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a b s t r a c t

st-orientations (st-numberings) or bipolar orientations of undirected graphs are central to
many graph algorithms and applications. Several algorithms have been proposed in the
past to compute an st-orientation of a biconnected graph. In this paper, we present new
algorithms that compute such orientations with certain (parameterized) characteristics in
the final st-oriented graph, such as the length of the longest path. This work has many
applications, including Graph Drawing and Network Routing, where the length of the
longest path is vital in deciding certain features of the final solution. This work applies
to other difficult problems as well, such as graph coloring and of course longest path. We
present extended theoretical and experimental results which show that our technique is
efficient and performs well in practice.
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1. Introduction

The problemof orienting anundirected graph such that it has one source, one sink, andno cycles (st-orientation) is central
to many graph algorithms and applications, such as graph drawing [2–6], network routing [7,8] and graph partitioning [9].
Most implemented algorithms use any algorithm that produces such an orientation, e.g., [10], without expecting any specific
properties of the oriented graph. In this paper we present new techniques that produce such orientations with specific
properties. Namely, our techniques are able to control the length of the longest path of the resulting directed acyclic graph.
This provides significant flexibility to many graph algorithms and applications [2,3,7–9,1,11].
Given a biconnected undirected graph G = (V , E), with n vertices and m edges, and two nodes s and t , an st-

numbering [10] of G is a numbering of its vertices such that s receives number 1, t receives number n and every other
node except for s, t is adjacent to at least one lower-numbered and at least one higher-numbered node. An st-orientation of
G is defined as an orientation of its edges, such that a directed acyclic graph with exactly one source s and exactly one sink t
is produced. There is a direct relation between st-numberings and st-orientations: an st-orientation of an undirected graph
can be easily computed using an st-numbering of the respective graph G and orienting the edges of G from low to high.
st-numberings were first introduced in 1967 in [12], where it is proved that given any edge {s, t} of a biconnected

undirected graph G, we can define an st-numbering. The proof of a theorem in [12] gives a recursive algorithm that runs
in time O(nm). However, in 1976 Even and Tarjan proposed an algorithm that computes an st-numbering of an undirected
biconnected graph in O(n + m) time [10]. Ebert [13] presented a slightly simpler algorithm for the computation of such a
numbering, which was further simplified by Tarjan [14]. The planar case has been extensively investigated in [15], where
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Fig. 1. A 1–4 recursively biconnected graph on P = 1, 2, 3, 4. Note that if edge (2, 4)was to be removed, the graph would not be recursively biconnected
any more.

a linear time algorithm is presented which may reach any st-orientation of a planar graph. Additionally, in [16] a parallel
algorithm is described (running in O(log n) time using O(m) processors) and finally in [17], another linear time algorithm
for the problem is presented. An overview of bipolar orientations is presented in [18].
Developing yet another algorithm for simply computing an st-orientation of a biconnected graph would probably seem

meaningless, as there already existmany efficient linear time algorithms for the problem [10,13,14]. In this paperwe present
a new algorithm, along with theoretical and experimental results that show that there is an efficient way to control the
length of the longest path that corresponds to an st-numbering. The importance of this research direction has been implied
in the past [3,15]. Our algorithms are able to compute st-oriented graphs of ‘‘user-defined’’ length of longest path, the
value of which is very important in the quality of the solution many algorithms produce. For example the area-bounds of
many graph drawing algorithms [2,3,6] are utterly dependent on the length of the longest path of the st-oriented graph.
Additionally, network routing via st-numberings gives alternate paths towards any destination, and therefore deriving
different (parameterized longest-path) st-numberings provides flexibility to many proposed routing protocols [7,8].
The paper is organized as follows: in Section 2 we present the new algorithm and give a formal proof of its correctness.

In Section 3 we discuss longest path parameterized st-orientations. Section 4 presents the experimental results for various
classes of graphs and finally Section 5 gives conclusions, open problems and future research directions.

2. A new algorithm for computing an st-orientation

2.1. General

In this section, we present an algorithm that computes an st-orientation of a biconnected graph G = (V , E). We analyze
its behavior and give a proof of correctness. This algorithm is designed in such a way that makes it possible to control the
length of the longest path of the final st-oriented graph. For the rest of the paper, n = |V |, m = |E|, NG(v) denotes the set
of neighbors of node v in graph G, s is the source of the graph, t is the sink of the graph and l(u) is the length of the longest
path of a node u from the source s of the graph. We begin by presenting the algorithm’s behavior on a special class of graphs
and then we present its extension to general graphs.

2.2. A special case

In this section, we describe an algorithm for computing an st-orientation of a special class of graphs. This class includes
graphs thatmaintain their biconnectivity after successive removals of vertices (for example the Kn graphs).
Definition 1. Let G = (V , E) be an undirected biconnected graph. We say that G is st-recursively biconnected on P if
there is a permutation of vertices P = v1, v2, . . . , vn with v1 = s and vn = t such that the graphs Gi = Gi−1 − {vi−1},
vi ∈ NGi−1(vi−1)− {t}, i = 2, . . . , n− 1 and G1 = G are biconnected.
An example of a recursively biconnected graph is depicted in Fig. 1. We now present a lemma that gives an algorithm for
the transformation of an st-recursively biconnected undirected graph to an st-oriented graph.
Lemma 2. Let G = (V , E) be an undirected st-recursively biconnected graph on P = v1, v2, . . . , vn with v1 = s and vn = t.
Then the set of directed edges

E ′ = {(v1,NG1(v1)), (v2,NG2(v2)), . . . , (vn−1,NGn−1(vn−1))}
forms an st-oriented graph.

Proof. Weprove the lemmaby giving an algorithm for st-orienting an st-recursively biconnected graph. Supposewe remove
one by one the nodes on P starting with v1 = s. Each time we remove a node, it becomes a current source of the remainder
of the graph, and all its incident edges are oriented away from it. First we must prove that, beginning with v1, we can reach
every node vi, i ≥ 2. Suppose there is a node vk that is never reached by a previously removed node. This can be done only
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if the removal of adjacent nodes disconnects a graph Gl, l < k. This is not true, as all graphs Gi are biconnected, and hence
all nodes will finally be removed from the graph by following neighbors of previously removed nodes. It remains to see that
the directed graph produced by following this procedure is st-oriented. First of all, the oriented graph has a single source
v1 (all its incident edges are oriented away from it) and a single sink vn (all its incident edges have been oriented in prior
iterations towards it). Also, there is no other source and sink due to the definition of the recursive biconnectivity. Finally,
suppose there existed a cycle. Then, after the removal of a vertex vi, we would have to process a vertex vk with k < i (this
is the only way for a cycle to be formed). But all vertices vk with k < i have already been removed. Hence there is no cycle
and the graph is st-oriented. �

2.3. General graphs case

In the previous section, we examined a special class of graphs. However, most graphs are not recursively biconnected
and even if they are, it is generally hard to find such a permutation P . We now present the general case, where there is no
other option than removing a node that produces a one-connected subgraph. Before continuing with this section, we will
introduce some useful intuition and terminology.

