Find a minimum
set By C E such that the graph (V, Ef C E) contains no cycles. Since we do not want to
lose the information concerning the fact that two vertices are adjacent or not, the edges in
E, C E will be reversed. It is an easy exercise to show that the resulting graph is acyclic.
Only a small subset of edges should be reversed so that the 'flux’ of the drawing is fairly
smooth when the edges are restored to their proper direction and viewed. We can rephrase
the problem in terms of vertex sequences. Suppose we draw the vertices of a digraph, G,
along a horizontal line. Then the vertex sequence of that drawing of G is simply the list of
the vertices from left to right as they appear on the line. To find a minimum set of feedback
edges, we need to find the vertex sequence of the graph that has the least number of edge,
pointing "backwards’, in this case from right to left. This problem is NP-complete and so
we use heuristics to solve it. A simple depth-first search on the digraph can work well but
may reverse up to |E| — |V| — 1 edges. An arbitrary sequence of G' might also work well,
and if it doesn’t, then we can just reverse the order. This guarantees that no more than
half the edges are reversed.

o

Figure 9.14: The graph made acyclic by reversing two edges.

22



Unfortunately, the maximum acyclic subgraph problem is NP-hard. To simplify the
analysis of the forthcoming heuristics, we assume that the graph does not contain two-
cycles. A two-cycle consists of two antipodal edges (u,v) and (v,u). Otherwise, we delete
both edges of the two-cycle, apply an algorithm or heuristic for finding a maximum acyclic
subgraph and insert two edges pointing in the same direction into the graph. The direction
should be chosen in such a way that no cycles are generated by the insertion.

A less ad hoc method that runs in linear time is a greedy algorithm: If the graph is
not connected, then it is run on each connected component. One at a time, the algorithm
adds each vertex to one of two lists, to the right of the ’left’ list or to the left of the ’right’
list. The final sequence of the vertices is the concatenation of the two lists in the obvious
way (’left’ on the left,’right’ on the right). First, all isolated and all sink vertices are added
to the ’right’ list. Then all source vertices are added to the ’left’ list. In this way, edges
incident to them will not go ’backwards’. Then, until all vertices have been dealth with, we
keep choosing the vertex with the largest net out degree, and append it to the ’left’ list -
the idea being to find a good local tradeoff each time.

9.4.1 The Greedy cycle-removal algorithm

Digraphs with many 2-cycles do not have small feedback edge sets since one edge from
every 2-cycle must be reversed. Use of the greedy algorithm on digraphs without 2-cycles
produces a vertex sequence with at most |E|/2 — |E|/6 ’backward’ edges. The proof of
this works by partitioning the vertices of G based on their in and out degrees at the time
the algorithm processed them. The algorithm actually removes vertices from G as they
are processed, so these degrees change over time. Then, with a few insightful observations
about when certain vertices are processed, and what types of vertices are left over, the
desired result is obtained. It is based on the intuition that nodes of large out-degree should
appear near the top of the drawing. The nodes are sorted with respect to their out-degree.
The node with the most outgoing edges gets the first position. Then a feedback arc set
can be determined by finding all the edges going back in the nodes’ order. This algorithm
can be implemented consuming O(|V| + |E|) run time, where |V| denotes the number of
vertices and |E| the number of edges (or arcs). In practice its run time is competitive with
the trivial search algorithm but provides better results.

Observe that the maximum acyclic subgraph problem is equivalent to the unweighted
linear ordering problem: Find an ordering of the vertices of G,i.e., find a mapping 0: V +—
{1,2,...,|V|} such that the number of edges (u,v) € E : o(u) > o(v) is minimized. Thus,
the easiest heuristic for the maximum acyclic subgraph problem is to take an arbitrary
ordering of the graph and delete the edges (u,v) with o(u) > o(v). We might use a given
ordering or, e.g., use an ordering computed by applying breadth first search or depth first
search to the graph. These heuristics are fast but do not allow to give any quality guarantees.
Next, we present a heuristic which guarantees an acyclic set of size at least ‘QE The idea
is to delete for every vertex either the incoming or outgoing edges. We define §%(v) =
{(v,u)|(v,u) € E}, the set of the outgoing edges of v, §~(v) = {(u,v)|(u,v) € E}, the
set of the ingoing edges into v, and d(v) = d+(v) U & (v), the set of edges incident to
v, v € V. [6T(v)] (|6~ (v)|) is called the outdegree (indegree) of v.

Input: A digraph G.