2.3.1. The very first approach
The aim of this work is the computation of st-orientations of longest path length that can be efficiently controlled by

an input parameter. Towards this goal, we investigated the possibility of modifying the existing linear algorithms, in order
to produce longest path parameterized st-orientations. These algorithms, such as [10], proceed by choosing one vertex
at a time. This means that at each iteration, they maintain and update a set of vertices (that is computed according to
some biconnectivity criteria), and continue their execution by processing neighbors of a chosen vertex. Thus in order to
produce multiple st-orientations using these algorithms, one should consider different combinations of vertex sequences.
Some heuristics applied on the Even–Tarjan algorithm are described in [19], where after extensive computational results, we
reached the conclusion that using different vertex sequences, produces st-orientations that have almost no difference in the
longest path length. After similar attempts on other existing algorithms, it became evident that linear time was not enough
to produce both a correct st-orientation and to be able to discriminate between different longest path length st-orientations.

2.3.2. Exploiting biconnectivity
The main idea behind the algorithm is the exploitation of the biconnectivity structure of a graph. Let G = (V , E) be

a one-connected undirected graph, i.e., a graph that contains at least one vertex whose removal causes the initial graph
to disconnect. The vertices that have that property are called separation vertices, articulation points or cutpoints. Each one-
connected graph is composed of a set of blocks (biconnected components) and cutpoints that form a tree structure. This tree
is called the block-cutpoint tree of the graph and its nodes are the blocks and cutpoints of the graph. Suppose now that G
consists of a set of blocks B and a set of cutpoints C . The respective block-cutpoint tree T = (B ∪ C,U) has |B| + |C | nodes
and |B| + |C | − 1 edges. The edges (i, j) ∈ U of the block-cutpoint tree always connect pairs of blocks and cutpoints such
that the cutpoint of a tree edge belongs to the vertex set of the corresponding block (see Fig. 2).
The block-cutpoint tree is a free tree, i.e., it has no distinct root. In order to transform this free tree into a rooted tree,

we define the t-rooted block-cutpoint tree with respect to a vertex t . Consequently, the root of the block-cutpoint tree is
the block that contains t (see Fig. 2). Finally, we define the leaf-blocks of the t-rooted block-cutpoint tree to be the blocks,
except for the root, of the block-cutpoint tree that contain a single cutpoint. The block-cutpoint tree can be computed in
O(n+m) time with an algorithm similar to DFS [20]. Next, we give some results that are necessary for the development of
the algorithm.

Lemma 3. Let G = (V , E) be an undirected biconnected graph and s, t be two of its nodes. Then there is at least one neighbor of
s lying in each leaf-block of the t-rooted block-cutpoint tree of G− {s}. Moreover, this neighbor is not a cutpoint.

Proof. If graph G − {s} is still biconnected, the proof is trivial, as the t-rooted block-cutpoint tree consists of a single node
(the biconnected component G−{s}), which is both root and leaf-block of the t-rooted block-cutpoint tree. If graph G−{s} is
one-connected (see Fig. 3), suppose that there is a leaf-block ` of the t-rooted block-cutpoint tree defined by cutpoint c such
that N(s)∩` = {Ø}. Then c , if removed, still disconnects G and thus G is not biconnected, a contradiction. The same occurs if
N(s) ∩ ` = {c}. Hence there is always at least one neighbor of s lying in each leaf-block of the t-rooted block-cutpoint tree,
which is not a cutpoint. �

The main idea of the algorithm is based on the successive removal of nodes and the simultaneous update of the t-rooted
block-cutpoint tree.We call each such node a source, because at the time of its removal, it is effectively chosen to be a source
of the remainder of the graph. We initially remove s, the first source, which is the source of the desired st-orientation and
give direction to all its incident edges from s to all its neighbors. After this removal, there exist three possibilities:

• The graph remains biconnected
• The graph is decomposed into several biconnected components but the number of leaf-blocks remains the same
• The graph is decomposed into several biconnected components and the number of leaf-blocks changes.
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Fig. 2. A one-connected graph and the t-rooted block-cutpoint tree rooted at B4 .

Fig. 3. Proof of Lemma 3.

This procedure continues until all nodes of the graph but one are removed. Finally, we encounter the desired sink, t , of the
final st-orientation. The updated biconnectivity structure gives us information about the choice of our next source. Actually,
the biconnectivitymaintenance allows us to remove nodes and simultaneouslymaintain a ‘‘map’’ of possible vertices whose
future removal may or may not cause dramatic changes to the structure of the tree.
As it will be clarified in the next sections, at every step of the algorithm there will be a set of potential sources to continue

the execution. Our aim is to establish a connection between the current source choice and the length of the longest path of
the produced st-oriented graph.

2.3.3. The algorithm
Now we describe the algorithm in a more formal way. We name this procedure STN. Let G = (V , E) be an undirected

biconnected graph and s, t two of its nodes. We will compute an st-orientation of G. Suppose we recursively produce the
graphs Gi+1 = Gi − {vi}, where v1 = s and G1 = G for all i = 1, . . . , n− 1.
During the algorithm we always maintain a t-rooted block-cutpoint tree. Additionally, we maintain a structure Q that

plays a major role in the choice of the current source. Q initially contains the desired source for the final orientation, s. For
the generalized version of the algorithm, where we only want to ensure correctness of the final st-orientation, Q can be
implemented as simple set data structure. As we will see later, for the sake of a parameterized st-orientation, Q should be
implemented as a priority queue. Finally we maintain the leaf-blocks of the t-rooted block-cutpoint tree. During the ith
iteration of the algorithm node vi is chosen so that

• it is not a cutpoint node that belongs to Q
• it belongs to a leaf-block of the t-rooted block-cutpoint tree.
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Note that for i = 1 there is a single leaf-block (the initial biconnected graph) and the ‘‘cutpoint’’ that defines it is the desired
sink of the orientation, t . When a source vi is removed from the graph, we have to update Q in order to be able to choose
our next source. Q is then updated by removing vi and by inserting all of the neighbors of vi except for t .
Each time a node vi is removed we orient all its incident edges from vi to its neighbors. The procedure continues until

Q becomes empty. Let F = (V ′, E ′) be the directed graph computed by this procedure. We claim that F = (V ′, E ′) is an
st-oriented graph.

Lemma 4. During STN, every node becomes a source exactly once. Additionally, after exactly n− 1 iterations (i.e., after all nodes
but t have been processed), Q becomes empty.

Proof. Let v 6= t be a node that never becomes a source. This means that all incident edges (u, v) have direction u → v.
As the algorithm gradually removes sources, by simultaneously assigning direction, one umust be a cutpoint (as v 6= t will
become a biconnected component of a single node). But all nodes u are chosen to be neighbors of prior sources. By Lemma 3,
u can never be a cutpoint, hence node v 6= t will certainly become a source exactly once. Finally, Q becomes empty at the
end of the algorithm, as the algorithm chooses n times from Q and nodes stored in Q are distinct. �

By combining Lemmas 3 and 4, we see that at each iteration of the algorithm there will be at least one node to be chosen as
a future source:

Corollary 5. Suppose after vertex vk−1 is removed, r different leaf-blocks are created. Then in each leaf-block of the t-rooted
block-cutpoint tree there exists at least one non-cutpoint node that belongs to Q .

Lemma 6. The directed graph F = (V ′, E ′) has exactly one source s and exactly one sink t.
Proof. Node v1 = s is indeed a source, as all edges (v1,N(v1)) are assigned a direction from v1 to its neighbors in the
first step. Node t is indeed a sink as it is never chosen to become a current source and all its incident edges are assigned
a direction from its neighbors to it during prior iterations of STN. We have to prove that all other nodes have at least one
incoming and one outgoing edge. As all nodes v 6= t become sources exactly once, there will be at least one node w such
that (v,w) ∈ E ′. Sources v 6= t are actually nodes that have been inserted into Q during a prior iteration of the algorithm.
Before being chosen to become sources, all nodes v 6= s 6= t are inserted into Q as neighbors of prior sources and thus there
is at least onew such that (w, v) ∈ E ′. Hence F has exactly one source and one sink. �

Lemma 7. The directed graph F = (V ′, E ′) has no cycles.
Proof. Suppose STN has ended and there is a directed cycle vj, vj+1, . . . , vj+l, vj in F . This means that (vj, vj+1), (vj+1, vj+2),
. . . , (vj+l, vj) ∈ E ′. During STN, after an edge (vk, vk+1) is inserted into E ′, vk is deleted from the graph and
never processed again and vk+1 is inserted into Q so that it becomes a future source. In our case after edges
(vj, vj+1), (vj+1, vj+2), . . . , (vj+l−1, vj+l)will have been oriented, nodes vj, vj+1, . . . , vj+l−1 will have been deleted from the
graph. To create a cycle, vj should be inserted into Q as a neighbor of vj+l, which does not hold as vj /∈ NGj+l(vj+l) (vj has
already been deleted from the graph). Thus F has no cycles. �

By Lemmas 6 and 7 we have:

Theorem 8. The directed graph F = (V ′, E ′) is st-oriented.
In Algorithm 1 we present STN in pseudocode. During the execution of the algorithm, we can also compute an st-

numbering f (line 9) of the initial graph. Actually, for each node vi that is removed from the graph, the subscript i is the
final st-number of node vi. The st-numbering can however be easily computed in linear time after the algorithm has ended,
by executing a topological sorting on the computed st-oriented graph F .
Note that in the algorithm we use a vectorm(v) (line 17), where we store a timestamp for each node v of the graph that

is inserted into Q . These timestamps will be of great importance during the choice of the next candidate source, and will
give us the opportunity to control the length of the longest path. Actually, they express the last time that a node v becomes
candidate for removal.
Regarding the time complexity of the algorithm, the recursion is executed exactly n − 1 times, and the running time

of each recursive call is consumed by the procedure that updates the block-cutpoint tree, which is O(n + m) [20]. Hence
it is easy to conclude that STN runs in O(nm) time. However, it can be made to run faster by a more efficient algorithm to
maintain biconnectivity.
In fact, Holm, Lichtenberg and Thorup [21] investigated the problem of maintaining a biconnectivity structure without

computing the block-cutpoint tree from scratch. They presented a fully dynamic algorithm that supports the insertion and
deletion of edges and maintains biconnectivity in O(log5 n) amortized time per edge insertion or deletion. In our case,
only deletions of edges are done. If we use this algorithm in order to keep information about biconnectivity, STN can be
implemented to run in O(m log5 n). Moreover, for planar graphs, we can compute biconnected components in O(log n)
amortized time per edge deletion due to [22]. Hence, the algorithm can be implemented to run in O(m log n) time for planar
graphs. Hence, we obtain the following:

Theorem 9. Given a biconnected graph G = (V , E) of n vertices and m edges, a source s ∈ V and a sink t ∈ V , STN(G, s, t) can
be implemented to run in O(m log5 n) time. Moreover, if the graph is planar, STN(G, s, t) can be implemented to run in O(m log n)
time.
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Algorithm 1 STN(G, s, t)
1: Initialize F = (V ′, E ′);
2: Initializem(i) = 0 for all nodes i of the graph; (timestamp vector)
3: j = 0; {Initialize a counter}
4: Q = {s}; {Insert s into Q }
5: STREC(G, s); {Call the recursive algorithm}
6: ————————————————————————
7: function STREC(G, v)
8: j = j+ 1;
9: f (v) = j;
10: V = V − {v}; {A source is removed from G}
11: V ′ = V ′ ∪ {v}; {and is added to F }
12: for all edges (v, i) ∈ E do
13: E = E − {(v, i)};
14: E ′ = E ′ ∪ {(v, i)};
15: end for
16: Q = Q ∪ {N(v) ∼ {t}} − {v}; {The set of possible next sources}
17: m(N(v)) = j;
18: if Q == {Ø} then
19: f (t) = n;
20: return;
21: else
22: T (t, B1j , B

2
j , . . . , B

r
j ) = UpdateBlocks(G); {Update the t-rooted block-cutpoint tree; hij is the cutpoint that defines the

leaf-block Bij}
23: for all leaf-blocks (Bij, h

i
j) do

24: choose v` ∈ B`j ∩ Q ∼ {h
`
j }

25: STREC(G, v`);
26: end for
27: end if

The st-orientation algorithm defines an st-tree Ts. Its root is the source of our graph s (p(s) = −1). It can be computed during
the execution of the algorithm. When a node v is removed, we simply set p(u) = v for every neighbor u of v, where p(u)
is a pointer to the father of each node u. Note that the father of a vertex can be updated many times until the algorithm
terminates. This tree is a directed tree that has two kinds of edges, the tree edges, which show the last father–ancestor
assignment between two nodes made by the algorithm and the non-tree edges that include all the remaining edges. The
non-tree edges never produce cycles. Finally, note that the sink t is always a leaf of the st-tree Ts.