Output: Acyclic Set E,.
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A GREEDY - CYCLE - REMOVAL ALGORITHM(G)
1 E,« 0

2 for each vertezv in V

3 doif [d,(0)] > 07 (v)

4 then append 0(v) to E,

5 else append 6 (v) to E,

6 delete §(v) from G

The algorithm computes an acyclic set E, with size |E,| > @ and runs in linear time

(Berger and Shor, 1990).
9.4.2 An Enhanced Greedy Heuristic

A closer look at the problem shows that sources and sinks (which may arise during the
algorithm) play a special role: edges incident to sources or sinks cannot be part of a cycle.
This observation is used in the following algorithm (Eades et al., 1993):

Input: digraph G.
Output: Acyclic Set F,.
AN ENHANCED GREEDY HEURISTIC(G)

1 E, <0
2 while G#0

3 do while G contains a sink v

4 do add §~(v) to E, and delete v and 6~ (v) from G

9 delete all isolated vertices from GG

6 while G contains a source v

7 do add d4(v) to E, and delete v and §4(v) from G

8 if G#0

9 then let v be a vertex in G with maximum value |04 (v)| — [67 (v)]
10 add 4 (v) to E, and delete v and §(v) from G

The only difference between Algorithm 9.4.1 and Algorithm 9.4.2 is that the latter one
processes the vertices in a special order. Hence, the output of Algorithm 9.4.2 is acyclic as
well.

9.4.3 The Divide-and-Conquer Cycle Removal Algorithm

Similar to the greedy approach, this recursive algorithm also deals with the out-degree.
Again, the nodes are sorted with respect to their out-degree or, in other words, labelled
with integer values from 1 to |V'|. The recursion is defined as follows:

1. If the given graph has no edges, then assign labels arbitrarily.

2. If the number of vertices is odd, then the node with the highest out-degree is called
graph G1. All remaining nodes and all edges connecting them are called graph Go.
Recursion on (G; and G2 provides the appropriate range of labels.
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3. If the number of vertices is even, then partition the nodes into two sets of equal
cardinality, G; and G3. All out-degrees of the first set must be greater or equal to
all out-degrees of the second set. Recursion on G; and G5 provides the appropriate
range of labels.

4. Finally, those edges pointing from a lower to a higher level belong to the resulting
feedback arc set.

This algorithm can be implemented with time complexity of:
O(min|V[*, (V] +|E|)log|V]) (9-44)

Thus for sparse graphs (where |E| is O(|V])) it is slower than the greedy algorithm. In
practice it takes up to four times as long on graphs with up to 400 nodes.

Theorem 9.5 Let G = (V, E) be a connected digraph with no two-cycles. Then Algorithm
9.4.2 computes an acyclic edge set E, with |E,| > @ + %.

Proof. The vertex set V' can be partitioned into five sets Vg, Viso, Vsource, V= and V <.
Vyink consists of the non-isolated sink vertices removed from G in Step 1, Vj,, consists of
the isolated vertices removed from G in Step 2, Viource consists of the non-isolated source
vertices removed from G in Step 3, V_ consists of the vertices whose indegree equals its
outdegree, removed from G in Step 4 and V. consists of the vertices whose indegree is less
than its outdegree, removed from G in Step 4. Note that these sets form a partition of V
. Denote by m; the number of edges removed from G as the result of the removal of the
vertices in V;, i € sink,iso, source,=,< =: I, and by n; the cardinality of V;. Clearly,

V=23 icrni, |E| =) ;c;rmi, and mgs, = 0 holds.

Since the input graph is connected, isolated vertices can only be created in Step 1 and
hence, n;so < mgink- It is not hard to see that after the removal of a vertex from V_, at
least one vertex whose indegree is not equal to its outdegree exists. Since the resulting
graph contains no isolated vertices, the next deleted vertex will be in Vgnk U Viouree U Ve.
Hence, we get n— < ngjnk + Nsource + N<- This can be used to find an estimation of n
by substituting n— : n < 20k + Niso + 2Nsource + 2n<. This can be relaxed to n <
2Nsink + Niso + 3Nsource + 3n<. USing the facts n;s, < Msink and Ngipg < Mygink, We get

n < 3(msink + Nsource + ’I’L<). (94.5)

Observe that the only step where edges from E are thrown away and not inserted in E, is
Step 4. Thus, the number of thrown away edges is at most

E + M« —N¢ _ m _ Migink + Msource T N< < ﬂ _ Mgink T Nsource T N<
2 2 2 2 - 2 2 ’
(9.46)

Bl = |Eo| <

where the last inequality is true since nsoyrce < Msource- By applying relation (9.45) we
obtain

m
|E| - |Ea| < 5

- % (9.47)

The proof is now completed.
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