Algorithm 2 STN(G, s, t)
1: Q = {s}; {insert s into Q }
2: j = 0;{Initialize a counter}
3: Initialize F = (V ′, E ′);
4: Initialize the t-rooted block-cutpoint tree T to be graph G; Its cutpoint is sink t;
5: while Q 6= Ø do
6: for all leaf-blocks Bij do
7: j = j+ 1;
8: choose v` ∈ B`j ∩ Q ∼ {h

`
j } {h

`
j is the cutpoint that defines B

`
j }

9: f (v`) = j;
10: V = V − {v`} {a source is removed from G}
11: V ′ = V ′ ∪ {v`} {and is added to F }
12: for all edges (v`, i) ∈ E do
13: E = E − {(v`, i)};
14: E ′ = E ′ ∪ {(v`, i); }
15: end for
16: Q = Q ∪ {N(v`) ∼ t} − {v`}; {the set of possible sources}
17: end for
18: T (t, B1j , B

2
j , . . . , B

r
j )= UpdateBlocks(G);

19: end while
20: return F , g;
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As it happens with every st-oriented graph, there is a directed path from every node v to t and hence the maximum
depth of the st-tree will be a lower bound for the length of the longest path, l(t):

Theorem 10. Let G be an undirected biconnected graph and s, t two of its nodes. Suppose we run STN on it and we produce the
st-oriented graph F and its st-tree Ts. If d(Ts) denotes the maximum depth of the st-tree then l(t) ≥ d(Ts).

In Fig. 4, the algorithm execution on a biconnected graph G is depicted. In Fig. 5, we can see the final st-oriented graph F and
the respective st tree Ts. Algorithm 1 can also be implemented non-recursively. Actually, for large-size graphs, we can only
use the non-recursive algorithm (Algorithm 2) in order to avoid stack overflow problems.
Algorithm 2 works as follows. It does not update the t-rooted block-cutpoint tree at every iteration (see line 18). After

the first node is removed, it updates the t-rooted block-cutpoint tree and it removes one node from each leaf-block. That
means that it actually calls the biconnectivity update procedure, only after all the leaf-blocks have been processed.
Finally, wemustmake an important remark. Instead of each time processing nodes that belong to the leaf-blocks of the t-

rooted block-cutpoint tree, we could process non-cutpoint nodes that belong to some block of the t-rooted block-cutpoint
tree. It is easy to prove that there will always exist such a node, and therefore all the Lemmas presented before would
certainly apply to this case as well. However, choosing nodes that belong to the leaf-blocks of the t-rooted block-cutpoint
tree gives us the opportunity to control the length of the longest path of the final directed graph more efficiently.

3. Longest path parameterized st-orientations

3.1. General

As stated in the previous section, our algorithm aims at producing st-oriented graphs of predefined longest path length.
There are exponentially many st-oriented graphs that can be produced for a certain biconnected undirected graph, and it is
desirable to be able to influence the length of the longest path by taking advantage of the freedom of choice the algorithm
gives us.
Observe that the key in determining the length of the final longest path is the sequence of sources the algorithm uses.

These sources are non-cutpoint nodes that belong both to Q and to a leaf-block of the t-rooted block-cutpoint tree.
Hence during iteration j of the algorithm, we have to pick a leaf-block of the t-rooted block-cutpoint tree (say the l-st)

and we always have to make a choice on the structure (see line 8 of the Algorithm 2):

Q ′ = Blj ∩ Q ∼ {h
l
j}.

We have used two approaches in order to produce st-oriented graphs with long longest path length, and st-oriented graphs
with small longest path length. During each iteration of the algorithm, a timer j (line 7 of Algorithm 2) is incremented and
each vertex x that is inserted into Q gets a timestampm(x) = j.
Our investigation has revealed that if verticeswith high timestamp are chosen, then long sequences of vertices are formed

and thus there is high likelihood to obtain a long longest path. We call this way of choosing vertices maxSTN. Actually,
maxSTN resembles a DFS traversal (i.e., it searches the graph at a maximal depth). Hence, duringmaxSTN, the next source
v is arbitrarily chosen from the set

{v ∈ Q ′ : m(v) = max{m(i) : i ∈ Q ′}}.

On the contrary, we have observed that if vertices with low timestamp are chosen, then the final st-oriented graph has
relatively small longest path. We call this way of choosing verticesminSTN, which in turn resembles a BFS traversal. Hence,
duringminSTN, the next source v is arbitrarily chosen from the set

{v ∈ Q ′ : m(v) = min{m(i) : i ∈ Q ′}}.

Note that the above sets usually contain more than one element. This means that ties exist and have to be broken. Breaking
the ties in both cases is very important in determining the length of the longest path. Finally, for efficiency reasons, we can
implement Q as a priority queue.
Additionally, the length of the longest path from the source s of the final directed graph to the currently removed node

u is immediately determined (when u is removed, i.e., u enters the sink setW ) and cannot change during future iterations
of the algorithm. This happens because during u’s removal, the direction of all its incident edges is determined, and there is
no way to reach u with a path that includes nodes that have not yet been removed (and that would probably change l(u)).
Hence, we can either execute the longest path algorithm on the so far produced sW -DAG (where W is a set of sinks), or
apply a relaxation method during the execution of the algorithm (see in next sections), and compute l(u):

Remark 11. Suppose a node u is removed from the graph during STN and at this time we run the longest path algorithm to
the so far produced sW -DAG, getting a longest path length from s to u equal to l(u). The longest path length from s to u in
the final st-DAG is also l(u).

This remark is important because it gives us an idea of how the developed algorithm can relate to the length of the longest
path.
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Fig. 4. The algorithm execution. At each iteration of the algorithm (A–M), the graph and the block-cutpoint tree are depicted.

In order to have an upper bound on the length of the longest path of a biconnected graph, we are going to present our
longest path results for a special class of biconnected graphs that have an a priori length of longest path equal to n− 1:
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Fig. 5. The final st-oriented graph (left) and the st-tree Ts (right).

Fig. 6. Choosing vertices withminSTN for a biconnected component that remains biconnected throughout the execution of the algorithm. Note that at the
third execution of the algorithm, the middle vertex is not chosen so that a small longest path length st-orientation can be achieved.

Definition 12. Let G = (V , E) be an undirected biconnected graph and let s, t be two distinct vertices of G. Graph G is
st-Hamiltonian if it admits a Hamiltonian path having s and t as its endvertices.

3.2. Maximum case (maxSTN)

Lemma 13. Let G = (V , E) be an undirected st-Hamiltonian graph. maxSTN computes an st-oriented graph with length of
longest path equal to n− 1 if and only if the t-rooted block-cutpoint tree is a path (of blocks and cutpoints).

Proof. For the direct, supposemaxSTN computes an st-oriented graph of maximum longest path length n− 1 and at some
iteration of STN a vertex v is removed and the block-cut point tree is decomposed into a tree that has more than one (say k)
leaves. Then, there are k different directed paths from vertex v to the final sink t of the graph. The longest path cannot be the
union of these paths, because all these paths have orientations towards t . Hence l(t) < n−1, contradiction. For the inverse,
suppose that the produced length of longest path is less than n − 1. This means that at some iteration i of the algorithm a
source v of timestamp j < i is removed. In this case the source removed before v must belong to a leaf-block other than the
leaf-block of v, because if they belonged to the same leaf-block, v would have a timestamp equal to i. By hypothesis, only a
single leaf-block is maintained, which does not hold. Hence l(t) = n− 1. �

Note that the inverse holds only for the case of the maxSTN procedure. Fig. 6 provides a counter example, showing
that if the general STN procedure is applied, a Hamiltonian path cannot always be achieved, even if a single leaf-block is
maintained. Hence, we come to the conclusion that in order to produce an st-oriented graph with long longest path, one
necessary condition is tomaintain a single leaf-block of the t-rooted block-cutpoint tree.Wewill see later (in the Complexity
Issues section) that this is an NP-hard problem.

maxSTN tries tomimic the DFS traversal of a graph, as it tries to explore the current biconnected component at amaximal
depth. In this way, long paths of vertices are created, which are more likely to contribute to a longer longest path of the final
directed graph, something that is illustrated in the experimental results section. IfmaxSTN could choose vertices in a way
that the maximum sequence of vertices is created, then we could probably compute an st-oriented graph with maximum
longest path. Instead,maxSTN ‘‘approximates’’ the long paths by creating different individual paths of vertices. An individual
path of vertices Pr computed by our algorithm is defined as follows: suppose the algorithm enters the k-th iteration and k−1
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Fig. 7. maxSTN applied to a 2–1 Hamiltonian graph. No optimal DAG is produced (longest path length= 4).

vertices of the graph have been removed with the following order: v1, v2, . . . , vk−1. All r individual paths P1, P2, P3, . . . , Pr
can be computed during the execution of the algorithm as follows. Initially we insert the first vertex removed into the first
path (v1 >> P1). Suppose vj (j < k) is removed and r different paths have been created till this iteration. Vertex vj has a
timestampm(vj). To decide if vj will be added to the current individual path Pi or to a next (new) path Pi+1, we execute the
following algorithm:
1: ifm(vj) < m(vj−1)+ 1 then
2: i = i+ 1;
3: end if
4: vj >> Pi;
Actually,when the creation of a newpath begins (i.e., whenm(vj) < m(vj−1)+1),we say thatmaxSTN backtracks. The length
of the longest path of the final st-oriented graph is strongly dependent on the number of times thatmaxSTN backtracks. All
these observations lead to the following remark:

Remark 14. Suppose STN enters iteration j.m(vj) < m(vj−1)+ 1 implies that all nodes v ∈ Q withm(v) = j = max{m(i) :
i ∈ Q } do not belong to Q ′.

The longest path length of the final directed graph will be the union of pieces of some of the created individual paths (hence
l(t) ≥ maxi=1,...,r{|Pi|}), that achieves the largest number of successive (neighboring) vertices and can be computed in
polynomial time during or after the algorithm execution (by applying some relaxation method).
Fig. 7 depicts the execution of the algorithm for a 6-node 2–1Hamiltonian graph. The vertices are chosen by the algorithm

in the following order: 2, 4, 3, 5, 6, 1. Note that two leaf-blocks are created and that’s why the final longest path length is not
optimal. If node 6 were chosen first, an st-oriented graph with maximum longest path length would be computed. During
the execution of the algorithm, two paths are created, the path 2, 4, 3, 5, 1 and the path 6, 1. The final longest path is the
first path.

3.3. Minimum case (minSTN)

minSTN is a procedure that computes st-oriented graphs with relatively small length of the longest path. In this section,
we give some theoretical results that justify this assumption.

minSTN works exactly the same way as maxSTN with the difference that it backtracks for a different reason. As we
saw before, maxSTN creates long directed paths of vertices and it backtracks when it encounters a cutpoint (no matter if
its timestamp is the maximum one), which is prohibited by the algorithm to be chosen as a next source. In maxSTN, the
criterion of backtracking is: If you encounter a cutpoint, continue execution from the node with the maximum timestamp. On the
other hand,minSTNworks as follows: It creates small paths of vertices because backtracking occurs more often, as nodes of
minimum timestamp usually lie on previously explored paths (see Fig. 8). Actually suppose during the execution ofminSTN
r ′ such paths of vertices P1, P2, P3, . . . , Pr ′ are created. These paths can be computed with exactly the same algorithm that
computes the maxSTN paths, with the difference that the case m(vj) < m(vj−1) + 1 is likely to occur more times during
minSTN than duringmaxSTN.

3.4. Longest path computations

Generally, the length of the longest path computed by the STN algorithm is also connected with the structure of the
t-rooted block-cutpoint tree. Next, we investigate the connection between the length of the longest path of the resulting
directed graph, and the number of leaf-blocks that are produced during the execution of the algorithm.
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Fig. 8. maxSTN (left) and minSTN (right) applied to the same biconnected component. The black node is a cutpoint. The thick lines show the different
orientation that results in different length of the longest path. The number besides the node represents the visit rank of each procedure.

Theorem 15. Suppose STN is run on an undirected st-Hamiltonian graph G. Let ki denote the number of the leaf-blocks of the
t-rooted block-cutpoint tree after the i-th removal of a node, for i = 1, 2, . . . , n− 1. Then l(t) ≤ n− 1−

∑
ki>ki−1

(ki − ki−1).

Proof. Suppose the i-th iteration of the algorithm begins. Then node vi is removed. The removal of vi gives a block-cutpoint
tree of ki leaf-blocks. When an iteration i causes the increase of the leaf-blocks from ki−1 to ki, then, in the best case, there
are at least ki − ki−1 nodes that for sure will not participate in the final longest path. Hence we can derive an upper bound
for l(t) that equals the maximum longest path that can be achieved minus the number of vertices which are lost for sure,
i.e., l(t) ≤ n− 1−

∑
ki>ki−1

(ki − ki−1). �

In the experiments conducted on st-Hamiltonian graphs we have observed that the length of the longest path computed by
maxSTN is usually very close to n− 1−

∑
ki>ki−1

(ki − ki−1).
Also, during STN, there are formed two sets of nodes R, R′ with V = R ∪ R′. R contains the nodes that have have been

removed from the graph whereas R′ contains the nodes that have not yet been removed. All edges (v, x) such that v ∈ R
have already been oriented and hence the directed paths leading to all nodes v ∈ R have been determined. That is why the
length of the longest path from s to a removed node v ∈ R is immediately determined at the time of its removal (Remark 14).
Actually, if we apply a relaxation algorithm during STN, we can compute the longest path length l(v) from s to every

node v ∈ R during the execution of STN. This can be achieved as follows: in the beginning, we initialize the longest path
vector l to be the zero vector, hence

l(v) = 0 ∀v ∈ V .

Suppose that at a random iteration of the algorithm we remove a node u ∈ R′, and we orient all u’s incident edges (u, i)
away from u. For every oriented edge (u, i) ∈ E ′ we relax l(i) as follows:
1: for all (u, i) ∈ E ′ do
2: if l(i) < l(u)+ 1 then
3: l(i) = l(u)+ 1;
4: end if
5: end for
This relaxation is exactly the same used by the algorithm that computes longest paths in directed acyclic graphs. Note that
nodes i belong to R′, and hence all nodes that belong to Q (or Q ′) will have an updated value l(i) different than zero.
Additionally, at the time a node v is removed from the graph (and enters R), its longest path length l(v) is always equal
to l(v′)+ 1, where v′ is a node that had previously removed from the graph. Suppose nowwe enter the k-th iteration of the
algorithm and vk is removed. Let

Mk = max{l(vj) : j = 1, . . . , k}

whereMk denotes the maximum longest path length computed by STN till iteration k. All the observations presented lead
to the following Lemma:

Lemma 16. Suppose STN enters iteration k and vk is removed. Then Mj ≤ Mj−1 + 1 for all j = 2, . . . , k.

Actually, Lemma 16 points out the fact that when STN enters iteration k, no dramatic changes can happen to the maximum
longest path length computed till iteration k. The increase is always at most one unit. This is actually happening when vk
has a previously removed neighbor vl, l < k and (vl, vk) ∈ E ′, such that l(vl) = Mk−1. If there is no such node, it holds
Mk = Mk−1 and no increase is observed.
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3.5. Longest path timestamps and weighted graphs

Until now, we have defined the timestamps in accordance with a current timer j, which is updated during the execution
of the algorithm: Each node v inserted into Q is associated with a timestamp valuem(v), which is set equal to i, every time
that v is discovered by a removed node vi, i.e., v is a neighbor of vi. We call this method current timestampmethod.
There is however another way to define the timestamps. As we saw in the previous section, during the execution of the

algorithm we can compute (using the relaxation method) the longest path length from s to each processed node u. We call
this method the longest path timestamp method and it works as follows. Each node v inserted into Q is associated with a
timestamp valuem(v), which is set equal to the relaxed longest path length l′(v), which is lower than the final longest path
length l(v) (this is determined by the time of v’s removal). As wewill discuss later, it has been experimentally observed, that
the current timestamp method is a more efficient way to control the length of the longest path of the final directed graph.
The longest path timestamp method can be used to produce long or short st-orientations of weighted graphs. The

presented algorithm, implemented with the longest path timestampmethod can be used to compute weighted numberings
on the weighted st-oriented graph that is produced. Let cuv be the weights of the graph edges (u, v) ∈ E. Suppose we update
the longest path lengths using the following algorithm:
1: for all (u, i) ∈ E ′ do
2: if l(i) < l(u)+ ciu then
3: l(i) = l(u)+ ciu;
4: end if
5: end for
Then we can use the computed longest paths to update the timestamps and implement the algorithm for weighted graphs
as well.

3.6. Computational complexity issues

In this section, we will investigate some issues concerning the complexity of the developed algorithm. First of all it is
easy to see that maintaining a block-cutpoint tree of a sole leaf-block during STN is NP-hard.1 The proof comes from the fact
that if we could do so, we could applymaxSTN (see Lemma 13) to an st-Hamiltonian graph and find its longest path, which
is a well known NP-hard problem [23]. Following we define two decision problems and prove their NP-hardness.
Definition 17. Given an undirected biconnected graphG = (V , E), two of its nodes s, t , an integer bound k, canwe transform
G to an st-oriented graph F than contains a longest path of length at least k?
Theorem 18. The Maximum st-Oriented Graph Problem is NP-hard.
Proof. We reduce the st-Directed Hamilton Path, which is NP-complete [23], to it. The st-directed Hamilton Path problem
seeks an answer to the following yes/no question: given a directed graph G = (V , E) and two vertices s, t is there a directed
path from s to t that visits all vertices exactly once? The polynomial reduction follows. Given an instance G′ = (V ′, E ′), s′, t ′
of the st-directed Hamilton Path problem, count the number |V ′| of nodes of G′ and output the instance G = G′, k = |V ′|,
s = s′, t = t ′ for the maximum longest path length st-oriented graph problem. Obviously, G has a simple directed path of
length k = |V ′| from s to t if and only if G′ has a directed Hamilton path from s′ to t ′. �

Definition 19. Given an undirected biconnected graphG = (V , E), two of its nodes s, t , an integer bound k, canwe transform
G to an st-oriented graph F than contains a longest path of length at most k?
This problem is also NP-hard, as shown in [24].

3.7. Inserting parameters into the algorithm

As it has already been reported, it would be desirable to be able to compute st-oriented graphs of length of longest path
within the interval [λ(t), `(t)]. This is called a parameterized st-orientation. So the question that arises is: can we insert a
parameter into our algorithm, for example a real constant p ∈ [0, 1] so that our algorithm computes an st-oriented graph
of length of longest path that is a function of p?
This is feasible if wemodifySTN. As the algorithm is executed exactly n times (n vertices are removed from the graph), we

can execute the proceduremaxSTN for the first pn iterations and the procedureminSTN for the remaining (1−p)n iterations.
We call this method parSTN(p) andwe say that it produces an st-oriented graphwith length of longest path from s to t equal
to a function∆(p). Note that parSTN(0) is equivalent tominSTN, thus∆(0) = λ(t)while parSTN(1) is equivalent tomaxSTN
and∆(1) = `(t). parSTN has been tested and it seems thatwhen applied to st-Hamiltonian graphs (biconnected graphs that
contain at least one path from s to t that contains all the nodes of the graph) there is a high likelihood that∆(p) ≥ p(n− 1).
Actually,∆(p) is very close to p(n−1). Additionally, it has been observed that if we switch the order ofmaxSTN andminSTN
execution, i.e., executeminSTN for the first pn iterations andmaxSTN for the remaining (1− p)n iterations, it is usually the
case that∆(p) ≤ p(n− 1). In this case,∆(p) is again very close to p(n− 1).

1 Actually, it is NP-hard to decide whether or not the removal of a vertex vi will cause a future decomposition of the block-cutpoint tree into more than
one leaf-blocks.
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Table 1
Results for parameterized st-orientations of density 3.5 st-Hamiltonian graphs

n p = 0 p = 0.3 p = 0.5 p = 0.7 p = 1

l(t) l(t)
n−1 l(t) l(t)

n−1 l(t) l(t)
n−1 l(t) l(t)

n−1 l(t) l(t)
n−1

100 14.00 0.141 38.90 0.393 59.20 0.598 76.50 0.773 92.20 0.931
200 18.60 0.093 74.10 0.372 113.00 0.568 147.90 0.743 186.60 0.938
300 23.30 0.078 104.80 0.351 165.10 0.552 219.20 0.733 280.70 0.939
400 23.30 0.058 139.10 0.349 213.80 0.536 289.30 0.725 376.30 0.943
500 29.20 0.059 169.40 0.339 267.30 0.536 361.20 0.724 470.70 0.943
600 27.90 0.047 202.10 0.337 318.90 0.532 428.90 0.716 566.60 0.946
700 30.90 0.044 231.60 0.331 369.40 0.528 499.00 0.714 663.40 0.949
800 30.00 0.038 264.90 0.332 415.30 0.520 566.50 0.709 755.60 0.946
900 31.70 0.035 294.30 0.327 469.90 0.523 640.20 0.712 848.10 0.943
1000 36.20 0.036 322.10 0.322 518.20 0.519 709.30 0.710 940.00 0.941
1100 38.90 0.035 353.90 0.322 576.30 0.524 782.90 0.712 1033.40 0.940
1200 34.40 0.029 387.00 0.323 622.10 0.519 845.50 0.705 1127.80 0.941
1300 34.30 0.026 421.10 0.324 674.50 0.519 917.00 0.706 1223.10 0.942
1400 38.90 0.028 448.80 0.321 718.40 0.514 983.90 0.703 1319.90 0.943
1500 38.00 0.025 478.30 0.319 775.70 0.517 1056.40 0.705 1417.10 0.945
1600 39.30 0.025 515.00 0.322 824.30 0.516 1137.20 0.711 1499.10 0.938
1700 38.50 0.023 539.30 0.317 872.00 0.513 1190.40 0.701 1604.00 0.944
1800 41.10 0.023 571.90 0.318 923.60 0.513 1263.80 0.703 1691.30 0.940
1900 41.40 0.022 605.60 0.319 978.60 0.515 1331.80 0.701 1786.30 0.941
2000 44.00 0.022 632.40 0.316 1023.80 0.512 1403.50 0.702 1883.90 0.942

As far as the parameterized st-orientation is concerned, we can extend our idea and insert more parameters
p1, p2, . . . , pk. In this case the algorithm would compute a longest path equal to ∆(p1, p2, . . . , pk). These parameters will
certainly define a choice on the structure that candidate sources are stored with more detail. For example, we can insert a
parameter k such that each time the k-th order statistic (or the median) from the timestamp vector is chosen.
The effectiveness of the parameterized st-orientation algorithm is fully indicated in the Experimental Results section.

4. Experimental results

Followingwepresent our results for different kinds of graphs, st-Hamiltonian graphs, planar graphs andweighted graphs.
All experiments were run on a Pentium IV machine, 512 MB RAM, 2.8 GHz under Windows 2000 professional.

4.1. st-Hamiltonian graphs

We have tested the parameterized STN algorithm for st-Hamiltonian graphs. In order to construct the graphs at random,
weuse the following algorithm. Initially,we compute a randompermutation P of the vertices of the graph. Thenwe construct
a cycle by adding the undirected edges

(P(1), P(2)), (P(2), P(3)), . . . , (P(n− 1), P(n)), (P(n), P(1))

and we choose at random two adjacent nodes of the cycle to be the source s and the sink t of our graph. This guarantees the
existence of a Hamiltonian path from s to t and a possible maximum longest path of every st-oriented graph of length n−1.
Finally,we add the remainingnd−n edges, given that the density of the desired graph is d.Wekeep a list of edges that have

not been inserted and make exactly nd− n random choices on this list, by simultaneously inserting the chosen undirected
edge into the graph and updating the list of the remaining undirected edges. During the execution of the algorithm, ties
between the timestamps of the candidate sources are broken at random. We isolate the nodes that satisfy the current
timestamp condition (i.e., the nodeswithmaximum timestamp in case ofmaxSTN and the nodeswithminimum timestamp
in case of minSTN), and afterwards we choose a node from the isolated set at random. The algorithm was implemented
in Java, using the Java Data Structures Library (www.jdsl.org) [25]. The graphs we have tested are n node-undirected
st-Hamiltonian graphs of density d where n = 100, 200, 300, . . . , 2000 and d = 3.5, 4.5, 5.5. For each pair (n, d) we
have tested 10 different randomly generated graphs (and we present the mean of the length of the longest path) in order to
get more reliable results. We have similar results for all other densities as well. In Tables 1–3 and in Fig. 9 our experimental
results for the value of the parameter p = 0, 0.3, 0.5, 0.7, 1 are presented. Note the remarkable consistency of the longest
path lengths with the parameter p.

4.2. Planar graphs

In this sectionwe present our results for planar graphs.We have actually tested two classes of planar graphs (low density
and triangulated planar graphs), and finally verified that the parameter works in a very efficient way for this class of graphs
as well.

www.jdsl.org
www.jdsl.org
www.jdsl.org


C. Papamanthou, I.G. Tollis / Theoretical Computer Science 408 (2008) 224–240 237

Table 2
Results for parameterized st-orientations of density 4.5 st-Hamiltonian graphs

n p = 0 p = 0.3 p = 0.5 p = 0.7 p = 1

l(t) l(t)
n−1 l(t) l(t)

n−1 l(t) l(t)
n−1 l(t) l(t)

n−1 l(t) l(t)
n−1

100 13.40 0.135 40.60 0.410 59.60 0.602 76.90 0.777 94.20 0.952
200 18.90 0.095 72.70 0.365 110.90 0.557 147.80 0.743 188.50 0.947
300 20.20 0.068 105.70 0.354 163.40 0.546 219.10 0.733 285.10 0.954
400 23.40 0.059 138.10 0.346 215.50 0.540 290.40 0.728 379.20 0.950
500 23.50 0.047 170.10 0.341 267.10 0.535 361.50 0.724 475.50 0.953
600 25.30 0.042 201.30 0.336 317.90 0.531 432.60 0.722 568.30 0.949
700 28.80 0.041 232.40 0.332 369.00 0.528 505.10 0.723 669.70 0.958
800 28.80 0.036 261.60 0.327 419.70 0.525 570.40 0.714 758.60 0.949
900 31.20 0.035 294.10 0.327 473.00 0.526 643.40 0.716 855.70 0.952
1000 30.60 0.031 321.00 0.321 521.50 0.522 713.80 0.715 952.40 0.953
1100 33.70 0.031 353.60 0.322 570.10 0.519 783.80 0.713 1051.50 0.957
1200 33.40 0.028 388.30 0.324 622.40 0.519 853.40 0.712 1141.40 0.952
1300 33.70 0.026 417.00 0.321 676.30 0.521 922.10 0.710 1236.50 0.952
1400 32.70 0.023 446.30 0.319 723.60 0.517 991.40 0.709 1335.80 0.955
1500 35.20 0.023 477.50 0.319 769.30 0.513 1061.60 0.708 1423.90 0.950
1600 37.30 0.023 512.00 0.320 825.00 0.516 1137.00 0.711 1523.10 0.953
1700 38.50 0.023 541.20 0.319 876.70 0.516 1199.30 0.706 1617.50 0.952
1800 38.30 0.021 567.10 0.315 929.40 0.517 1274.20 0.708 1709.40 0.950
1900 36.50 0.019 601.20 0.317 978.30 0.515 1340.30 0.706 1812.30 0.954
2000 40.60 0.020 632.70 0.317 1030.40 0.515 1410.40 0.706 1903.90 0.952

Table 3
Results for parameterized st-orientations of density 5.5 st-Hamiltonian graphs

n p = 0 p = 0.3 p = 0.5 p = 0.7 p = 1

l(t) l(t)
n−1 l(t) l(t)

n−1 l(t) l(t)
n−1 l(t) l(t)

n−1 l(t) l(t)
n−1

100 14.70 0.148 40.50 0.409 59.10 0.597 76.50 0.773 95.90 0.969
200 17.80 0.089 72.20 0.363 111.00 0.558 149.30 0.750 189.50 0.952
300 19.10 0.064 106.40 0.356 163.60 0.547 219.80 0.735 288.20 0.964
400 22.50 0.056 137.00 0.343 214.40 0.537 290.60 0.728 383.40 0.961
500 22.40 0.045 169.60 0.340 266.30 0.534 363.30 0.728 479.90 0.962
600 23.90 0.040 199.30 0.333 319.20 0.533 433.00 0.723 574.90 0.960
700 24.70 0.035 230.10 0.329 367.70 0.526 503.00 0.720 667.10 0.954
800 25.40 0.032 264.00 0.330 419.50 0.525 574.90 0.720 768.30 0.962
900 28.10 0.031 290.30 0.323 472.10 0.525 642.60 0.715 865.40 0.963
1000 30.10 0.030 323.60 0.324 518.80 0.519 716.30 0.717 958.20 0.959
1100 34.20 0.031 352.20 0.320 572.90 0.521 784.20 0.714 1053.30 0.958
1200 33.20 0.028 385.50 0.322 625.00 0.521 854.20 0.712 1152.40 0.961
1300 31.60 0.024 417.20 0.321 673.70 0.519 923.80 0.711 1245.60 0.959
1400 31.10 0.022 446.60 0.319 724.70 0.518 995.90 0.712 1343.00 0.960
1500 34.20 0.023 479.30 0.320 776.00 0.518 1067.10 0.712 1442.70 0.962
1600 35.70 0.022 507.40 0.317 825.50 0.516 1138.60 0.712 1531.50 0.958
1700 34.00 0.020 537.60 0.316 879.30 0.518 1207.40 0.711 1631.00 0.960
1800 40.40 0.022 567.70 0.316 926.30 0.515 1278.80 0.711 1728.20 0.961
1900 37.30 0.020 597.40 0.315 980.80 0.516 1346.10 0.709 1827.80 0.963
2000 37.30 0.019 632.80 0.317 1027.10 0.514 1413.70 0.707 1920.20 0.961

Low density (roughly equal to 1.5) st-planar graphs are constructed as follows:We build up a tree of n nodes by randomly
picking up a node and setting it to be the root of the tree. Then we connect the current tree (initially it only consists of the
root) with a node that does not belong to the current tree, and which is chosen at random. We execute the same procedure
until all nodes are inserted into the tree. Then we connect the leaves of the tree following a preorder numbering, so that all
crossings are avoided. In Table 4 the results for this class of graphs are shown. Note that the effect of the parameter is again
evident.
Maximum density (m = 3n − 6) st-planar graphs were computed with a certain software for graph algorithms and

visualization called P.I.G.A.L.E.2 This software produces graphs in ascii format, which are easily transformed to an input for
our algorithm. From Table 5, we can see that the parameter p actually defines the length of the longest path for triangulated
planar graphs as well.

2 Public Implementation of a Graph Algorithm Library and Editor (http://pigale.sourceforge.net/).

http://pigale.sourceforge.net/
http://pigale.sourceforge.net/
http://pigale.sourceforge.net/
http://pigale.sourceforge.net/
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Fig. 9. Parameterized longest path length results.

Table 4
Results for low density planar graphs

n p = 0 p = 0.5 p = 1

l(t) l(t) l(t)

250 123.10 168.90 216.90
500 229.50 297.40 399.60
750 360.10 489.40 629.10
1000 485.20 639.60 831.40
1250 592.30 818.00 1060.70
1500 651.00 991.60 1304.10
1750 842.10 1145.70 1486.30
2000 910.30 1302.80 1686.10
2250 1077.20 1448.40 1892.60
2500 1134.10 1539.80 2053.50
2750 1350.70 1700.70 2198.10
3000 1451.30 2025.80 2590.20
3250 1418.80 2156.00 2814.40

Table 5
Results for triangulated planar graphs

n p = 0 p = 0.5 p = 1

l(t) l(t) l(t)

109 25.00 65.00 98.00
222 34.00 114.00 192.00
310 59.00 175.00 280.00
436 71.00 237.00 404.00
535 44.00 287.00 497.00
678 78.00 383.00 623.00
763 90.00 393.00 695.00
863 65.00 475.00 780.00
998 106.00 486.00 882.00
1117 88.00 579.00 1008.00
1197 103.00 615.00 1012.00
1302 112.00 607.00 1114.00
1410 196.00 719.00 1254.00
1501 172.00 771.00 1357.00
1638 143.00 754.00 1420.00
1719 176.00 864.00 1578.00
1825 144.00 912.00 1683.00
1990 98.00 865.00 1715.00
2089 162.00 1059.00 1862.00
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Fig. 10. Results for weighted graphs forW = 10, 20, 30 (up to bottom).

4.3. Weighted graphs

Finally, the third series of experiments were conducted onweighted graphs (Fig. 10). We used the algorithm described in
Section 4.3 andmake use of the parameter p in the sameway as in the case of undirected graphs. The weighted graphs were
constructed as follows. Firstly we construct a respective st-Hamiltonian unweighted graph. Then we set a valueW to be an
upper bound on the weights of the edges of the graph. We set the weights of the edges that lie on a Hamiltonian path from s
to t equal toW . Clearly, the maximum longest path length of an st-orientation that corresponds to such weighted graphs is
(n− 1)W . The weights of the remaining edges are uniformly distributed in [1,W ]. Note that the length of the longest path
of the st-orientation, in this case, is in absolute accordance with the value of the parameter p and the valueW (Fig. 10).

5. Conclusions

In this paper, a new algorithm for computing st-orientations of graphs is presented. The novelty of the algorithm lies
in the fact that it gives us the opportunity to control some characteristics of the final st-oriented graph, such as the length
of the longest path. Many of the applications which use an st-numbering as a first step can use this algorithm in order to
produce better solutions. Experimental results for various classes of graphs reveal the robustness of the algorithm. Future
work includes:

• Further theoretical results concerning the properties of the algorithm.
• Applications of parameterized st-Orientations in Graph Drawing (Hierarchical Drawing, Visibility Representations and
Orthogonal Drawings). Can we achieve better area bounds?
• Graph Coloring viaminSTN and longest path viamaxSTN. Can we produce good heuristics for these problems?
• Constrained st-Orientations. How canwemodify the developed algorithm to produce parameterized st-orientationswith
some predefined orientations on edges (we conjecture this problem is NP-hard)?
• Cheaper update of the block-cutpoint tree using sophisticated data structures such as [21].
• How does the parameterized primal longest path length influence the dual longest path length in planar graphs?
• Can we prove that the developed algorithmmay reach any possible st-orientation that corresponds to a certain graph?
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